• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鈣鈦礦鐵電納米片誘導(dǎo)的P(VDF-TrFE)取向生長

    2017-06-21 12:33:11麥江泉任召輝武夢嬌吳勇軍路新慧王宗榮韓高榮
    物理化學(xué)學(xué)報 2017年6期
    關(guān)鍵詞:香港中文大學(xué)鐵電材料科學(xué)

    劉 金 麥江泉 李 詩 任召輝,* 李 銘 武夢嬌吳勇軍 路新慧 李 翔 田 鶴 王宗榮 韓高榮,*

    (1浙江大學(xué)材料科學(xué)與工程學(xué)院,硅材料國家重點實驗室,唐仲英傳感材料及應(yīng)用研究中心,杭州 310027;2香港中文大學(xué)物理系,香港 新界 999077;3浙江大學(xué)電子顯微鏡中心,硅材料國家重點實驗室,材料科學(xué)與工程學(xué)院,杭州 310027)

    鈣鈦礦鐵電納米片誘導(dǎo)的P(VDF-TrFE)取向生長

    劉 金1,?麥江泉2,?李 詩1任召輝1,*李 銘1武夢嬌1吳勇軍1路新慧2,*李 翔1田 鶴3王宗榮1韓高榮1,*

    (1浙江大學(xué)材料科學(xué)與工程學(xué)院,硅材料國家重點實驗室,唐仲英傳感材料及應(yīng)用研究中心,杭州 310027;2香港中文大學(xué)物理系,香港 新界 999077;3浙江大學(xué)電子顯微鏡中心,硅材料國家重點實驗室,材料科學(xué)與工程學(xué)院,杭州 310027)

    半結(jié)晶的鐵電聚合物在柔性電子器件中極具應(yīng)用前景,控制晶相生長對其性能優(yōu)化至關(guān)重要。本文通過引入少量(0.2%)單晶單疇的PbTiO3納米片對P(VDF-TrFE) (簡稱PVTF)鐵電薄膜的生長進行有效調(diào)節(jié),獲得了高度取向的鐵電薄膜且鐵電性能得到了大幅提高。PbTiO3納米片鐵電極化對PVTF極性分子的誘導(dǎo)作用可能是薄膜取向生長與性能提高的原因。

    P(VDF-TrFE);PbTiO3;納米片;取向生長;鐵電性

    1 Introduction

    As a classical ferroelectric polymer, PVDF and its copolymer PVTF have been extensively explored in terms of dielectric, piezoelectric and ferroelectric properties, affording wide potential applications in flexible electronics from energy harvesting, data storage, sensors and actuators1-5. The electric properties and device performance of PVTF films highly depend on the crystallographic orientation of β phase (ferroelectric phase)6-8. A prominent example is that a PVTF film with pressure-induced oriented crystalline exhibits an improved remnant polarization, 1.6 times higher than that of disordered counterpart9. To obtain such a preferential orientation, different physical templates, including anodic aluminium oxide (AAO)10, organosilicate (OS) lamellae11, SAM-modified Au substrates12, graphene layer13, etc. have been employed. Among them, a confinement effect originating from microstructure of the templates was demonstrated to effectively induce the polarization direction along the long axis of one dimensional PVTF nanotubes14. However, the preparation and removal of the templates have been found to be very complex and tedious, significantly limiting large scale material and device fabrication. In addition, the epitaxy growth method normally employed for inorganic crystalline films cannot be simply applied for organic ferroelectric polymers due to the semi-crystalline character. Hence, it remains a great challenge to develop a facile strategy to fabricate highly oriented PVTF film.

    In this work, for the first time, we demonstrated a facile and effective approach to mediate the growth and thus the orientation of PVTF films by a strong electrostatic interaction between PVTF and perovskite ferroelectric nanoplates. A very low introduction (0.2% (w)) of single-crystal and single-domain PbTiO3(denoted by PTO) nanoplates can effectively mediate the nucleation and growth process of crystalline phase within PVTF, giving rise to highly (110)/(200) oriented films. We attributed this oriented crystallization behaviour to an alignment of polarization directions of the polymer and the nanoplates. As a result, the ferroelectric polarization of the films have been significantly improved by 53%.

    Negative or positive polar surface of ferroelectric perovskite oxides has been explored to accelerate the crystal growth of inorganic crystals15and to influence the selective deposition of Ag particles on ferroelectric substrates by a photochemical method16. Moreover, the ordering of polar water molecules is observed within the ice films growing on the surface of PVTF17.

    The electrostatic interaction between polar surface of ferroelectrics and different inorganic objects leads to fasnating phenomena. However, an effect of ferroelectric polarization on the crystal growth of semi-crystalline polymer films has not been achieved yet, and the difficulty arises from the semi-crystalline nature of polymer films with complex molecular configuration. To realize this, a strong electrostatic interaction is highly required. As a prototypical ferroelectric oxide, PTO is an ideal material to investigate the effect of electrostatic interaction on the growth of PVTF because of its simple perovskite structure and large spontaneous polarization (Ps)18.

    Fig.1(a, b) present the schematic view of the crystal structures for tetragonal PTO (JCPDS 70-0746) and the orthorhombic β-phase PVTF (JCPDS 42-1649), where the Psis along the c axis and b axis, respectively. The relative displacement of Ti ions from oxygen plane of octahedron in Fig.1(a) gives rise to a Psof PTO. In our previous work, single-crystal and single-domain PTO nanoplates were synthesized hydrothermally via a self-templated growth19. A cross-section STEM image of an individual PTO nanoplate is shown in Fig.1(c), and the nanoplate adopts faceted planes with a smooth surface. Fig.1(d) depicts the corresponding atomic-level HAADF-STEM of the nanoplate (red area in Fig.1(c)), where the displacement of titanium atoms deviation from the body-center downwards can be observed, opposite to the ferroelectric polarization direction20. Thus, the polarization direction (pointing by an orange arrow) of the nanoplate is perpendicular to the surface in Fig.1(d). In particular, the Curie temperature of the nanoplates was determined to be 487 °C (Fig.S2), very close to 490 °C of bulk PTO, implying a large Ps of the nanoplates with an order of 60~70 μC·cm-221. This value is much larger than those of polar organic molecules and ferroelectric polymer17,22,23. When unscreened, an electrostatic field derived from the polar surface of PTO nanoplates could be high as 108V·cm-123.

    2 Experiment section

    2.1 Material preparation

    Fig.1 Schematic view of the crystal structures for (a) tetragonal PbTiO3and (b) orthorhombic β-phase PVTF, (c) Cross-section TEM image of individual PTO nanoplate and (d) corresponding atomic level HAADF-STEM (SEM image and XRD pattern see Fig.S1(a, b)

    Single-crystal and single-domain ferroelectric PTO nanoplates were synthesized by hydrothermal synthesismethod19. TiO2nanosheets were prepared according to the method reported in the reference24. 25 mL of Ti(OBu)4and 4 mL of hydrofluoric acid solution were mixed in a dried Teflon autoclave with a capacity of 50 mL, and then kept at 200 °C for 24 h. After being cooled to room temperature, the white powder was washed with ethanol and distilled water for several times and then dried at 80 °C for 6 h.

    PVTF (the mole ratio of VDF to TrFE is 70/30) powder was dissolved in tetrahydrofuran (THF) and then a certain PTO (or TiO2) powder was introduced into the solution. The mixed hybrid was then processed with stirring for 15 min and then sonicating 30 min in order to disperse the nanoplates completely. Here we designed the weight concentration of PTO (or TiO2) nanoplates as 0.2%, 0.5%, and 1.0% within PVTF. The pure PVTF and PVTF films with 0.2% PTO (TiO2) nanoplates were prepared by a spin coating technique on the ITO glass substrates under a speed of 1500 rpm for 30 s. In particular, the substrates were cleaned by sonicating in the deionized water, acetone and ethanol for 15 min, respectively. Finally, the as-prepared films were heated under vacuum condition for different time and then cooled down to room temperature. In order to measure the electric properties, Ag film was sputtered onto the surface of films as top electrode while ITO was used as the bottom electrode.

    2.2 Characterization

    The XRD patterns were collected on a Thermo ARLXTRA powder diffractometer with Cu Kαradiation (λ = 1.54056 nm-1). SEM images were obtained from a Hitachi field emission SEM MODEL S-4800 at 5 kV. TEM specimens were examined by using an FEI Titan G2 80-200 Chemi 280 STEM with an accelerating voltage of 200 kV. Non-contact mode AFM (XE-100E, Park, Korea) was conducted to analyze topographic of films and Fourier transform infrared (FTIR) (Tensor 27, Bruker, Germany) was used to identify the molecule structures of films. The thickness of pure PVTF and PVTF (0.2%) films were detected by a step profiler (DEKTAK-XT, Bruker, America). The enthalpy values for the two samples were derived from TG curves recorded on a PE DSC 7. The Curie temperature of PTO nanoplates was detected by a technique of TG-DTA, combining TG ignition measurement and DTA analysis, equipped with the analyzer TGA7 (Perkin Elmer, San Jose, CA, USA) and DTA7 (Perkin Elmer, San Jose, CA, USA), respectively. The GIWAXS measurements were conducted at 23A SWAXS beamline at the National Synchrotron Radiation Research Center, Hsinchu, Taiwan, using a 10 KeV primary beam, 2.0° incident angle and C9728DK area detector. Dielectric properties of the samples were measured by Agilent 4292A precision impedance analyzer (HP4294ALRC) between 1 KHz and 1 MHz. Ferroelectric properties of the samples were measured at 100 Hz using a RT66A ferroelectric tester (Radiant Technologies Inc., Albuquerque, NM, USA).

    3 Results and Discucssion

    For such nanoplates, the exposed (001) is positive or negative polar surface, and the direction of Psis uniformed within the nanoplate along c axis. Different concentration of PTO nanoplates was introduced into PVTF films with similar thicknesses about 800 nm, prepared by spin-coating on ITO substrates (see Experiment section). According to the XRD patterns in Fig.S3(a), the peak intensity of (001) is the highest among those of PTO in the film, implying that most PTO nanoplates are lying in PVTF films. When PTO nanoplates were introduced, the intensity of (110)/(200) diffraction peaks in PVTF films with 0.2%, 0.5% and 1.0% PTO nanoplates is higher than that of PVTF (0%) films (Fig.S3(a)), implying that an orientation growth could occur. In particular, PVTF films with 0.2% (w) PTO nanoplates (denoted by PVTF (0.2%) films) present the highest relative intensity ratio of (110)/(200) (~19.8°). Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) was used to investigate molecular orientation. Fig.2(a, b) show GIWAXS patterns of pure PVTF and PVTF (0.2%) films, respectively. It can be clearly observed that at q ≈ 14 nm-1, PVTF (0.2%) film has two distinct reflections at meridian and 60° away from the meridian indicating a highly preferential orientation, while the pure PVTF film shows a ring-like pattern representing a randomly distributed orientation. The two reflections are corresponding to (200) and (110). These reflections arise from either (110) or (200) of PVTF crystals, based on the fact that the PVTF crystal phase has a pseudo hexagonal orthorhombic lattice which is characterized by aratio of its a and b axes and in turn leads to nearly equal (200) and (110) spacings25. Two possible orientations of the PVTF films are illustrated in Fig.3(a, b). The case one is that (200) of PVTF parallel to (001) of PTO, where the Ps direction of PVTF is perpendicular to that of PTO, as shown in Fig.3(a). This configuration gives rise to the reflection of (200) on the meridian. In the case two, (110) of PVTF is paralleled to (001) of PTO, where the reflection on the meridian is thus indexed as (110) in Fig.3(b). Although the two reflections are hard to be distinguished due to the same lattice constant, we presume that the case in Fig.3(b) is more possible since the polarization direction of PVFT and PTO should align together to induce this preferential orientation. And the aligned dipoles of PVTF would further affect the other dipoles around. In addition, 0.5%, and 1.0% samples also show the similar two reflections but their intensity is relatively weak (Fig.S4). This result indicates an orientation growth also occurred in these films as well, consistent with the XRD results of Fig.S3(a). In the emerged work, it has been discussed that an oriented growth of PVTF films could be thickness-dependent due to molecular confinement effect. However, such effect is limited to ultrathin films (<100 nm), resulting in a decreased ferroelectric property26,27. Therefore, the molecular confinement effect cannot give rise to the highly preferential orientation of PVTF films in our work.

    Fig.2 (a, b) GIWAXS patterns, (c) corresponding intensity profiles along qzaxis and (d) FTIR spectrum of pure PVTF film and PVTF (0.2%) film

    We also argued that an improved crystallization cannot be the origin of such phenomenon because it can only lead to a general increase of all peaks instead of a single peak. Furthermore, the crystallinity degree Xcfor the two samples has been determined by DSC curves (Fig.S5) to be 59.6% and 61.5%, respectively. Despite of similar crystallinity, the morphology by AFM imaging is obviously different, from particle shape in pure PVTF film to long-rod shape in PVTF (0.2%) film, as shown in Fig.S6(a, b). On the basis of the corresponding 3D view image, an average diameter of the particles in pure PVTF (Fig.S6(c)) is statically about 0.38 μm, and the rods in PVTF (0.2%) film in Fig.S6(d) was determined to have an average diameter of 0.45 μm and length of 1.54 μm. The anisotropic morphological shape is most likely to result from the highly oriented growth of the film induced by the introduction of PTO nanoplates.

    On the basis of the model in Fig.3(b), the polarization axis (b axis) of PVTF film tend to be aligned by that of PTO nanoplate and thus form an angle of 60° with the normal direction of the nanoplates. Such configuration would lead to a strong electrostatic interaction between molecular chain of PVTF and PTO. The interaction can be manifested by the band of 1400 cm-1of PVTF in FTIR spectrum, corresponding to the ωCH2coupled with νasC-C28. From the FTIR spectra (Fig.2(d)), it can be observed that the peak intensity of the band of 1400 cm-1in PVTF (0.2%) film becomes much higher than that of pure PVTF, supporting our model of Fig.3(b). The other bands at 846 cm-1, 1174 cm-1and 1286 cm-1in Fig.2(d) are indexed as the CF2symmetric stretching, the CF2asymmetric stretching and the long trans sequence29-31.

    Fig.3 A schematic diagram of two possible cases that the molecular preferentially oriented

    Fig.4 GIWAXS patterns of PVTF (0.2%) films heat treated at 180 °C for (a) 0.5 h, (b) 1.0 h, (c) 1.5 h, (d) 2.0 h and (e-h) corresponding AFM topographic images (5 μm × 5 μm)

    Fig.5 Ferroelectric hysteresis loops of pure PVTF and PVTF (0.2%) films

    The growth process of PVTF film was further investigated by using PVTF (0.2%) films after a heat treatment of 180 °C for different time. The intensified GIWAXS reflection in Fig.4(a) suggests that the film became crystalline after 0.5 h heat treatment, and the crystallization gradually improved up to 1 h in Fig.4(b). A longer time of 1.5 h could also induce the (110)/(200) orientation growth of the film, confirmed by the two intensified reflections in Fig.4(c). The orientation of the film remained when the heat treatment was prolonged to 2.0 h in Fig.4(d). Corresponding topographic morphology of the samples were characterized by AFM in Fig.4(e-h). PVTF (0.2%) film was initially crystallized into particle, as shown in Fig.4(e, f), and then particle crystals gradually grew to a rod-like shape (Fig.4(g, h)). The above results provide the solid evidence to support that the films experience a nucleation-growth process, accompanied with the orientation and the distinct morphology change. One should note that a high temperature of 180 °C used for preparation is above melting temperature (Tm) (~150 °C) of PVTF (Fig.S5), at which the molecular chains of PVTF can freely reorganize. This could be particularly important for ferroelectric polarization inducing the array of the chains and subsequent preferential orientation of the films, as shown in Fig.1(d). When the thickness is below 100 nm, the annealing temperature could play an important role in modifying confinement effect and thus the orientation of P(VDF-TrFE) films26,27,32. However, no such orientation growth has been observed when our samples, such as PVTF (0.2%) films, were prepared at below Tm(120 °C) (see Fig.S7) Furthermore, non-ferroelectric TiO2nanoplates (SEM image see Fig.S8) were introduced to investigate their influence on the growth of PVTF films. And such PVTF films did not show such orientation like Fig.2(b) by analysing GIWAXS patterns (Fig.S9). It is thus reasonable to conclude that the temperature above Tmand ferroelectric polarization are crucial for the oriented growth of PVTF films. Accompanying with the oriented growth, the peak intensity at 1400 cm-1was significantly enhanced in FTIR spectra of PVTF (0.2%) films (Fig.S10) as the heat time was prolonged from 0.5 h to 2 h at 180 °C. These results strongly support our model in Fig.3(b). In particular, a significant improvement in ferroelectric property has been achieved in such PVTF (0.2%) films.

    On the basis of ferroelectric hysteresis loops in Fig.5, the remnant polarization (Pr) in Fig.5 increased from 7.0 μC·cm-2to 10.7 μC·cm-2. We believe that the improved properties should be attributed to the oriented growth and dipole arrangement in the films. One may argue that the introduction of PTO nanoplates might also contribute to the results in Fig.5. To investigate this aspect, the ferroelectric property of PVTF films with different concentrations of PTO that nanoplates were measured. The results indicate the properties were not improved upon the increased concentrations of PTO nanoplates (Fig.S11 and Fig.S12). When the concentration of PTO nanoplates is 0.2%, the properties of the films could be optimized.

    4 Summary

    In summary, a highly oriented PVTF film was obtained by the introduction of a very small amount of single-crystal and single-domain PTO nanoplates. The corresponding structural analysis revealed that with the optimum concentration of 0.2% (w), the electrostatic interaction between PTO polar surface and dipoles of PVTF molecular chains can effectively mediate the nucleation and growth of PVTF, giving rise to a strong orientation. By this means, the ferroelectric polarization of the samples have been improved by 53%, which is of great significance for device applications. The findings suggest that the introduction of ferroelectric nanoplates may be a facile approach to tailor the crystalline growth of polar organic materials and their fundamental physical properties.Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Soin, N.; Boyer, D.; Prashanthi, K.; Sharma, S.; Narasimulu, A. A; Luo, J.; Shah, T. H.; Siores, E.; Thundat, T. Chem. Commun. 2015, 51, 8257. doi: 10.1039/c5cc01688f

    (2) Hu, Z.; Tian, M.; Nysten, B.; Jonas, A. M. Nat. Mater. 2009, 8, 62. doi: 10.1038/NMAT2339

    (3) Chen, X. Z.; Li, Q.; Chen, X.; Guo, X.; Ge, H. X.; Liu, Y.; Shen, Q. D. Adv. Funct. Mater. 2013, 23, 3124. doi: 10.1002/adfm.201203042

    (4) Wang, X.; Wang, P.; Wang, J.; Hu, W.; Zhou, X.; Guo, N.; Huang, H.; Sun, S.; Shen, H.; Lin, T.; Tang, M. Adv. Mater. 2015, 27, 6575. doi: 10.1002/adma.201503340

    (5) Lee, J. S.; Shin, K. Y.; Kim, C.; Jang, J. Chem. Commun. 2013, 49, 11047. doi: 10.1039/c3cc46807k

    (6) Ohigashi, H.; Omote, K.; Gomyo, M. C. Appl. Phys. Lett. 1995, 66, 3281. doi: 10.1063/1.113730

    (7) García-Gutiérrez, M. C.; Linares, A.; Hernández, J. J.; Rueda, D. R.; Ezquerra, T. A.; Poza, P.; Davies, R. J. Nano Lett. 2010, 10, 1472. doi: 10.1021/nl100429u

    (8) Wu, Y.; Li, X.; Jonas, A. M.; Hu, Z. Phys. Rev. Lett. 2015, 115, 267601. doi: 10.1103/PhysRevLett.115.267601

    (9) Shin, Y. J.; Kim, R. H.; Jung, H. J.; Kang, S. J.; Park, Y. J.; Bae, I. Park, C. ACS Appl. Mater. Interfaces 2011, 3, 4736. doi: 10.1021/am201202w

    (10) Cauda, V.; Torre, B.; Falqui, A.; Canavese, G.; Stassi, S.; Bein, T.; Pizzi, M. Chem. Mater. 2012, 24, 4215. doi: 10.1021/cm302594s

    (11) Kang, S. J.; Bae, I.; Shin, Y. J.; Park, Y. J.; Huh, J.; Park, S. M.; Kim, H. C.; Park, C. Nano Lett. 2010, 11, 138. doi: 10.1021/nl103094e

    (12) Park, Y. J.; Kang, S. J.; Park, C.; Lotz, B.; Thierry, A.; Kim, K. J.; Huh, J. Macromolecules 2008, 41, 109. doi: 10.1021/ma0718705

    (13) Kim, K. L.; Lee, W.; Hwang, S. K.; Joo, S. H.; Cho, S. M.; Song, G.; Cho, S. H.; Jeong, B.; Hwang, I.; Ahn, J. H.; Yu, Y. J. Nano Lett. 2015, 16, 334. doi: 10.1021/acs.nanolett.5b03882

    (14) Bhavanasi, V.; Kusuma, D. Y.; Lee, P. S. Adv. Energy Mater.

    (15) Sun, X.; Ma, C.; Wang, Y.; Li, H. J. Cryst. Growth 2002, 234,

    404. doi: 10.1016/S0022-0248(01)01695-5

    (16) Burbure, N. V.; Salvador, P. A.; Rohrer, G. S. Chem. Mater. 2010, 22, 5823. doi:10.1021/cm1018025

    (17) Rosa, L. G.; Xiao, J.; Losovyj, Y. B.; Gao, Y.; Yakovkin, I. N.; Zeng, X. C.; Dowben, P. A. J. Am. Chem. Soc. 2005, 127, 17261. doi: 10.1021/ja054159t

    (18) Fong, D. D.; Kolpak, A. M.; Eastman, J. A.; Streiffer, S. K.; Fuoss, P. H.; Stephenson, G. B.; Thompson, C.; Kim, D. M.; Choi, K. J.; Eom, C. B.; Grinberg, I. Phys. Rev. Lett. 2006, 96, 127601. doi: 10.1103/PhysRevLett.96.127601

    (19) Chao, C.; Ren, Z.; Zhu, Y.; Xiao, Z.; Liu, Z.; Xu, G.; Mai, J.; Li, X.; Shen, G.; Han, G. Angew. Chem. Int. Ed. 2012, 51, 9283. doi: 10.1002/anie.201204792

    (20) Jia, C. L.; Nagarajan, V.; He, J. Q.; Houben, L.; Zhao, T.; Ramesh, R.; Urban, K.; Waser, R. Nat. Mater. 2007, 6, 64. doi: 10.1038/nmat1808

    (21) Fridkin, V. M. Ferroelectric Semiconductors, Consultants Bureau: New York, NY, USA 1980.

    (22) Wang, F.; Lack, A.; Xie, Z.; Frübing, P.; Taubert, A.; Gerhard, R. Appl. Phys. Lett. 2012, 100, 062903. doi: 10.1063/1.3683526

    (23) Salimi, A.; Yousefi, A. A. J. Polym. Sci. B: Polym. Phys. 2004, 42, 3487. doi: 10.1002/polb.20223

    (24) Han, X.; Kuang, Q.; Jin, M.; Xie Z.; Zheng, L. J. Am. Chem. Soc. 2009, 131, 3152. doi: 10.1021/ja8092373

    (25) Park, Y. J.; Kang, S. J.; Lotz, B.; Brinkmann, M.; Thierry, A.; Kim, K. J.; Park, C. Macromolecules 2008, 41, 8648. doi: 10.1021/ma801495k

    (26) Guo, D.; Setter, N. Macromolecules 2013, 46, 1883. doi: 10.1021/ma302377q

    (27) Urayama, K.; Tsuji, M.; Neher, D. Macromolecules 2000, 33, 8269. doi: 10.1021/ma000855w

    (28) Prabu, A. A.; Lee, J. S.; Kim, K. J.; Lee, H. S. Vibrational Spectroscopy 2006, 41, 1-13. doi: 10.1016/j.vibspec.2005.11.005

    (29) Li, W.; Guo, S.; Tang, Y.; Zhao, X. J. Appl. Polym. Sci. 2004, 91, 2903. doi: 10.1002/app.13503

    (30) Shin, Y. J.; Kang, S. J.; Jung, H. J.; Park, Y. J.; Bae, I.; Choi, D. H. Park, C. ACS Appl. Mater. Interfaces 2011, 3, 582. doi: 10.1021/am1011657

    (31) Zhu, H.; Mitsuishi, M.; Miyashita, T. Macromolecules 2012, 45, 9076. doi: 10.1021/ma301711g

    (32) Guo, D.; Stolichnov, I.; Setter, N. J. Phys. Chem. B 2011, 115, 13455. doi: 10.1021/jp2061442

    Perovskite Ferroelectric Nanoplates Induced a Highly Oriented Growth of P(VDF-TrFE) Films

    LIU Jin1,?MAI Jiang-Quan2,?LI Shi1REN Zhao-Hui1,*LI Ming1WU Meng-Jiao1WU Yong-Jun1LU Xin-Hui2,*LI Xiang1TIAN He3WANG Zong-Rong1HAN Gao-Rong1,*
    (1State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Cyrus Tang Center for Sensor Materials and Application, Zhejiang University, Hangzhou 310027, P. R. China;2Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong 999077, P. R. China;3State Key Laboratory of Silicon Material, School of Material Science & Engineering, Center of Electron Microscope, Zhejiang University, Hangzhou 310027, P. R. China)

    Ferroelectric polymers are particularly attractive for applications in flexible electronic devices, and controlling its crystalline phase growth is crucial for obtaining optimized ferroelectric properties. Herein we report that a very low introduction (0.2% (w)) of single-domain ferroelectric PbTiO3nanoplates can effectively mediate the nucleation and subsequent growth of a crystalline phase within P(VDF-TrFE) (denoted by PVTF), forming highly oriented films and significantly improving the ferroelectric properties due to an alignment of the polarization directions of the polymer and the nanoplates.

    P(VDF-TrFE); PbTiO3; Nanoplate; Orientation growth; Ferroelectricity

    February 15, 2017; Revised: February 27, 2017; Published online: March 6, 2017.

    O641

    , 4, 1400723.

    10.1002/aenm.201400723

    doi: 10.3866/PKU.WHXB201702281

    *Corresponding authors. REN Zhao-Hui, Email: renzh@zju.edu.cn. LU Xin-Hui, Email: xhlu@phy.cuhk.edu.hk. HAN Gao-Rong, Email: hgr@zju.edu.cn.

    ?These authors contributed equally to this work.

    The project was supported by the National Natural Science Foundation of China (51232006, 51472218), the National Key Basic Research Special Foundation, China (973) (2015CB654901), Fundamental Research Funds for the Central Universities, China (2016FZA4005) and RGC of Hong Kong GRF (14303314) and CUHK Direct Grant, China (4053128).

    國家自然科學(xué)基金(51232006, 51472218),國家重點基礎(chǔ)研究發(fā)展項目(973)(2015CB654901),中央高校基本科研業(yè)務(wù)費專項資金(2016FZA4005),香港研究資助局科研基金(14303314),香港中文大學(xué)基金(4053128)資助項目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    香港中文大學(xué)鐵電材料科學(xué)
    中海油化工與新材料科學(xué)研究院
    香港中文大學(xué)
    硅片上集成高介電調(diào)諧率的柱狀納米晶BaTiO3鐵電薄膜
    材料科學(xué)與工程學(xué)科
    鐵電材料中發(fā)現(xiàn)周期性半子晶格
    科學(xué)(2020年4期)2020-11-26 08:27:12
    淺談無人機和機器人的自動化控制
    香港中文大學(xué)提出環(huán)境適應(yīng)性控濕調(diào)溫織物新思路
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    鐵電隧道結(jié)界面效應(yīng)與界面調(diào)控
    岛国在线观看网站| 日本a在线网址| 亚洲中文日韩欧美视频| 高清毛片免费观看视频网站 | 50天的宝宝边吃奶边哭怎么回事| 狠狠婷婷综合久久久久久88av| 国产精品1区2区在线观看. | 另类亚洲欧美激情| 亚洲国产欧美网| 精品国产乱码久久久久久小说| 亚洲成av片中文字幕在线观看| 国产精品98久久久久久宅男小说| e午夜精品久久久久久久| 国产免费现黄频在线看| 极品少妇高潮喷水抽搐| 女人爽到高潮嗷嗷叫在线视频| 欧美日韩一级在线毛片| 99国产精品免费福利视频| 黑人巨大精品欧美一区二区蜜桃| 午夜免费鲁丝| 国产熟女午夜一区二区三区| 午夜福利免费观看在线| 亚洲三区欧美一区| 亚洲欧美日韩高清在线视频 | xxxhd国产人妻xxx| 色婷婷av一区二区三区视频| 国产欧美亚洲国产| 在线亚洲精品国产二区图片欧美| 99国产精品99久久久久| 国产麻豆69| 国产欧美亚洲国产| 欧美日韩黄片免| 久久 成人 亚洲| 操出白浆在线播放| 女人久久www免费人成看片| 精品人妻1区二区| 女同久久另类99精品国产91| 亚洲国产中文字幕在线视频| 久久人妻熟女aⅴ| 国产精品麻豆人妻色哟哟久久| 国产精品99久久99久久久不卡| 一本色道久久久久久精品综合| 最近最新中文字幕大全免费视频| 国产真人三级小视频在线观看| 成年人午夜在线观看视频| 黑人猛操日本美女一级片| 国产精品 国内视频| 1024香蕉在线观看| 亚洲专区国产一区二区| 亚洲av成人不卡在线观看播放网| 黄色毛片三级朝国网站| 午夜激情久久久久久久| 国产区一区二久久| 国产成人影院久久av| 亚洲熟妇熟女久久| 成人国产一区最新在线观看| 午夜日韩欧美国产| 欧美日韩亚洲国产一区二区在线观看 | 性高湖久久久久久久久免费观看| 久久精品国产a三级三级三级| 午夜免费鲁丝| 国产麻豆69| 露出奶头的视频| 在线观看一区二区三区激情| 亚洲中文日韩欧美视频| 国产97色在线日韩免费| 国产精品久久久久久人妻精品电影 | 97在线人人人人妻| 欧美乱码精品一区二区三区| 亚洲国产av影院在线观看| 亚洲av欧美aⅴ国产| 久久久欧美国产精品| 久久婷婷成人综合色麻豆| 国精品久久久久久国模美| 在线播放国产精品三级| 欧美精品一区二区免费开放| 十八禁网站免费在线| 韩国精品一区二区三区| 麻豆乱淫一区二区| 人人妻人人添人人爽欧美一区卜| 精品国产乱码久久久久久小说| 免费高清在线观看日韩| 精品少妇黑人巨大在线播放| 麻豆乱淫一区二区| 久久热在线av| 午夜老司机福利片| 亚洲人成电影观看| 99在线人妻在线中文字幕 | 搡老熟女国产l中国老女人| 亚洲国产欧美在线一区| 一区二区三区精品91| 人人妻人人爽人人添夜夜欢视频| 亚洲国产成人一精品久久久| 国产精品99久久99久久久不卡| 国产精品一区二区免费欧美| 18禁黄网站禁片午夜丰满| 亚洲七黄色美女视频| 十八禁网站网址无遮挡| 国产亚洲一区二区精品| 在线观看免费高清a一片| 亚洲avbb在线观看| 麻豆av在线久日| 宅男免费午夜| 久久久久久久大尺度免费视频| www日本在线高清视频| 亚洲欧洲精品一区二区精品久久久| 免费看十八禁软件| 天堂动漫精品| 久久久精品免费免费高清| 精品少妇一区二区三区视频日本电影| 91老司机精品| 亚洲国产av新网站| 超色免费av| 91av网站免费观看| 人妻 亚洲 视频| 天堂俺去俺来也www色官网| 99国产精品一区二区三区| 啦啦啦中文免费视频观看日本| 三级毛片av免费| 久久99一区二区三区| 90打野战视频偷拍视频| 黄色视频不卡| 国产精品久久久av美女十八| 激情视频va一区二区三区| 日韩免费高清中文字幕av| 亚洲欧美日韩高清在线视频 | 麻豆乱淫一区二区| 久久青草综合色| 国产精品久久电影中文字幕 | 国产野战对白在线观看| 国产老妇伦熟女老妇高清| 怎么达到女性高潮| 久久久久精品国产欧美久久久| 两性夫妻黄色片| 国产精品二区激情视频| 少妇精品久久久久久久| 亚洲精品成人av观看孕妇| 岛国在线观看网站| xxxhd国产人妻xxx| 高清在线国产一区| e午夜精品久久久久久久| 汤姆久久久久久久影院中文字幕| 欧美精品一区二区大全| 99久久国产精品久久久| 午夜免费鲁丝| 水蜜桃什么品种好| 亚洲美女黄片视频| 亚洲av日韩精品久久久久久密| 亚洲熟女精品中文字幕| 一本色道久久久久久精品综合| 久久影院123| 亚洲欧美精品综合一区二区三区| 久久久久久久国产电影| 美女视频免费永久观看网站| 在线观看www视频免费| 欧美精品亚洲一区二区| 午夜福利影视在线免费观看| 亚洲精品久久午夜乱码| 午夜免费鲁丝| 大片免费播放器 马上看| 窝窝影院91人妻| 黄色怎么调成土黄色| 国产精品电影一区二区三区 | av福利片在线| 欧美黄色淫秽网站| 成人18禁在线播放| 一区二区三区乱码不卡18| 国产精品久久久久久精品电影小说| 少妇粗大呻吟视频| 一区二区日韩欧美中文字幕| 亚洲性夜色夜夜综合| 大型av网站在线播放| 高清黄色对白视频在线免费看| 丝袜美腿诱惑在线| 黄色视频,在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 免费av中文字幕在线| 亚洲欧美日韩高清在线视频 | 黄片大片在线免费观看| 一边摸一边抽搐一进一小说 | 叶爱在线成人免费视频播放| 国产精品一区二区在线观看99| 黄色视频,在线免费观看| 久久中文字幕一级| 国产精品一区二区在线观看99| 19禁男女啪啪无遮挡网站| 精品人妻熟女毛片av久久网站| 欧美黄色片欧美黄色片| 成人亚洲精品一区在线观看| 女人久久www免费人成看片| 国产主播在线观看一区二区| 国产日韩欧美在线精品| 国产一卡二卡三卡精品| 成人亚洲精品一区在线观看| 在线观看免费日韩欧美大片| 成人影院久久| 天堂俺去俺来也www色官网| 美女高潮喷水抽搐中文字幕| a在线观看视频网站| a级毛片在线看网站| 欧美日韩成人在线一区二区| av网站免费在线观看视频| 夜夜爽天天搞| 69精品国产乱码久久久| 国产av又大| 99热国产这里只有精品6| 日本av免费视频播放| 精品熟女少妇八av免费久了| 国产成人av教育| 欧美亚洲 丝袜 人妻 在线| 一边摸一边抽搐一进一小说 | 天堂动漫精品| 亚洲精品美女久久久久99蜜臀| 蜜桃在线观看..| 考比视频在线观看| 18禁国产床啪视频网站| 亚洲av日韩精品久久久久久密| 一本一本久久a久久精品综合妖精| 国产日韩欧美亚洲二区| 水蜜桃什么品种好| 成人18禁高潮啪啪吃奶动态图| 91老司机精品| 国产av国产精品国产| xxxhd国产人妻xxx| 三上悠亚av全集在线观看| 不卡一级毛片| 黄色 视频免费看| 黄色 视频免费看| 两个人免费观看高清视频| 深夜精品福利| 人人妻人人澡人人爽人人夜夜| 亚洲av第一区精品v没综合| 欧美乱妇无乱码| 久久久久久亚洲精品国产蜜桃av| 国产成人欧美在线观看 | 日韩人妻精品一区2区三区| 一边摸一边抽搐一进一小说 | 久久99一区二区三区| 欧美精品一区二区大全| 亚洲国产欧美一区二区综合| 中国美女看黄片| 一进一出抽搐动态| 精品国内亚洲2022精品成人 | 99久久99久久久精品蜜桃| 久久久国产欧美日韩av| av超薄肉色丝袜交足视频| 中文字幕最新亚洲高清| 国产高清视频在线播放一区| 欧美激情高清一区二区三区| 黑人猛操日本美女一级片| 中文字幕制服av| 91av网站免费观看| 国产亚洲午夜精品一区二区久久| 侵犯人妻中文字幕一二三四区| 国产伦理片在线播放av一区| av福利片在线| av电影中文网址| 日韩欧美一区视频在线观看| 久久精品91无色码中文字幕| 免费观看a级毛片全部| 日韩一卡2卡3卡4卡2021年| 多毛熟女@视频| 国产99久久九九免费精品| 成年人午夜在线观看视频| 成人av一区二区三区在线看| 日本五十路高清| 男女午夜视频在线观看| av在线播放免费不卡| 精品乱码久久久久久99久播| 精品国产一区二区三区久久久樱花| 成在线人永久免费视频| 狠狠婷婷综合久久久久久88av| av网站免费在线观看视频| 嫁个100分男人电影在线观看| 精品国产一区二区久久| 极品人妻少妇av视频| 大片电影免费在线观看免费| 中文字幕最新亚洲高清| 精品高清国产在线一区| 亚洲午夜精品一区,二区,三区| 动漫黄色视频在线观看| 蜜桃国产av成人99| 在线观看人妻少妇| 久久狼人影院| 亚洲精品粉嫩美女一区| 天堂中文最新版在线下载| 男女边摸边吃奶| 欧美亚洲 丝袜 人妻 在线| 操出白浆在线播放| 亚洲精品国产色婷婷电影| 一级毛片女人18水好多| 精品少妇内射三级| 久久精品亚洲熟妇少妇任你| 亚洲精品一卡2卡三卡4卡5卡| 亚洲专区中文字幕在线| 少妇精品久久久久久久| h视频一区二区三区| 99re6热这里在线精品视频| 亚洲性夜色夜夜综合| 欧美乱妇无乱码| 夫妻午夜视频| 丁香六月欧美| 亚洲色图av天堂| 每晚都被弄得嗷嗷叫到高潮| 日本欧美视频一区| 人人妻人人澡人人爽人人夜夜| 色精品久久人妻99蜜桃| 精品国产一区二区久久| 欧美中文综合在线视频| 搡老熟女国产l中国老女人| 国产无遮挡羞羞视频在线观看| 国产精品影院久久| kizo精华| 久久中文字幕一级| 亚洲人成电影观看| 国产亚洲欧美精品永久| 午夜日韩欧美国产| 999久久久精品免费观看国产| 91成人精品电影| a级片在线免费高清观看视频| 精品国产一区二区三区久久久樱花| 亚洲色图 男人天堂 中文字幕| 少妇的丰满在线观看| 午夜免费鲁丝| 国产老妇伦熟女老妇高清| 老熟妇仑乱视频hdxx| 精品乱码久久久久久99久播| 99国产精品一区二区蜜桃av | 久久中文字幕人妻熟女| 久久亚洲真实| 亚洲精品乱久久久久久| 热re99久久国产66热| 久久国产精品影院| 亚洲精品在线观看二区| 一级毛片女人18水好多| 国产亚洲av高清不卡| 国产免费av片在线观看野外av| 久久国产精品大桥未久av| 18在线观看网站| 久久久久国产一级毛片高清牌| 在线观看66精品国产| 国产精品免费视频内射| 美女午夜性视频免费| 国产福利在线免费观看视频| bbb黄色大片| 国产aⅴ精品一区二区三区波| 色播在线永久视频| 蜜桃国产av成人99| 久久天堂一区二区三区四区| 亚洲国产欧美一区二区综合| 99热网站在线观看| 丝袜美足系列| 欧美+亚洲+日韩+国产| 午夜福利在线观看吧| 中文字幕av电影在线播放| 一区福利在线观看| 桃红色精品国产亚洲av| 搡老乐熟女国产| av免费在线观看网站| 国产主播在线观看一区二区| 69av精品久久久久久 | 欧美 亚洲 国产 日韩一| 丝瓜视频免费看黄片| 欧美老熟妇乱子伦牲交| av超薄肉色丝袜交足视频| 国产精品久久电影中文字幕 | 嫁个100分男人电影在线观看| 亚洲精品乱久久久久久| 王馨瑶露胸无遮挡在线观看| 欧美+亚洲+日韩+国产| 久久久久精品人妻al黑| 中国美女看黄片| 丰满人妻熟妇乱又伦精品不卡| 丰满少妇做爰视频| 免费看a级黄色片| 亚洲九九香蕉| 亚洲成国产人片在线观看| 91精品国产国语对白视频| 精品一区二区三区视频在线观看免费 | 老司机亚洲免费影院| 老熟妇仑乱视频hdxx| 18禁国产床啪视频网站| 性色av乱码一区二区三区2| 首页视频小说图片口味搜索| 咕卡用的链子| 每晚都被弄得嗷嗷叫到高潮| 久久天堂一区二区三区四区| 国产成人精品久久二区二区91| 9色porny在线观看| 王馨瑶露胸无遮挡在线观看| 久久精品国产a三级三级三级| 天天添夜夜摸| 国产成人一区二区三区免费视频网站| 高潮久久久久久久久久久不卡| 999久久久精品免费观看国产| 少妇被粗大的猛进出69影院| 亚洲国产欧美一区二区综合| 高清av免费在线| 国产精品98久久久久久宅男小说| 欧美日本中文国产一区发布| 免费在线观看黄色视频的| 正在播放国产对白刺激| 精品福利观看| 国产又色又爽无遮挡免费看| 亚洲av欧美aⅴ国产| 亚洲欧洲精品一区二区精品久久久| 成人av一区二区三区在线看| av视频免费观看在线观看| 久久精品国产亚洲av高清一级| 色婷婷av一区二区三区视频| 成人精品一区二区免费| 免费看a级黄色片| 久久亚洲真实| 欧美日韩亚洲国产一区二区在线观看 | 日韩制服丝袜自拍偷拍| 黑丝袜美女国产一区| 老司机福利观看| 午夜激情av网站| 免费看a级黄色片| 99精国产麻豆久久婷婷| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 精品国产一区二区三区四区第35| 俄罗斯特黄特色一大片| 精品熟女少妇八av免费久了| 亚洲情色 制服丝袜| 亚洲三区欧美一区| 91精品三级在线观看| 日本wwww免费看| 99久久99久久久精品蜜桃| 91成人精品电影| 久久精品人人爽人人爽视色| 十八禁人妻一区二区| 脱女人内裤的视频| 新久久久久国产一级毛片| 亚洲av日韩在线播放| 婷婷丁香在线五月| 曰老女人黄片| kizo精华| 桃红色精品国产亚洲av| 欧美乱码精品一区二区三区| √禁漫天堂资源中文www| 日本黄色视频三级网站网址 | 国产av一区二区精品久久| 久久性视频一级片| 精品少妇内射三级| 国产成人系列免费观看| 久久久久国内视频| 免费一级毛片在线播放高清视频 | 老司机靠b影院| 免费高清在线观看日韩| 欧美日韩亚洲国产一区二区在线观看 | 色94色欧美一区二区| 老司机午夜福利在线观看视频 | 亚洲美女黄片视频| 麻豆av在线久日| 窝窝影院91人妻| 丝袜喷水一区| 视频在线观看一区二区三区| 窝窝影院91人妻| 欧美av亚洲av综合av国产av| 一边摸一边抽搐一进一小说 | 9色porny在线观看| 国产在线一区二区三区精| 男女免费视频国产| 国产在线精品亚洲第一网站| 亚洲 国产 在线| 久久久久久久精品吃奶| 免费在线观看日本一区| 日韩成人在线观看一区二区三区| 中亚洲国语对白在线视频| 久久99热这里只频精品6学生| 无遮挡黄片免费观看| 汤姆久久久久久久影院中文字幕| 国产免费视频播放在线视频| 日韩视频在线欧美| 亚洲色图 男人天堂 中文字幕| 美国免费a级毛片| 他把我摸到了高潮在线观看 | 手机成人av网站| 亚洲成av片中文字幕在线观看| 欧美黄色淫秽网站| 天堂俺去俺来也www色官网| 最近最新中文字幕大全免费视频| 精品高清国产在线一区| 精品人妻熟女毛片av久久网站| www.熟女人妻精品国产| 美女午夜性视频免费| 国产97色在线日韩免费| 国产亚洲一区二区精品| 大陆偷拍与自拍| 久久国产精品人妻蜜桃| 免费黄频网站在线观看国产| 中文欧美无线码| 在线十欧美十亚洲十日本专区| 精品少妇黑人巨大在线播放| 少妇的丰满在线观看| 蜜桃国产av成人99| 男女之事视频高清在线观看| 精品少妇久久久久久888优播| 国产一区有黄有色的免费视频| 久久午夜亚洲精品久久| 在线 av 中文字幕| 国产午夜精品久久久久久| 法律面前人人平等表现在哪些方面| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av | 国产成人啪精品午夜网站| 嫩草影视91久久| 超色免费av| 久久精品亚洲熟妇少妇任你| 国产一区二区三区综合在线观看| 一本色道久久久久久精品综合| 超碰97精品在线观看| 亚洲精品中文字幕一二三四区 | 国产精品久久久人人做人人爽| 国产成人免费观看mmmm| 精品一区二区三区视频在线观看免费 | 亚洲第一青青草原| 中文字幕色久视频| 亚洲 国产 在线| 欧美日韩成人在线一区二区| 我要看黄色一级片免费的| 亚洲成av片中文字幕在线观看| 精品午夜福利视频在线观看一区 | 一进一出好大好爽视频| 一本色道久久久久久精品综合| 午夜精品国产一区二区电影| 1024视频免费在线观看| netflix在线观看网站| 久久av网站| 老司机福利观看| 人人妻,人人澡人人爽秒播| 青草久久国产| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| 人人妻人人添人人爽欧美一区卜| 日韩 欧美 亚洲 中文字幕| 日韩有码中文字幕| 日本黄色视频三级网站网址 | 视频区欧美日本亚洲| 天堂8中文在线网| 在线观看免费视频网站a站| 桃花免费在线播放| 欧美 日韩 精品 国产| 亚洲一区二区三区欧美精品| av电影中文网址| 美女高潮到喷水免费观看| 久久久久久久久免费视频了| 久久久精品免费免费高清| 国产亚洲欧美精品永久| 国产日韩欧美亚洲二区| 国产av又大| 国产视频一区二区在线看| 久久99一区二区三区| 精品卡一卡二卡四卡免费| 亚洲熟妇熟女久久| 91老司机精品| 亚洲精品一二三| 一级毛片电影观看| 一个人免费看片子| 国产精品美女特级片免费视频播放器 | 在线观看人妻少妇| 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 日韩有码中文字幕| 男人舔女人的私密视频| 成人国产av品久久久| 国产精品av久久久久免费| 精品高清国产在线一区| 五月开心婷婷网| 国精品久久久久久国模美| kizo精华| 久久人人爽av亚洲精品天堂| 日本精品一区二区三区蜜桃| 高清在线国产一区| 久久精品aⅴ一区二区三区四区| 欧美黄色淫秽网站| 国产精品影院久久| 亚洲国产av影院在线观看| 亚洲全国av大片| 在线观看免费午夜福利视频| 婷婷成人精品国产| 男人操女人黄网站| 另类精品久久| 桃红色精品国产亚洲av| 在线观看免费视频日本深夜| 交换朋友夫妻互换小说| 757午夜福利合集在线观看| 肉色欧美久久久久久久蜜桃| 精品久久久精品久久久| 黑丝袜美女国产一区| netflix在线观看网站| 久久国产精品大桥未久av| 在线观看免费高清a一片| 成年人免费黄色播放视频| 国产一区二区 视频在线| 另类亚洲欧美激情| 欧美国产精品一级二级三级| 欧美黑人精品巨大| √禁漫天堂资源中文www| 日韩欧美一区视频在线观看| √禁漫天堂资源中文www| 精品人妻在线不人妻| √禁漫天堂资源中文www| 两个人免费观看高清视频| 欧美另类亚洲清纯唯美| h视频一区二区三区| 国产成人啪精品午夜网站| 国产不卡一卡二| 午夜成年电影在线免费观看| 80岁老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 亚洲精品av麻豆狂野|