• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    環(huán)己烯對噻吩在CuY分子篩上吸附的影響機制

    2017-06-21 12:33:11莫周勝秦玉才張曉彤段林海宋麗娟
    物理化學學報 2017年6期
    關鍵詞:己烯林海噻吩

    莫周勝 秦玉才 張曉彤 段林海 宋麗娟,,*

    (1中國石油大學(華東)化學工程學院,山東 青島 266555;2遼寧石油化工大學,遼寧省石油化工催化科學與技術重點實驗室,遼寧 撫順 113001)

    環(huán)己烯對噻吩在CuY分子篩上吸附的影響機制

    莫周勝1秦玉才2張曉彤2段林海2宋麗娟1,2,*

    (1中國石油大學(華東)化學工程學院,山東 青島 266555;2遼寧石油化工大學,遼寧省石油化工催化科學與技術重點實驗室,遼寧 撫順 113001)

    利用液相離子交換法制備了CuY分子篩,并用X射線光電子能譜分析(XPS)對Cu元素進行了價態(tài)表征,用原位傅里葉轉換紅外(in-situ FTIR)和氨氣程序升溫脫附(NH3-TPD)技術對其進行了酸性表征。同時,以噻吩和環(huán)己烯為探針分子,CuY分子篩為吸附劑,研究了環(huán)己烯對噻吩在CuY分子篩B酸中心上吸附的影響機制。實驗結果顯示,CuY分子篩表層的Cu離子主要以Cu+為主,其表面酸性主要由中強B酸和L酸組成。與稀土離子不同的是,銅離子的存在抑制了噻吩或環(huán)己烯在B酸中心上的聚合反應。因此,環(huán)己烯主要通過與噻吩的競爭吸附影響噻吩在CuY分子篩B酸性位上的吸附。

    原位傅里葉轉換紅外光譜;質子酸;競爭吸附;反協(xié)同效應

    1 Introduction

    Environmental concerns have driven people of nowadays to use fuel of very low sulfur content1. In recent years, governments worldwide have made increasingly stringent regulations to limit sulfur levels in fuels. European Union gasoline and diesel fuel specifications call for 10 mg·kg-1sulfur in Euro-IV2. In China, Beijing has been enforcing the national V standard since May 2012, requiring less than 10 mg·kg-1of sulfur content in automotive gasoline or diesel fuel3. A conventional process for removal of sulfur from liquid fuels is catalytic hydrodesulfurization (HDS). HDS of fluid catalytic cracking (FCC) gasoline is a straightforward way for reducing the sulfur to the levels even below 1 mg·kg-1. However, it needs high investment, operating costs and significant loss in the octane number caused by saturation of olefins4.

    To produce ultra-clean fuels, new desulfurization approaches like selective adsorptive desulfurization (SADS) and oxidative desulfurization (ODS) are currently being explored as a valid supplement to HDS process1,5. Among these ways, SADS is regarded as one of the most appropriate and promising deep desulfurization methods because it does not only can be operated at relative low temperature and pressure, but also requires no hydrogen6. Various types of adsorbents for SADS, such as metal oxides, active carbon, clays, zeolites, mesoporous materials, composite zeolite and so on, have been reported for the adsorptive removal of sulfur compounds in fuels7-13. Metal ion modified Y zeolites have been explored as effective adsorbents due to their high ion-exchange capacity, sizeselective adsorption capacity and their thermal and mechanical stabilities14.

    Yang and coworkers15-17reported that CuY, AgY and NiY zeolites were effective for the removal of thiophenic compounds which were the major sulfur compounds in fuels by providing a π-complexation between thiophenic compounds and the transition metal cations (Lewis acidity, or L acidity) loaded on the zeolites. But when aromatics and olefins coexist with thiophenic compounds in transportation fuels, the capacities of the zeolites for adsorption desulfurization drop sharply18-20. Influencing mechanism of aromatics on adsorption of thiophenic compounds is often attributed to the competitive adsorptions between aromatics and thiophenic compounds on CuY zeolite. But as far as we know, influencing mechanism of olefins has not been reported.

    Song and coworkers21studied Cu2+Y, Ni2+Y, and Ce4+Y for the removal of sulfur compounds from commercial aviation fuels and the result showed that Ce4+Y has higher selectivity than the other metal-exchanged zeolites via direct sulfur atom and metal ion interaction (S-M interaction). Tian et al.22also proved that introduction of Ce4+ion to NaY zeolites weakens the effect of competitive adsorption between thiophene and toluene, but can not be eliminated completely. In addition, adsorption of thiophenic compounds over CeY zeolite can be strongly affected by the olefins via competitive adsorption23,24. Besides the competitive adsorption, Br?nsted acidity (B acidity) of Y zeolites is another important hindering factor for the desulfurization performance of CeY. This is because adsorption of thiophene over B acid sites of HY zeolites will lead to further oligomerization phenomena25,26. Meanwhile, the olefins in the fuels also can oligomerize with itself and alkylate thiophene under catalysis of B acidity26,27. These reactions not only inhibit further adsorption of thiophenic compounds onto adsorbent, but also make the regeneration of adsorbent become more difficult28. Our previous studies also confirmed that competitive adsorptions between aromatics, olefins and thiophenic compounds and B acid catalysis are two crucial factors in sulfur removal10,11,23,29-33.

    It is noteworthy that influencing mechanism of olefins on LaY or CeY is competitive adsorption (on L acid site) and B acid catalysis (on B acid site), but the influencing mechanism of olefins for CuY or AgY is still unknown. It is beneficial to develop and design new type Cu-based adsorbents with good sulfur selectivity and high sulphur capacity for real fuel oil which contains aromatics and olefins by solving this question. For example, the improvement of bimetal ion-exchanged zeolite19,20. Therefore, this main aim of paper is to reveal the influencing mechanism of olefins on adsorption of thiophenic compounds over CuY zeolite by in-situ Fourier transform infrared (in-situ FTIR) spectroscopy. In-situ FTIR spectroscopy is effective mean for investigating the absorption mechanism of small organic molecule (e.g. thiophene and dimethyl disulfide) on zeolites6,27,29,33.

    2 Materials and methods

    2.1 Adsorbent preparation

    NaY zeolite (the molar ratio of Si and Al is 2.55, Nankai University catalyst Co., Ltd.) in powder form was used as the starting material. The CuY zeolite was prepared by liquid phase ion exchange (LPIE) method29in which NaY zeolite was treated with 0.1 mol·L-1Cu(NO3)2aqueous solution at boiling condition for 4 h. In order to obtain the CuY with higher copper ion loading, the ion exchanged experiment was repeated. Finally, the CuY zeolite was calcined at 500 °C for 6 h under a flowing nitrogen atmosphere for improving Cu+/Cu2+ratio of CuY zeolite because Cu+is needed for π-complexation during the adsorption of sulfur with CuY34.

    2.2 Characterization of adsorbent

    X-ray photoelectron spectroscopy (XPS) analyse was conducted on a Thermo ESCALAB 250 spectrometer equipped with an Al KαX-ray source (hν = 1486.6 eV). The typical base pressure was 5.0×10-7Pa. The binding energies were calibrated by referencing the C 1s peak (284.6 eV) to reduce the sample charge effect.

    The acidity was monitored by pyridine in-situ FTIR (Py-FTIR) technique, with a Perkin-Elmer Spectrum TM GX spectrometer (Perkin-Elmer, USA) coupled to a conventional high vacuum system. NH3-TPD experiments were performedon a Micromeritics Auto Chem II Chemisorption Analyzer (Micromeritics, USA) with a thermal conductivity detector. The sample was treated in He gas flow at 500 °C for 1 h.

    2.3 Adsorption experiments

    The CuY zeolites were pressed into thin wafers (12-15 mg·cm-2) and activated at 400 °C under vacuum (10-3Pa) for 4 h. The wafers were respectively exposed to the vapors of thiophene, cyclohexene, and the co-adsorption vapors of thiophene and cyclohexene at room temperature (RT) and evacuated 30 min at 100, 200, 300 or 400 °C, then recorded the IR spectra after cooling to room temperature at each desorption temperature. IR spectra were recorded using a Perkin-Elmer Spectrum TM GX spectrometer. An in-situ IR cell coupled to a conventional high vacuum system was utilized allowing the sample wafers can be heated under vacuum or exposed to vapor-phase probe molecules.

    3 Results and discussion

    3.1 XPS Analysis

    Fig.1 shows chemical state of Cu in CuY zeolite. In the XPS spectrum of CuY zeolite, the peaks of binding energies at 933.1 and 935.6 eV correspond to Cu+2p3/2and Cu2+2p3/2, respectively. The peaks at 953 and 943.7 eV correspond to Cu 2p1/2and satellite of Cu2+2p3/2, respectively34,35. The two peaks at 933.1 and 935.6 eV were fitted and their peak areas were calculated by the XPS peak software for obtaining the relative content ratio of Cu+/Cu2+. The calculated result demonstrates that peak area ratio of 933.1 and 935.6 eV is 1 : 0.29, which means that the content of Cu+on the surface of CuY zeolite is larger than Cu2+. Indeed, the concentration of Cu+in CuY zeolite prepared LPIE method is high36and is helpful to improve the selective adsorption desulfurization performance of CuY zeolite.

    3.2 Characterization of the surface acidity

    Fig.1 XPS spectra of Cu ion in CuY zeolite

    As shown in Fig.2a, CuY zeolite exhibits four hydroxyl bands attributed to: (I) SiOH groups terminating the crystal structure (3742 cm-1), (II) AlOH groups (3680 cm-1), (III) OH groups in the supercage (3640 cm-1) and (IV) OH groups in the sodalite cage (3554 cm-1)37,38. When pyridine was adsorbed (Fig.2b), hydroxyl bands at 3640 and 3554 cm-1disappeared and new absorption bands 1544 and 1450 cm-1appeared. Adsorption band at 1545 cm-l, due to pyridinium ions, is indicative of B acidity while absorption band at 1450 cm-l, due to coordinately bound pyridine with cations (Al3+or Cu+/Cu2+for CuY zeolite), is characteristic of L acidity38,39. With desorption temperature increasing, small amount of hydroxyl bands were recovered (Fig.2c). It means that the acid strength of partial hydroxyls is weak. Combined with the result of NH3-TPD showed in Fig.3, it can be found that the acidity of CuY zeolite is mainly medium and strong B acid and L acid.

    3.3 Single-component adsorption

    The in situ FTIR spectrograms of thiophene and cyclohexene adsorbed on CuY are given in Fig.4 and Fig.5, respectively. The band at 3106 and 1396 cm-1can be ascribed to the ν(=C―H) and vsym(C=C) of thiophene adsorbed on L acid or B acid via π-electronic interaction, respectively31,40. They also exist in FTIR spectrograms of thiophene adsorbed on NaY, HY or CeY29. 1482, 1386 and 1353 cm-1only appear in CuY and are absent in NaY, HY or CeY. 1386 cm-1come from v(C=C) of thiophene adsorbed on CuY zeolite by physisorption. 1454 and 1353 cm-1may result from thiophene connected with Cu2+or Cu+by S-M (S-Cu) bond, while 1482 cm-1can be ascribed to thiophene adsorbed on Cu+by π-complexation41,42. Unlike the FTIR spectrogram of thiophene adsorbed on CeY zeolite, the FTIR spectrogram of thiophene adsorbed on CuY zeolite have not the bands 1504 and 1439 cm-1which are an indicationof thiophene polymerization on B acid site. It means thiophene adsorbed on the B acid site or L acid site does not generate further acid catalytic reaction. The hydroxyl bands at 3740, 3637 and 3553 cm-1recover gradually, while 3106 and 1500-1300 cm-1slowly disappear as the temperature rises. This indicates that thiophene gradual desorbs when temperature increases. However, thiophene is not removed completely due to the existence of strong B and L acid sites.

    Fig.2 Py-FTIR spectra of CuY zeolite

    Fig.3 NH3-TPD spectra of CuY zeolite

    Fig.4 FTIR spectra of thiophene adsorbed on CuY zeolite

    Fig.5 FTIR spectra of cyclohexene adsorbed on CuY zeolite

    The FTIR spectra of cyclohexene adsorbed on CuY and then desorbed at higher temperatures is shown in Fig.5. The bands 2928 and 2853 cm-1corresponding to vasymand vsymof ―CH2―of cyclohexene, respectively. The 1640 cm-1assigned to ν(C=C) of cyclohexene shifts to lower frequencies compared with those of gaseous cyclohexene 1653 cm-1. This implies the interaction of C=C bond of cyclohexene with B acid or L acid is π-complex27,33. 1450 and 1438 cm-1are respectively the characteristic peaks of δasymof methylene ―CH2― and =CH―CH2― of cyclohexene. The absence of 1520 cm-1which has been attributed to the sign of formation of alkenyl carbenium ions27,29indicates adsorbed cyclohexene did not generate oligomerization. The ratio of intensities of the 1450 cm-1band and the 1438 cm-1band greatly increases at 300 °C (Fig.5e). This implies some =CH―CH2― bands transform into ―CH2―CH2― by the protonation of cyclohexene and coke with the increase of temperature43. The reaction of cyclohexene on CuY zeolite is different from on HY, LaY or CeY zeolites. Protonation and oligomerization of cyclohexene easily occur on HY, LaY or CeY even at room temperature27,29.

    3.4 Bi-component adsorption

    The FTIR spectrograms of co-adsorption of thiophene and cyclohexene on CuY are shown in Fig.6 and Fig.7. Thiophene was first adsorbed and then cyclohexene in Fig.6, and cyclohexene was first adsorbed and then thiophene in Fig.7. The apparent bands at 1450 and 1439 cm-1in Fig.6 mean adsorption of cyclohexene is obvious when thiophene is adsorbed at first, but the weak bands at 3106 and 1396 cm-1mean adsorption of thiophene is weakened. Therefore, the competitive adsorption between thiophene and cyclohexene is strong.

    When cyclohexene is adsorbed at first (see Fig.7), adsorption of thiophene is weak because the intensities of band 1396 cm-1is weak. Meanwhile, the intensities of bands at 1450 and 1439 cm-1are weaker than in Fig.5. The phenomena also indicate the existence of competitive adsorption between cyclohexene and thiophene. Similarly, the absence of 1520 cm-1indicates oligomerization of cyclohexene did not take place29. The resultis in agreement with the results of adsorption desulfurization experiments18,20that the addition of olefins in model gasolines containing thiophenic sulfides resulted in significantly reduce of adsorption desulfurization performance of CuY zeolite.

    Fig.6 FTIR spectra of thiophene and cyclohexene adsorbed on CuY zeolite

    Fig.7 FTIR spectra of cyclohexene and thiophene adsorbed on CuY zeolite

    4 Conclusions

    From the results obtained in this study, it can be found that acidity of CuY zeolite is composed by medium and strong B acidity and L acidity. The B acidity did not lead to polymerization reaction of thiophene or cyclohexene on CuY, although the polymerization reaction can occur easily on HY or REY. The reason may be that existence of copper ion (L acidity) inhibits the proceeding of intermolecular polymerization reaction of thiophene or cyclohexene over B acid sites. Besides, cyclohexene has a negative effect to thiophene adsorption over B or L acid sites of CuY by competitive adsorption. Thus, influencing mechanism of cyclohexene on thiophene adsorption over CuY is competitive adsorption rather than catalysis of B acidity. How to avoid the competitive adsorption of olefins and thiophenic compounds is still a development direction of improvement of adsorbent for adsorption desulfurization. Furthermore, the discovery of anti-synergistic effect between B acidity and copper ion in Y zeolite is helpful for understanding catalytic property of CuY zeolite.

    (1) Saha, B.; Sengupta, S. Fuel 2015, 150, 679. doi: 10.1016/j.fuel.2015.02.078

    (2) Dasgupta, S.; Agnihotri, V.; Gupta, P.; Nanoti, A.; Garg, M. O.; Goswami, A. N. Catal. Today 2009, 141, 84. doi: 10.1016/j.cattod.2008.04.005

    (3) Li, D. D. Chin. J. Catal. 2013, 34, 48. [李大東. 催化學報, 2013, 34, 48.] doi: 10.1016/S1872-2067(11)60508-1

    (4) Mortaheb, H. R.; Ghaemmaghami, F.; Mokhtarani, B. Chem. Eng. Res. Des. 2012, 90, 409. doi: 10.1016/j.cherd.2011.07.019

    (5) Sitamraju, S.; Xiao, J.; Janik, M. J.; Song, C. S. J. Phys. Chem. C 2015, 119, 5903. doi: 10.1021/jp510326h

    (6) Lv, L.; Zhang, J.; Huang, C.; Lei, Z.; Chen, B. Sep. Purif. Technol. 2014, 125, 247. doi: 10.1016/j.seppur.2014.02.002

    (7) Xiao, J.; Li, Z.; Liu, B.; Xia, Q.; Yu, M. Energy Fuels 2008, 22, 3858. doi: 10.1021/ef800437e

    (8) Hernández-Maldonado, A. J.; Qi, G.; Yang, R. T. Appl. Catal. B: Environ. 2005, 61, 212. doi: 10.1016/j.apcatb.2005.05.003

    (9) Wang, Y.; Yang, R. T.; Heinzel, J. M. Chem. Eng. Sci. 2008, 63, 356. doi: 10.1016/j.ces.2007.09.002

    (10) Shao, X. C.; Zhang, X. T.; Yu, W. G.; Wu, Y. Y.; Qin, Y. C.; Sun, Z. L.; Song, L. J. Appl. Surf. Sci. 2012, 263, 1. doi: 10.1016/j.apsusc.2012.07.142

    (11) Shao, X. C.; Duan, L. H.; Wu, Y. Y.; Qin, Y. C.; Yu, W. G.; Wang, Y.; Li, H. L.; Sun, Z. L.; Song, L. J. Acta Phys. -Chim. Sin. 2012, 28, 1467. [邵新超, 段林海, 武玉葉, 秦玉才, 于文廣, 王 源, 李懷雷, 孫兆林, 宋麗娟. 物理化學學報, 2012, 28, 1467.] doi: 10.3866/PKU.WHXB201203312

    (12) Sui, P. P.; Meng, X. H.; Wu, Y. Y.; Zhao, Y. Y.; Song, L. J.; Sun, Z. L.; Duan, L. H.; Umar, A.; Wang, Q. Sci. Adv. Mater. 2013, 5, 1132. doi: 10.1166/sam.2013.1564

    (13) Sun, H. Y.; Sun, L. P.; Li, F.; Zhang, L. Fuel Process. Technol. 2015, 134, 284. doi: 10.1016/j.fuproc.2015.02.010

    (14) Montazerolghaem, M.; Seyedeyn-Azad, F.; Rahimi, A. Korean J. Chem. Eng. 2014, 32, 328. doi: 10.1007/s11814-014-0213-1

    (15) Yang, R. T.; Hernández-Maldonado, A. J.; Yang, F. H. Science 2003, 301, 79. doi: 10.1126/science.1085088

    (16) Hernández-Maldonado, A. J.; Yang, R. T. Ind. Eng. Chem. Res. 2003, 42, 123. doi: 10.1021/ie020728j

    (17) Hernández-Maldonado, A. J.; Yang, F. H.; Qi, G.; Yang, R. T. Appl. Catal. B: Environ. 2005, 56, 111. doi: 10.1016/j.apcatb.2004.06.023

    (18) King, D. L.; Li, L. Catal. Today 2006, 116, 526. doi: 10.1016/j.cattod.2006.06.026

    (19) Song, H.; Cui, X. H.; Song, H. L.; Gao, H. J.; Li, F. Ind. Eng. Chem. Res. 2014, 53, 14552. doi: 10.1021/ie404362f

    (20) Song, H.; Wan, X.; Dai, M.; Zhang, J.; Li, F.; Song, H. Fuel Process. Technol. 2013, 116, 52. doi: 10.1016/j.fuproc.2013.04.017

    (21) Velu, S.; Ma, X. L.; Song, C. S. Ind. Eng. Chem. Res. 2003, 42, 5293. doi: 10.1021/ie020995p

    (22) Shi, Y. C.; Yang, X. J.; Tian, F. P.; Jia, C. Y.; Chen, Y. Y. J. Nat. Gas Chem. 2012, 21, 421. [石艷春, 楊瀟健, 田福平, 賈翠英, 陳永英.天然氣化學, 2012, 21, 421.] doi: 10.1016/S1003-9953(11)60385-X

    (23) Wang, H. G.; Song, L. J.; Jiang, H.; Xu, J.; Jin, L. L.; Zhang, X. T.; Sun, Z. L. Fuel Process. Technol. 2009, 90, 835. doi: 10.1016/j.fuproc.2009.03.004

    (24) Liao, J. J.; Bao, W. R.; Chang, L. P. Fuel Process. Technol. 2015, 140, 104. doi: 10.1016/j.fuproc.2015.08.036

    (25) Geobaldo, F.; Palomino, G. T.; Bordiga, S.; Zecchina, A.; Areán, C. O. Phys. Chem. Chem. Phys. 1999, 1, 561. doi: 10.1039/A807353H

    (26) Richardeau, D.; Joly, G.; Canaff, C.; Magnoux, P.; Guisnet, M.; Thomas, M.; Nicolaos, A. Appl. Catal. A: Gen. 2004, 263, 49. doi: 10.1016/j.apcata.2003.11.039

    (27) Shi, Y. C.; Zhang, W.; Zhang, H. X.; Tian, F. P.; Jia, C. Y.; Chen, Y. Y. Fuel Process. Technol. 2013, 110, 24. doi: 10.1016/j.fuproc.2013.01.008

    (28) Laborde-Boutet, C.; Joly, G.; Nicolaos, A.; Thomas, M.; Magnoux, P. Ind. Eng. Chem. Res. 2006, 45, 6758. doi: 10.1021/ie060168e

    (29) Qin, Y. C.; Mo, Z. S.; Yu, W. G.; Dong, S. W.; Duan, L. H.; Gao, X. H.; Song, L. J. Appl. Surf. Sci. 2014, 292, 5. doi: 10.1016/j.apsusc.2013.11.036

    (30) Qin, Y. C.; Gao, X. H.; Pei, T. T.; Zheng, L. G.; Wang, L.; Mo, Z. S.; Song, L. J. J. Fuel Chem. Technol. 2013, 41, 889. [秦玉才, 高雄厚,裴婷婷, 鄭蘭歌, 王 琳, 莫周勝, 宋麗娟. 燃料化學學報, 2013, 41, 889.]

    (31) Qin, Y. C.; Gao, X. H.; Duan, L. H.; Fan, Y. C.; Yu, W. G.; Zhang, H. T.; Song, L. J. Acta Phys. -Chim. Sin. 2014, 30, 544. [秦玉才, 高雄厚,段林海, 范躍超, 于文廣, 張海濤, 宋麗娟. 物理化學學報, 2014, 30, 544.] doi: 10.3866/PKU.WHXB201401021

    (32) Zhang, C.; Qin Y. C.; Gao X. H.; Zhang H. T.; Mo Z. S.; Chu C. Y.; Zhang, X. T.; Song, L. J. Acta Phys. -Chim. Sin. 2015, 31, 344. [張暢, 秦玉才, 高雄厚, 張海濤, 莫周勝, 初春雨, 張曉彤, 宋麗娟.物理化學學報. 2015, 31, 344.] doi: 10.3866/PKU.WHXB201412163

    (33) Zhang, X. T.; Yu, W. G.; Qin, Y. C.; Dong, S. W.; Pei, T. T.; Wang, L. T.; Song, L. J. Acta Phys-chim. Sin. 2013, 29, 1273. [張曉彤, 于文廣,秦玉才, 董世偉, 裴婷婷, 王陵濤, 宋麗娟. 物理化學學報, 2013, 29, 1273.] doi: 10.3866/PKU.WHXB201303183

    (34) Shan, J. H.; Liu, X. Q.; Sun, L. B.; Cui, R. Energy Fuels 2008, 22, 3955. doi: 10.1021/ef800296n

    (35) Richtera, M.; Fait, M. J. G.; Eckelt, R.; Schneider, M.; Radnik, J.; Heidemann, D.; Fricke, R. J. Catal. 2007, 245, 11. doi: 10.1016/j.jcat.2006.09.009

    (36) Li, Z.; Fu, T. J.; Zheng, H. Y. Chin. J. Inorg. Chem. 2011, 27, 1483. [李 忠, 付廷俊, 鄭華艷. 無機化學學報, 2011, 27, 1483.]

    (38) Benaliouche, F.; Boucheffa, Y.; Ayrault, P.; Mignard, S.; Magnoux, P. Micropor. Mesopor. Mat. 2008, 111, 80. doi: 10.1016/j.micromeso.2007.07.006

    (39) Ward, J. W. J. Catal. 1971, 22, 237. doi: 10.1016/0021-9517(71)90190-4

    (40) Garcia, C. L.; Lercher, J. A. J. Phys. Chem. 1992, 96, 2669. doi: 10.1021/j100185a050

    (41) Tang, X. L.; Shi, L. Langmuir. 2011, 27, 11999. doi: 10.1021/la2025654

    (42) Mills, P.; Korlann, S.; Bussell, M. E.; Reynolds, M. A.; Ovchinnikov, M. V.; Angelici, R. J.; Stinner, C.; Weber, T.; Prins, R. J. Phys. Chem. A 2001, 105, 4418. doi: 10.1021/jp010258r

    (43) Jolly, S.; Saussey, J.; Lavahey, J. C. J. Mol. Catal. 1994, 86, 401. doi: 10.1016/0304-5102(93)E0156-B

    Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites

    MO Zhou-Sheng1QIN Yu-Cai2ZHANG Xiao-Tong2DUAN Lin-Hai2SONG Li-Juan1,2,*
    (1College of Chemistry & Chemical Engineering, China University of Petroleum (East China), Qingdao 266555, Shandong Province, P. R. China;2Key Laboratory of Petrochemical Catalytic Science and Technology of Liaoning Province, Liaoning Shihua University, Fushun 113001, Liaoning Province, P. R. China)

    A CuY zeolite prepared by liquid phase ion exchange was characterized by X-ray photoelectron spectroscopy, pyridine in situ Fourier transform infrared (in situ FTIR) spectroscopy, and ammonia temperature programmed desorption. The effect of cyclohexene on the adsorption of thiophene over the prepared CuY zeolite was explored by in situ FTIR. In particular, the role of the zeolite’s Br?nsted acidity was investigated in the adsorption process. The results show that the percentage of Cu+on the surface of the CuY zeolite can reach 77%. The surface acidity of the CuY zeolite mainly comprises medium and strong Br?nsted acidity and Lewis acidity. According to the adsorption results, cyclohexene negatively influences thiophene adsorption on the Br?nsted or Lewis acid sites in CuY by competitive adsorption. Although polymerization of thiophene and cyclohexene can occur easily on the HY or REY zeolites, the presence of Br?nsted acids in the CuY zeolite was not sufficient to polymerize either thiophene or cyclohexene. This difference may be caused by an anti-synergistic effect between the Cu ions of the CuY zeolite and neighboring Br?nsted acid sites, the result of which inhibits the polymerization of adsorbed thiophene and cyclohexene.

    In-situ FTIR spectroscopy; Br?nsted acidity; Competitive adsorption; Anti-synergistic effect

    November 25, 2016; Revised: March 10, 2017; Published online: March 28, 2017.

    O643

    Ward, J. W. J. Catal. 1967, 9, 225.

    10.1016/0021-9517(67)90248-5

    doi: 10.3866/PKU.WHXB201703281

    *Corresponding author. Email: lsong56@263.net; Tel: +86-024-56860658.

    The project was supported by the National Natural Science Foundation of China (21376114, 21476101) and Major Program of Petroleum Refining of Catalyst of PetroChina Company Limited (10-01A-01-01-01).

    國家自然科學基金(21376114, 21476101)和中國石油天然氣股份有限公司煉油催化劑重大專項(10-01A-01-01-01)資助項目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    己烯林海噻吩
    十氟己烯在兩相浸沒式冷卻系統(tǒng)中的應用
    歡 沁
    琴童(2017年10期)2017-10-31 06:43:07
    冬陽
    琴童(2017年9期)2017-10-16 16:47:03
    林海
    寶藏(2017年6期)2017-07-20 10:01:06
    郝林海的水彩畫與俳意
    中華奇石(2016年11期)2017-03-16 07:59:49
    探討醫(yī)藥中間體合成中噻吩的應用
    4,7-二噻吩-[2,1,3]苯并硒二唑的合成及其光電性能
    合成化學(2015年10期)2016-01-17 08:56:47
    環(huán)己烯制備實驗的改進
    直接合成法制備載銀稻殼活性炭及其對苯并噻吩的吸附
    應用化工(2014年9期)2014-08-10 14:05:08
    酸洗條件對未漂硫酸鹽麥草漿己烯糖醛酸去除的影響
    中國造紙(2014年1期)2014-03-01 02:10:08
    欧美成人a在线观看| 国产 一区精品| 国产乱人视频| 你懂的网址亚洲精品在线观看| 黄色配什么色好看| 97超碰精品成人国产| 免费少妇av软件| 免费人成在线观看视频色| 欧美成人午夜免费资源| 美女视频免费永久观看网站| 国产老妇伦熟女老妇高清| 午夜亚洲福利在线播放| 国产精品三级大全| 欧美另类一区| 日韩三级伦理在线观看| 日韩三级伦理在线观看| www.色视频.com| 欧美日韩精品成人综合77777| 亚洲激情五月婷婷啪啪| 在线观看av片永久免费下载| 日本-黄色视频高清免费观看| 制服丝袜香蕉在线| 国产高清不卡午夜福利| 亚洲欧美日韩东京热| 日本熟妇午夜| 伦精品一区二区三区| 白带黄色成豆腐渣| 99视频精品全部免费 在线| 网址你懂的国产日韩在线| 亚洲av不卡在线观看| 在现免费观看毛片| av女优亚洲男人天堂| 亚洲欧美中文字幕日韩二区| 插阴视频在线观看视频| 男男h啪啪无遮挡| 午夜福利视频精品| 观看美女的网站| 亚洲最大成人av| 国产在视频线精品| 国内精品宾馆在线| 乱系列少妇在线播放| 91精品国产九色| 超碰97精品在线观看| 久久精品国产亚洲av天美| 亚洲在线观看片| kizo精华| h日本视频在线播放| 国产免费一级a男人的天堂| 成人毛片a级毛片在线播放| 亚洲精品,欧美精品| 日韩精品有码人妻一区| 国产亚洲91精品色在线| 久久精品综合一区二区三区| 亚洲,一卡二卡三卡| 性色av一级| 亚洲欧美成人精品一区二区| 精品久久久久久久久亚洲| 啦啦啦中文免费视频观看日本| 国产一级毛片在线| 日韩国内少妇激情av| av国产免费在线观看| 免费观看性生交大片5| 如何舔出高潮| 国产高清不卡午夜福利| 中国三级夫妇交换| 国产人妻一区二区三区在| 免费黄频网站在线观看国产| 欧美精品一区二区大全| 精品一区在线观看国产| 香蕉精品网在线| 成人高潮视频无遮挡免费网站| 婷婷色综合大香蕉| 亚洲欧美日韩卡通动漫| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| 国产一区亚洲一区在线观看| 51国产日韩欧美| 波多野结衣巨乳人妻| 男女边摸边吃奶| 搡老乐熟女国产| 成年免费大片在线观看| 五月开心婷婷网| 国产伦精品一区二区三区视频9| av卡一久久| 久久精品国产a三级三级三级| 亚洲成人av在线免费| 久久久久久久久大av| 色播亚洲综合网| 欧美成人午夜免费资源| 国产免费福利视频在线观看| 青春草亚洲视频在线观看| a级毛色黄片| 亚洲,欧美,日韩| 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 狠狠精品人妻久久久久久综合| 白带黄色成豆腐渣| 啦啦啦在线观看免费高清www| 精品一区二区三区视频在线| 日日摸夜夜添夜夜添av毛片| 国产精品无大码| 一区二区三区四区激情视频| 久久久久久久亚洲中文字幕| 日韩av在线免费看完整版不卡| 舔av片在线| 一级av片app| 国产毛片a区久久久久| 一区二区av电影网| 婷婷色综合www| 夜夜爽夜夜爽视频| 国产精品福利在线免费观看| av国产久精品久网站免费入址| 国产 一区 欧美 日韩| 国产午夜福利久久久久久| 午夜激情久久久久久久| 成人鲁丝片一二三区免费| 日本熟妇午夜| 国产一区亚洲一区在线观看| 青春草国产在线视频| 亚洲国产日韩一区二区| 一本色道久久久久久精品综合| 色婷婷久久久亚洲欧美| 久久亚洲国产成人精品v| 欧美日韩在线观看h| 91精品伊人久久大香线蕉| 国产大屁股一区二区在线视频| 亚洲第一区二区三区不卡| 国产成人福利小说| 成人二区视频| 日本-黄色视频高清免费观看| 久久久久久久午夜电影| 亚洲人成网站在线播| 色网站视频免费| 国产成年人精品一区二区| 狂野欧美激情性bbbbbb| 白带黄色成豆腐渣| 久久久久久久午夜电影| 亚洲精品乱码久久久v下载方式| 熟女电影av网| 综合色av麻豆| 九九爱精品视频在线观看| 亚洲国产高清在线一区二区三| 国产一区二区亚洲精品在线观看| 啦啦啦啦在线视频资源| 国产黄片美女视频| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 大话2 男鬼变身卡| 中国国产av一级| 18禁动态无遮挡网站| 国产有黄有色有爽视频| 有码 亚洲区| 啦啦啦啦在线视频资源| 你懂的网址亚洲精品在线观看| 亚洲国产欧美人成| 如何舔出高潮| 成人毛片60女人毛片免费| 中国国产av一级| 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 国产欧美日韩一区二区三区在线 | 偷拍熟女少妇极品色| 免费看日本二区| 亚洲成人av在线免费| 男女边吃奶边做爰视频| 亚洲欧美中文字幕日韩二区| 黄色配什么色好看| 久久精品综合一区二区三区| 又爽又黄a免费视频| 亚洲av欧美aⅴ国产| 综合色丁香网| 欧美97在线视频| 国产亚洲5aaaaa淫片| 六月丁香七月| 国产午夜精品一二区理论片| 少妇人妻一区二区三区视频| 春色校园在线视频观看| 日韩,欧美,国产一区二区三区| 国产成人免费观看mmmm| 欧美3d第一页| 国产精品一区二区性色av| 国产精品女同一区二区软件| 在线观看人妻少妇| 亚洲成人精品中文字幕电影| 色婷婷久久久亚洲欧美| 亚洲色图av天堂| 高清av免费在线| 免费看av在线观看网站| 国产免费一级a男人的天堂| 观看美女的网站| 亚洲久久久久久中文字幕| 寂寞人妻少妇视频99o| 青青草视频在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 在线观看一区二区三区激情| 自拍偷自拍亚洲精品老妇| 免费观看无遮挡的男女| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 欧美日韩亚洲高清精品| 久久精品人妻少妇| 午夜福利视频1000在线观看| 看免费成人av毛片| 一边亲一边摸免费视频| 国产在线一区二区三区精| 国产永久视频网站| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 国产一区亚洲一区在线观看| 久久久久久久国产电影| 一区二区三区精品91| 午夜老司机福利剧场| 日韩成人伦理影院| 大码成人一级视频| 高清毛片免费看| 日韩人妻高清精品专区| 美女cb高潮喷水在线观看| 国产毛片在线视频| 国产av不卡久久| 午夜精品国产一区二区电影 | 一个人观看的视频www高清免费观看| 亚洲丝袜综合中文字幕| 色吧在线观看| 久久久久久久国产电影| 亚洲av中文av极速乱| 丰满少妇做爰视频| 免费看不卡的av| 99久久精品热视频| 国产v大片淫在线免费观看| 亚洲精品aⅴ在线观看| 丝袜美腿在线中文| 中国美白少妇内射xxxbb| 国产精品一及| 在线亚洲精品国产二区图片欧美 | 婷婷色av中文字幕| 日韩一本色道免费dvd| 亚洲高清免费不卡视频| 日韩,欧美,国产一区二区三区| 九色成人免费人妻av| 在线亚洲精品国产二区图片欧美 | 特大巨黑吊av在线直播| 亚洲av中文av极速乱| 亚洲综合精品二区| 国产精品99久久久久久久久| 男女国产视频网站| 成人综合一区亚洲| 国产精品久久久久久精品电影| 日本黄色片子视频| 高清午夜精品一区二区三区| 69av精品久久久久久| a级一级毛片免费在线观看| 国产精品秋霞免费鲁丝片| 午夜激情福利司机影院| 日本-黄色视频高清免费观看| 亚洲色图综合在线观看| av在线亚洲专区| 一级片'在线观看视频| 熟妇人妻不卡中文字幕| 97人妻精品一区二区三区麻豆| 国产精品一区www在线观看| 日韩,欧美,国产一区二区三区| 欧美少妇被猛烈插入视频| 老师上课跳d突然被开到最大视频| 中文欧美无线码| 在现免费观看毛片| 欧美三级亚洲精品| 亚洲精品国产av成人精品| 亚洲欧美日韩东京热| 丰满乱子伦码专区| 男女无遮挡免费网站观看| 搡女人真爽免费视频火全软件| 麻豆乱淫一区二区| 在线观看av片永久免费下载| 热99国产精品久久久久久7| 精品酒店卫生间| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 777米奇影视久久| 高清毛片免费看| 亚洲自拍偷在线| 国产人妻一区二区三区在| 精品国产露脸久久av麻豆| av国产精品久久久久影院| 国产在线男女| 亚洲av成人精品一二三区| 美女高潮的动态| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产av成人精品| 色综合色国产| 久久97久久精品| 80岁老熟妇乱子伦牲交| 国产黄a三级三级三级人| 国产v大片淫在线免费观看| 国产永久视频网站| 国产 精品1| 夜夜看夜夜爽夜夜摸| 日韩成人av中文字幕在线观看| 精品久久久久久久人妻蜜臀av| 97超视频在线观看视频| 又爽又黄a免费视频| 日韩伦理黄色片| 超碰97精品在线观看| 婷婷色麻豆天堂久久| 大香蕉97超碰在线| 插逼视频在线观看| 丰满少妇做爰视频| 人体艺术视频欧美日本| 国模一区二区三区四区视频| av天堂中文字幕网| 亚洲高清免费不卡视频| 免费av不卡在线播放| 啦啦啦中文免费视频观看日本| 在线播放无遮挡| 久久久久久久午夜电影| 亚洲av中文字字幕乱码综合| 97在线视频观看| 亚洲人成网站高清观看| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲av天美| 少妇被粗大猛烈的视频| 99热这里只有精品一区| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 街头女战士在线观看网站| 国产黄色视频一区二区在线观看| av网站免费在线观看视频| 国产亚洲精品久久久com| 亚洲成色77777| 亚洲国产精品成人综合色| 高清视频免费观看一区二区| 观看美女的网站| av在线亚洲专区| 日韩强制内射视频| 欧美老熟妇乱子伦牲交| 一级二级三级毛片免费看| 国产在线男女| 有码 亚洲区| 亚洲三级黄色毛片| 国产亚洲午夜精品一区二区久久 | 午夜免费鲁丝| 伊人久久精品亚洲午夜| 欧美激情在线99| 十八禁网站网址无遮挡 | 亚洲熟女精品中文字幕| 国产精品伦人一区二区| 日本色播在线视频| 极品教师在线视频| 在线观看一区二区三区| 亚洲不卡免费看| 视频区图区小说| 亚洲精品国产av蜜桃| 精华霜和精华液先用哪个| 国产中年淑女户外野战色| 亚洲国产高清在线一区二区三| 亚洲va在线va天堂va国产| 成人亚洲欧美一区二区av| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 少妇猛男粗大的猛烈进出视频 | 在线 av 中文字幕| 免费观看av网站的网址| 亚洲精品日本国产第一区| 身体一侧抽搐| 国产人妻一区二区三区在| 男的添女的下面高潮视频| 丝袜脚勾引网站| 人妻夜夜爽99麻豆av| 最后的刺客免费高清国语| 久久女婷五月综合色啪小说 | 一个人看视频在线观看www免费| av在线天堂中文字幕| 午夜视频国产福利| 欧美另类一区| 男女那种视频在线观看| 26uuu在线亚洲综合色| 久久久久久久大尺度免费视频| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 黄色配什么色好看| 王馨瑶露胸无遮挡在线观看| 大陆偷拍与自拍| 亚洲综合精品二区| 永久免费av网站大全| 亚洲国产色片| 2022亚洲国产成人精品| 女人被狂操c到高潮| 国产一区二区三区av在线| 91精品国产九色| 精品国产乱码久久久久久小说| 久久久久久久国产电影| 亚洲av男天堂| 国产免费又黄又爽又色| 丰满乱子伦码专区| 特级一级黄色大片| 男男h啪啪无遮挡| 成人亚洲欧美一区二区av| 插阴视频在线观看视频| 纵有疾风起免费观看全集完整版| 在线免费观看不下载黄p国产| 国产亚洲5aaaaa淫片| 干丝袜人妻中文字幕| 国产精品无大码| 亚洲国产成人一精品久久久| 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 97超视频在线观看视频| 国产伦精品一区二区三区四那| 综合色av麻豆| 亚洲欧美日韩东京热| 在线观看免费高清a一片| 欧美最新免费一区二区三区| 毛片女人毛片| 午夜日本视频在线| 国产v大片淫在线免费观看| 成人国产麻豆网| 97在线人人人人妻| 2018国产大陆天天弄谢| 日韩成人伦理影院| 亚洲aⅴ乱码一区二区在线播放| 黄色日韩在线| 亚洲av免费高清在线观看| 国内少妇人妻偷人精品xxx网站| 99热全是精品| 26uuu在线亚洲综合色| 亚洲精品一区蜜桃| 国产男人的电影天堂91| 小蜜桃在线观看免费完整版高清| 免费大片18禁| av福利片在线观看| 亚洲国产色片| 中文欧美无线码| 亚洲国产成人一精品久久久| 99久久中文字幕三级久久日本| 午夜精品一区二区三区免费看| 国国产精品蜜臀av免费| 十八禁网站网址无遮挡 | 午夜亚洲福利在线播放| av福利片在线观看| 国产精品久久久久久精品电影小说 | 人人妻人人看人人澡| 欧美日韩视频高清一区二区三区二| 久久鲁丝午夜福利片| 天天躁日日操中文字幕| 欧美xxⅹ黑人| 麻豆精品久久久久久蜜桃| 美女主播在线视频| 最近最新中文字幕大全电影3| 国产男女内射视频| 国产毛片在线视频| 一区二区三区免费毛片| 欧美精品人与动牲交sv欧美| 国产精品伦人一区二区| 国产精品一及| 国产午夜精品一二区理论片| 久久6这里有精品| 欧美区成人在线视频| 亚洲欧美中文字幕日韩二区| 精品人妻视频免费看| 亚洲美女搞黄在线观看| 一级片'在线观看视频| 国产精品不卡视频一区二区| 欧美成人a在线观看| 亚洲国产高清在线一区二区三| 日韩 亚洲 欧美在线| 亚洲精品日韩av片在线观看| 老女人水多毛片| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av涩爱| 国产成人a∨麻豆精品| 欧美三级亚洲精品| 在线免费观看不下载黄p国产| 精华霜和精华液先用哪个| videos熟女内射| 有码 亚洲区| 内射极品少妇av片p| 好男人视频免费观看在线| 日本黄大片高清| 国产精品国产三级国产专区5o| 最新中文字幕久久久久| 国产免费又黄又爽又色| 欧美日韩视频高清一区二区三区二| 欧美最新免费一区二区三区| 精品人妻熟女av久视频| 黄片wwwwww| 在线观看人妻少妇| 青春草亚洲视频在线观看| 97超视频在线观看视频| 国产探花在线观看一区二区| 午夜亚洲福利在线播放| 亚洲国产高清在线一区二区三| 午夜激情福利司机影院| 草草在线视频免费看| 国产探花在线观看一区二区| 精品少妇久久久久久888优播| 99视频精品全部免费 在线| 国产人妻一区二区三区在| 亚洲天堂av无毛| 国产色爽女视频免费观看| 嫩草影院精品99| 亚洲色图av天堂| 国产精品久久久久久精品电影小说 | 精华霜和精华液先用哪个| 观看免费一级毛片| 青春草亚洲视频在线观看| 女人久久www免费人成看片| 2021少妇久久久久久久久久久| 自拍偷自拍亚洲精品老妇| 国产乱人偷精品视频| 久久久精品94久久精品| 免费大片黄手机在线观看| 高清欧美精品videossex| 午夜福利在线在线| 免费黄网站久久成人精品| 一级片'在线观看视频| 亚洲无线观看免费| 亚洲综合精品二区| 国产精品成人在线| 99久久人妻综合| 久久久精品94久久精品| 亚洲av二区三区四区| 国产老妇伦熟女老妇高清| 亚洲天堂av无毛| av在线老鸭窝| 午夜亚洲福利在线播放| av.在线天堂| 国产亚洲一区二区精品| 一本色道久久久久久精品综合| 亚洲国产精品999| 午夜老司机福利剧场| 男的添女的下面高潮视频| 欧美极品一区二区三区四区| 色哟哟·www| 成年版毛片免费区| 国产美女午夜福利| 九九久久精品国产亚洲av麻豆| 赤兔流量卡办理| av卡一久久| 亚洲av中文av极速乱| 国产乱人偷精品视频| 激情 狠狠 欧美| 插逼视频在线观看| 欧美3d第一页| 在线观看三级黄色| 国产精品一区二区在线观看99| 日韩 亚洲 欧美在线| 国产精品av视频在线免费观看| 赤兔流量卡办理| 欧美xxxx黑人xx丫x性爽| 国产黄色免费在线视频| 中文在线观看免费www的网站| 激情 狠狠 欧美| 一级毛片黄色毛片免费观看视频| 女人被狂操c到高潮| 777米奇影视久久| 国产欧美亚洲国产| 亚洲成人久久爱视频| 99久久精品热视频| 中国美白少妇内射xxxbb| 午夜福利视频1000在线观看| 日本色播在线视频| 美女被艹到高潮喷水动态| 性插视频无遮挡在线免费观看| freevideosex欧美| 久久精品国产鲁丝片午夜精品| 国产一区二区亚洲精品在线观看| 夫妻性生交免费视频一级片| 人妻系列 视频| 亚洲av男天堂| 国产精品99久久久久久久久| 中文乱码字字幕精品一区二区三区| 日韩伦理黄色片| 少妇的逼水好多| 欧美成人一区二区免费高清观看| 久久99精品国语久久久| 日本一本二区三区精品| 久久6这里有精品| 91午夜精品亚洲一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 少妇裸体淫交视频免费看高清| 大话2 男鬼变身卡| 欧美高清性xxxxhd video| 搡老乐熟女国产| 天堂中文最新版在线下载 | 亚洲一区二区三区欧美精品 | 国产高清国产精品国产三级 | 中文精品一卡2卡3卡4更新| 国产精品一区二区三区四区免费观看| 少妇人妻精品综合一区二区| 七月丁香在线播放| 日本熟妇午夜| 久久久久国产精品人妻一区二区| 最近最新中文字幕免费大全7| 久久久久久久久久成人| 丝袜脚勾引网站| 久久久久久久久大av| 不卡视频在线观看欧美| 亚洲成人久久爱视频| 成人国产av品久久久| 国产亚洲最大av| 日本免费在线观看一区| 极品教师在线视频| 男女国产视频网站| 亚洲第一区二区三区不卡| 99热这里只有精品一区| 欧美性猛交╳xxx乱大交人| 在线看a的网站| 久久精品国产a三级三级三级| 青青草视频在线视频观看| 欧美精品人与动牲交sv欧美| 涩涩av久久男人的天堂| 免费观看性生交大片5| 亚洲一区二区三区欧美精品 |