• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil

    2022-08-01 05:58:48KangYang楊康HongWeiZhang張宏偉QianNianZhang張千年JunJunZha查君君andDengChaoHuang黃登朝
    Chinese Physics B 2022年7期
    關鍵詞:張宏偉楊康

    Kang Yang(楊康), Hong-Wei Zhang(張宏偉), Qian-Nian Zhang(張千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黃登朝),?

    1College of Electrical Engineering,Anhui Polytechnic University,Wuhu 241000,China

    2Key Laboratory of Advanced Perception and Intelligent Control of High-end Equipment,Ministry of Education,Anhui Polytechnic University,Wuhu 241000,China

    Keywords: SQUID,magnetocardiography,bi-planar coil,active compensation

    1. Introduction

    Magnetocardiography (MCG) is a non-invasive imaging tool to measure and analyze the magnetic field generated from human heart activity, whose intensity is typically as low as several tens of pico-Tesla(pT).It has been verified by clinical trials that MCG can be a potential technique for heart disease diagnosis.[1,2]However,because of the inevitable environmental magnetic noise, whose intensity can reach up to several hundred micro-Tesla (μT), it is a huge challenge to obtain MCG signals if the extremely sensitive superconducting quantum interference devices (SQUIDs) are only utilized.[3,4]To suppress the environmental disturbance,many research groups have attempted various shielding techniques,such as magnetically shielded rooms(MSRs),hardware or software gradiometers,and signal post-processing algorithms.[5,6]Typically,the most straightforward and effective way to restrain the environmental field noise is using the MSR. But the high cost and large size of a strongly MSR limits the clinical application of the MCG technique. Furthermore, the gradiometer or signal post-processing method has the disadvantage of attenuating the useful signals when suppressing the dominant environmental noise.

    To control the MSR building costs while guarantee the MCG signal quality, active compensation method combined with a thin passive MSR seems to be a considerable compromise.[7,8]Traditionally, this scheme adopted by some groups is to arrange the compensation coils outside of the shielding walls, resulting in the low-frequency shielding performance ranging from 0 to 50 Hz still unsatisfying, because the compensation coils only protect the MSR from higher frequency noise. Recently, Botoet al.have successfully introduced six pairs of bi-planar coils to null the residual magnetic fields, i.e.,Bx,By,Bz, dBx/dz, dBy/dzand dBz/dz, in their wearable MEG system based on the optically-pumped magnetometer.[9]It has been proven that the bi-planar coil can form an open operating space allowing easy access for subjects and operators. Their work inspires us that the bi-planar coil can also be suitable in a SQUID-based MCG system to actively compensate the residual disturbance inside a thin MSR.

    In this paper, focusing on the compensation of the vertical component of the residual magnetic fieldBz, the design theory and simulation result of one pair of bi-planar coils are discussed in detail. And in order to actively suppress the time-varying residual field, a classical proportional-integralderivative (PID) controller is introduced to control the compensation current. Two SQUID magnetometers with different sizes but both based on weakly damped Josephson junctions are used as sensing magnetometer and reference magnetometer in the compensation system. The residual magnetic fields before and after the active compensation are measured and analyzed in time and frequency domain. And the comparison results show the validity of this active compensation method in SQUID-based MCG system.

    2. Theory and design

    In this part, we firstly introduce the design theory of the bi-planar coil based on the target-field method and the Tikhonov regularization method. After obtaining the coil winding patterns, the finite element method is used to verify the magnetic performance of the designed coil. Then a classical PID controller,which is utilized to control the active compensation current in the bi-planar coil,is discussed in detail.

    2.1. Bi-planar coil

    The bi-planar coil is used to generate high-uniformity magnetic field, which is opposite in direction with the residual field. According to the target-field theory,[10]we firstly define the size of the planes where the coil winding patterns fixed on as 2Lxand 2Lz, as shown in Fig. 1(a). The distance between these two planes is set to be 2a. And the target region is defined as a cube with a side length ofb, locating in the center of the Cartesian coordinate. Based on the symmetry and boundary condition, the two current density functions inx- andz-direction, i.e.,Jx(x,z) andJz(x,z), can be expanded as[11]

    wherePmnis a series of unknown Fourier coefficients with different orders,which are limited by the integral numbersNandM.

    By using the Bio–Savart law,thez-component of the magnetic field in the target region produced by the bi-planar coil can be expressed as

    where

    Here,μ0is the magnetic permeability of vacuum,and(x,y,z),(xt,yt,zt) are the coordinates of the source point and the target point, respectively. Theoretically, thez-component of the magnetic field should be set as a constant,Btarget, in order to keep the magnetic field uniform in the target region, and this relationship can be written as

    Note that the current density can be obtained ifPmnare successfully solved here. However,it turns out to be a Fredholm integral equation of the first kind after substituting Eqs. (3)–(5) into Eq. (6). Generally, an objective function together with a penalty item based on the Tikhonov regularization method can be constructed to handle this problem.[12]After setting the magnetic field value at NUM selected target points,Btarget,1=Btarget,2=···=Btarget,NUM,the objective functionFcan be given as

    Here,Erepresents the dissipated power, which restrains the length of wires on the coil plane,and hence reduces the complexity of the designed coil.[13]λis a weight factor which should be carefully determined. Given the resistivity and the thickness of the wire,δandt, respectively, the dissipated powerEcan be expressed as

    ThenPmncan be obtained by requiring the derivative of the objective function to be zero

    According to the target field method, the coil winding patterns are transformed from the contours of the stream functionS(x,z).[14]And the stream function is related with the solved current density and can be expressed as

    Finally, based on the maximum and minimum values of the stream function, i.e.,SmaxandSmin, and the pre-determined coil turnsNc, the winding patterns can be visualized by a set of contours which are defined by

    For this paper,considering the space limit of our MCG system in the thin MSR,the side length of the bi-planar coil is set as 2Lx=2Ly=1 m, and the distance 2ais set to be 1 m. The side length of the cubic target regionbis set to be 0.3 m,and a total number of NUM=729 target points are selected in this region. Thez-component of the magnetic field in these points are all set to be 1 nT.The integral numbersMandNare both chosen to be 6 after several numerical calculations.The weight factorλis optimized to be 2×10-14viaL-curve criterion.[15]Then the coil winding patterns can be calculated and drawn by the Matlab platform,and the final design result is shown in Fig.1(b). Specially,the solid red and black lines represent the driven current running clockwise and anticlockwise.

    Fig.1. (a)The schematic diagram for the design theory of bi-planar coil. (b)The final structure of the bi-planar coil used for residual field compensation.

    After importing the coordinates of the obtained coil winding patterns into the COMSOL platform,we can simulate and verify the magnetic performance of this bi-planar coil based on the finite element method. As shown in Fig. 2, the magnetic uniformity error map is used to represent the magnetic distribution characteristics. These three maps exhibit a maximum uniformity error of 50%onXOY,XOZ,andYOZplanes with a side length of 1 m. Whereas in the target region, the auxiliary contours show a magnetic uniformity error less than 0.5%can be provided by this bi-planar coil. This result is satisfying not only because the target region is large enough to cover the whole human thoracic area,but also because the magnetic uniformity in this region is high enough to create a near-zero field area after compensation.

    Fig. 2. Magnetic uniformity error maps on (a) XOY plane, (b) XOZ plane,and(c)YOZ plane.

    2.2. PID controller

    As the residual field is always time-varying inside the thin MSR, the compensation current running in the bi-planar coil should change dynamically in order to keep the field in the target region constantly near zero. To achieve this,a classical PID controller,[16]which is based on the feedback mechanism tracking the real environment, is integrated into the compensation system. The PID theory is usually described by the following mathematical expression:

    Here,u(t) denotes the control signal which is generated by the PID controller, ande(t)represents the deviation error between the desired result and the measured state. The first part of Eq.(12)is called P-term,which can immediately reduce the errore(t)through proportional response once the deviation occurs. The second part, I-term, is used to eliminate the steady state error through deviation accumulation. And the third part D-term is able to foresee the trend of deviation change and thus produce advanced control.KP,KI, andKDare the proportional, integral, and derivative gains, respectively, whose values should be well tuned to ensure the effectiveness of the P-,I-,and D-term.

    Figure 3 shows the schematic diagram of our compensation system based on the PID controller.First of all,in order to obtain a near-zero magnetic field,the set value of this system should be defined to 0 pT. A reference SQUID magnetometer is used here to monitor whether the residual field reaches this set value. The output of the referenceBoutis amplified by the readout electronics and sampled by an analog-to-digital converter(ADC).The output of ADC feeds the difference between the set value and the current measured field into the PID controller, whose output is transformed to a compensation voltageVCOMPvia a digital-to-analog converter (DAC).AndVCOMPcan directly affect the compensation currentICOMPrunning in the bi-planar coil through a voltage-controlled current source. When the residual field after compensation is smaller than the set value,ICOMPshould immediately decrease according to the feedback strategy and the decreased current is strictly controlled by the PID-controller. In contrast,when the compensated field is larger than the set value,the current in the bi-planar coil can also automatically increase after conducting the PID calculation.

    Fig.3. Schematic diagram of the close-loop of the PID-based compensation system.

    2.3. System setup

    Two SQUID magnetometers, both based on weakly damped Josephson junctions with a large Stewart–McCumber parameter,[17,18]are served as sensing magnetometer and reference magnetometer in our compensation system. As shown in Fig. 4, the sensing magnetometer with a size of 10 mm×10 mm has an intrinsic noise of 4.5 fT/(Hz1/2),and the reference magnetometer whose size is 5 mm×5 mm has an intrinsic noise of 8 fT/(Hz1/2). Specially,the magnetic field noise of these two magnetometers at 1 Hz are 12 fT/(Hz1/2) and 21 fT/(Hz1/2), respectively. In general, the sensing magnetometer is arranged at the bottom of the Dewar (see Fig. 5).And the reference magnetometer is placed above the sensing magnetometer coaxially with a distance of 7 cm, which refers to the baseline of a hardware gradiometer we optimized before.[19]Moreover, this thin MSR is manufactured by two layers of permalloy plates and one layer of Al. The thickness of each permalloy plate is 1.75 mm and these two plates are separated by a 100 mm distance. The Al layer,put in the middle of two permalloy plates, is 12 mm thick. The shielding factor of this thin MSR is larger than 40 dB at 1 Hz.[20]

    After printing the designed winding patterns on two wooden boards, the bi-planar coil can be fabricated by gluing copper wires on each board. Note that the distance between two boards is 1 m, forming an open space which is large enough to contain a Dewar and a patient. And the Dewar should be carefully arranged to ensure two SQUID magnetometers are located in the high-uniformity target region.Both two SQUID magnetometers can be adjusted to optimal working points via the control units,which are put outside the MSR to avoid additional disturbance.The ADC(NI-9218)and DAC(NI-9260), integrated in a NI CompactDAQ system, are two independent I/O modules operating at 16-bit resolution. In order to tune three PID gains conveniently,the PID controller is embedded in a Labview platform which can be connected to the NI CompactDAQ via a USB interface. The current source(Thorlabs, LDC200CV)provides compensation current ranging from-20 mA to 20 mA. As the coil constant of the biplanar coil is measured to be 0.4 nT/mA, the compensation ability of this system can reach to±8 nT,which is surely sufficient to cover the amplitude range of the residual field in this thin MSR.

    Fig. 4. Magnetic field noises of the sensing magnetometer and reference magnetometer.

    Fig.5. Schematic diagram of the compensation system.

    3. Measurement and discussion

    After the SQUID magnetometers are immersed into the liquid Helium and tuned to the flux-locked loop mode,the output of the reference magnetometer which carries the residual field information is amplified by the readout electronics and digitalized by the ADC.By using the Ziegler–Nichols method,three PID gains,i.e.,KP,KI,andKD,are fixed as 0.75,0.003,and 0.001 in this case,respectively. Here,the sensing magnetometer acts as a monitor to exhibit the residual field before and after magnetic compensation.

    As shown in Fig.6,the outputs of the sensing and reference SQUID magnetometer before compensation,which represent the original residual field in the thin MSR, are firstly measured in time domain. The measurements are conducted during daytime(12:00 am)and last for 30 s. Obviously,these two outputs are well in coincidence with each other, indicating a DC component of 2.8 nT and a fluctuation of 0.8 nT in the residual field alongz-direction. Then, the compensation system is open and the outputs of the magnetometers are recorded in the same way after several seconds,which is spent to track the change of the residual field and adjust the compensation current in the bi-planar coil. The DC component can be suppressed to 0 pT after compensation,but the magnetic fluctuation with an amplitude about 4 pT still exists. It can be assumed that the tracking speed of the reference magnetometer,the digitalized efficiency of the ADC and the calculation accuracy of the PID controller result in this remained fluctuation.And the fluctuation difference from the outputs of two magnetometers can be explained by the position difference between them.Nevertheless,this magnetic fluctuation is acceptable because the MCG signal is 10–20 times larger than it.

    Fig. 6. Residual field detected by the sensing and reference SQUID magnetometer before and after compensation in time domain. The measurement time is 30 s.

    The compared results can be further analyzed in frequency domain, as shown in Fig. 7. The white noises of the sensing magnetometer before and after compensation are both 11 fT/(Hz1/2),about 6.5 fT/(Hz1/2)higher than the intrinsic noise because of the electronic devices used in this system. At 1 Hz,the amplitude of the magnetic noise is 2000 fT/(Hz1/2)before compensation and 200 fT/(Hz1/2)after compensation,exhibiting a noise suppression ratio (NSR) of 20 dB. Specially, the magnetic field noise around 8 Hz with an amplitude of 1000 fT/(Hz1/2) can be effectively suppressed to a normal level with a NSR of 22 dB.And the power-line interference,whose initial amplitude is 800 fT/(Hz1/2),can also be restrained by this compensation system with a NSR of 26 dB.It is obvious that this compensation system shows an excellent suppression performance in the low frequency range from 0.1 Hz to 50 Hz. As can be seen in the inset, the compensation results of the reference magnetometer are similar with the sensing magnetometer’s, indicating that the residual field can be well compensated in the pre-defined target region.

    Fig. 7. Residual field from the sensing magnetometer in frequency domain before and after compensation. The inset shows the results of the reference magnetometer.

    4. Conclusion

    We have introduced a residual field compensation system inside a thin MSR based on a kind of bi-planar coil. The design theory of the bi-planar coil, derived from the target-field theory and the Tikhonov regularization method,has been discussed in detail. The performance of this coil has been well simulated after obtaining the winding patterns via the stream function. Then a classical PID controller has been utilized to control the compensation current in the bi-planar coil, based on the time-varying residual field information provided by a reference SQUID magnetometer. By using this compensation system,the DC component and the fluctuation of the residual field can be restrained to 0 pT and 4 pT,respectively. Also,it turns out that the NSR of the compensation system can reach above 20 dB in the low-frequency range,typically from 0.1 Hz to 50 Hz. Besides the excellent compensation performance,this compensation system can form an open operating space which is convenient for MCG measurement. In the future,this compensation system will be applied in a multichannel MCG system,and even be optimized for other biomagnetic measurement systems.

    Acknowledgments

    Project supported by the Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Anhui Polytechnic University(Grant No. JCKJ2021A03), the Introduced Talent Research Startup Funds of Anhui Polytechnic University (Grant Nos.2021YQQ006 and 2020YQQ040),and the National Natural Science Foundation of China(Grant No.62101004).

    猜你喜歡
    張宏偉楊康
    A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
    SHARP BOUNDS FOR TOADER-TYPE MEANS IN TERMS OF TWO-PARAMETER MEANS?
    育學子之德行 潤桃李共芬芳
    《小Q》真實版:看不見的戀人,跨過山和大海來呵護你
    Elastic properties of anatase titanium dioxide nanotubes:A molecular dynamics study?
    張宏偉 危難時刻顯身手
    相遇
    從《射雕英雄傳》看孩子的家庭教育
    中華家教(2016年11期)2016-12-03 15:16:43
    遇上一個輸不起的創(chuàng)業(yè)者
    Filtering Surface Water with a Polyurethane-based Hollow Fiber Membrane: Effects of Operating Pressure on Membrane Fouling*
    色婷婷久久久亚洲欧美| 国产又色又爽无遮挡免| 欧美人与善性xxx| av福利片在线观看| 日韩人妻高清精品专区| 亚洲av.av天堂| 成人特级av手机在线观看| 久久久久久久精品精品| 搡老乐熟女国产| 亚洲精品视频女| 涩涩av久久男人的天堂| 日本猛色少妇xxxxx猛交久久| 自拍偷自拍亚洲精品老妇| 麻豆成人av视频| 在线观看免费视频网站a站| 亚洲国产欧美日韩在线播放 | 精品亚洲成a人片在线观看| 国产成人a∨麻豆精品| 国产精品欧美亚洲77777| 在线观看三级黄色| 亚州av有码| av福利片在线| 97在线视频观看| 六月丁香七月| 中文字幕制服av| 80岁老熟妇乱子伦牲交| 亚洲国产精品一区二区三区在线| 日韩制服骚丝袜av| 黄色毛片三级朝国网站 | 久久鲁丝午夜福利片| 三级国产精品欧美在线观看| 久久久久久伊人网av| 国产综合精华液| 久久久久网色| 观看免费一级毛片| 色94色欧美一区二区| 蜜臀久久99精品久久宅男| 日日撸夜夜添| 91在线精品国自产拍蜜月| 国产片特级美女逼逼视频| 亚洲国产成人一精品久久久| 亚洲国产精品999| 插逼视频在线观看| 久久精品久久久久久噜噜老黄| 最新中文字幕久久久久| 午夜免费鲁丝| 日韩 亚洲 欧美在线| 国产日韩欧美亚洲二区| www.av在线官网国产| 欧美精品一区二区大全| freevideosex欧美| 日本猛色少妇xxxxx猛交久久| 嫩草影院入口| 亚洲国产成人一精品久久久| 久久久久国产网址| 久久国产乱子免费精品| 日韩强制内射视频| av不卡在线播放| 嘟嘟电影网在线观看| 国产色婷婷99| 中文字幕人妻丝袜制服| 日本爱情动作片www.在线观看| 久久精品久久精品一区二区三区| 日韩 亚洲 欧美在线| 在线观看人妻少妇| 久久精品国产亚洲av涩爱| 欧美日韩一区二区视频在线观看视频在线| 少妇被粗大猛烈的视频| 日韩成人av中文字幕在线观看| 欧美 亚洲 国产 日韩一| 亚洲国产成人一精品久久久| 国产一区二区三区综合在线观看 | 亚洲精品日本国产第一区| 国产美女午夜福利| 欧美变态另类bdsm刘玥| 亚洲国产精品一区二区三区在线| 亚洲自偷自拍三级| 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说| 自线自在国产av| 亚洲人成网站在线观看播放| 日韩av不卡免费在线播放| 我的女老师完整版在线观看| 18禁在线无遮挡免费观看视频| 国产亚洲精品久久久com| 在线观看免费高清a一片| 高清视频免费观看一区二区| 观看免费一级毛片| 国产精品国产av在线观看| 精品亚洲成a人片在线观看| 一级爰片在线观看| 如何舔出高潮| 亚洲欧美日韩另类电影网站| 国产老妇伦熟女老妇高清| 久久国内精品自在自线图片| 51国产日韩欧美| 亚洲国产成人一精品久久久| 黑人巨大精品欧美一区二区蜜桃 | av免费在线看不卡| 国产亚洲最大av| videossex国产| 久久久久网色| 亚洲国产成人一精品久久久| 成年女人在线观看亚洲视频| 国产永久视频网站| 久久久久人妻精品一区果冻| 少妇人妻精品综合一区二区| 国产在线男女| 伊人亚洲综合成人网| 桃花免费在线播放| 午夜福利影视在线免费观看| 国产一级毛片在线| av有码第一页| 色婷婷av一区二区三区视频| 久久国内精品自在自线图片| 秋霞伦理黄片| 午夜福利网站1000一区二区三区| 777米奇影视久久| 国产在视频线精品| 一级毛片aaaaaa免费看小| 国产精品一区二区性色av| www.色视频.com| 久久 成人 亚洲| 免费看日本二区| 欧美激情国产日韩精品一区| 日韩不卡一区二区三区视频在线| 亚洲精品国产av成人精品| 涩涩av久久男人的天堂| 久久久久久久久久人人人人人人| 亚州av有码| 亚洲va在线va天堂va国产| 国产欧美日韩一区二区三区在线 | 伦精品一区二区三区| 亚洲av中文av极速乱| 一级片'在线观看视频| 99久久精品国产国产毛片| 精品人妻一区二区三区麻豆| 日韩熟女老妇一区二区性免费视频| 久久99蜜桃精品久久| av天堂久久9| 国产成人aa在线观看| 亚洲av成人精品一区久久| 99精国产麻豆久久婷婷| 亚洲av.av天堂| 国产精品久久久久久av不卡| 黑人巨大精品欧美一区二区蜜桃 | 午夜免费鲁丝| 欧美3d第一页| 丁香六月天网| 欧美人与善性xxx| 婷婷色麻豆天堂久久| 国产男人的电影天堂91| 99久国产av精品国产电影| av在线app专区| 欧美激情极品国产一区二区三区 | av女优亚洲男人天堂| 一个人免费看片子| 免费av不卡在线播放| 国产真实伦视频高清在线观看| 成人影院久久| 在线观看www视频免费| 国产精品99久久久久久久久| 国产 一区精品| 日日撸夜夜添| 青春草亚洲视频在线观看| 久久综合国产亚洲精品| 99热这里只有精品一区| 黄色欧美视频在线观看| 成年美女黄网站色视频大全免费 | 日本黄色日本黄色录像| 一区在线观看完整版| videossex国产| 香蕉精品网在线| 国产探花极品一区二区| 搡女人真爽免费视频火全软件| 少妇裸体淫交视频免费看高清| 国产精品一二三区在线看| 国产伦理片在线播放av一区| 午夜av观看不卡| 嫩草影院新地址| 欧美日韩亚洲高清精品| 国产熟女欧美一区二区| 成人国产麻豆网| 亚洲精品国产成人久久av| 国产日韩欧美视频二区| h日本视频在线播放| 99久久精品热视频| 我要看黄色一级片免费的| 亚洲欧美一区二区三区国产| 不卡视频在线观看欧美| 国产欧美日韩综合在线一区二区 | 热re99久久精品国产66热6| 80岁老熟妇乱子伦牲交| 日本色播在线视频| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 在线看a的网站| 一级a做视频免费观看| 亚洲精品日本国产第一区| 精品视频人人做人人爽| 亚洲熟女精品中文字幕| 亚洲国产色片| 欧美日韩视频精品一区| 久久精品久久精品一区二区三区| 国产伦精品一区二区三区四那| 亚洲一区二区三区欧美精品| 日韩av免费高清视频| 啦啦啦中文免费视频观看日本| 日韩免费高清中文字幕av| 亚洲av在线观看美女高潮| 亚洲人成网站在线观看播放| 黑丝袜美女国产一区| 久久99精品国语久久久| 国产亚洲午夜精品一区二区久久| 一级毛片我不卡| 亚洲精品456在线播放app| 亚洲久久久国产精品| av网站免费在线观看视频| 在线观看三级黄色| 亚洲av免费高清在线观看| 97在线人人人人妻| 性高湖久久久久久久久免费观看| 亚洲一区二区三区欧美精品| 777米奇影视久久| 亚洲四区av| 午夜精品国产一区二区电影| 99re6热这里在线精品视频| 亚洲天堂av无毛| 丰满少妇做爰视频| 内射极品少妇av片p| 国产成人免费观看mmmm| 青春草国产在线视频| 精品国产一区二区三区久久久樱花| 亚洲欧洲精品一区二区精品久久久 | 久久午夜综合久久蜜桃| 久久精品熟女亚洲av麻豆精品| 久久精品国产自在天天线| 亚洲国产色片| 免费观看av网站的网址| 热re99久久国产66热| 国产av一区二区精品久久| 国产一区二区在线观看av| 青春草国产在线视频| 亚洲第一区二区三区不卡| 天美传媒精品一区二区| 在线播放无遮挡| 亚洲自偷自拍三级| 91成人精品电影| 欧美精品一区二区免费开放| 韩国av在线不卡| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久av不卡| 国产欧美亚洲国产| 国产精品女同一区二区软件| 国产又色又爽无遮挡免| 国产精品三级大全| 欧美精品高潮呻吟av久久| av福利片在线| 亚洲精品中文字幕在线视频 | 王馨瑶露胸无遮挡在线观看| 伊人久久精品亚洲午夜| 丰满迷人的少妇在线观看| 少妇精品久久久久久久| 亚洲怡红院男人天堂| 国产日韩欧美视频二区| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 熟女电影av网| 亚洲国产最新在线播放| 伦理电影大哥的女人| 伦理电影免费视频| 秋霞伦理黄片| 免费久久久久久久精品成人欧美视频 | 国产成人免费观看mmmm| 老熟女久久久| 视频区图区小说| 99热全是精品| 男女边摸边吃奶| 日本欧美国产在线视频| 免费观看av网站的网址| 日韩免费高清中文字幕av| 国产在线免费精品| 黄色怎么调成土黄色| 99热这里只有是精品50| 你懂的网址亚洲精品在线观看| 国产一区二区三区av在线| av天堂久久9| 老司机影院成人| 中文字幕人妻熟人妻熟丝袜美| 大又大粗又爽又黄少妇毛片口| 国产成人午夜福利电影在线观看| 久久av网站| 欧美xxⅹ黑人| 人人妻人人澡人人看| 日韩三级伦理在线观看| 国产成人精品婷婷| 91久久精品国产一区二区三区| 亚洲婷婷狠狠爱综合网| 欧美日韩av久久| 国产 精品1| 你懂的网址亚洲精品在线观看| 午夜视频国产福利| 国产精品国产av在线观看| 秋霞伦理黄片| 成人免费观看视频高清| 色94色欧美一区二区| 欧美最新免费一区二区三区| 亚洲第一区二区三区不卡| 一边亲一边摸免费视频| 国产成人aa在线观看| 中国美白少妇内射xxxbb| 精华霜和精华液先用哪个| 美女福利国产在线| 日本91视频免费播放| 人妻夜夜爽99麻豆av| 狂野欧美激情性xxxx在线观看| 纯流量卡能插随身wifi吗| 欧美最新免费一区二区三区| 2018国产大陆天天弄谢| a级毛色黄片| 99精国产麻豆久久婷婷| 九色成人免费人妻av| 少妇熟女欧美另类| 欧美日本中文国产一区发布| 天天躁夜夜躁狠狠久久av| 大片电影免费在线观看免费| 97精品久久久久久久久久精品| 人妻一区二区av| 日韩精品有码人妻一区| 久久午夜福利片| av在线老鸭窝| a级毛片在线看网站| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 大陆偷拍与自拍| 国产精品国产三级国产av玫瑰| 国产在视频线精品| 精品一区二区三卡| 亚洲真实伦在线观看| 国产精品熟女久久久久浪| 国产av码专区亚洲av| 91久久精品国产一区二区成人| 久久av网站| 久久ye,这里只有精品| 男女无遮挡免费网站观看| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品国产精品| 日韩制服骚丝袜av| av在线app专区| 精品久久久久久电影网| 精品亚洲成a人片在线观看| 日本wwww免费看| 18禁动态无遮挡网站| 日本与韩国留学比较| 国产日韩欧美视频二区| 久久99蜜桃精品久久| 99热这里只有是精品在线观看| 亚洲一区二区三区欧美精品| 国产日韩欧美视频二区| 中文欧美无线码| 亚洲精品成人av观看孕妇| 日韩av不卡免费在线播放| 国产 精品1| 中文天堂在线官网| 水蜜桃什么品种好| 男女边摸边吃奶| 最近2019中文字幕mv第一页| 久久久午夜欧美精品| 欧美精品亚洲一区二区| 亚洲精品乱码久久久久久按摩| 国产淫片久久久久久久久| 欧美区成人在线视频| 成人无遮挡网站| 色5月婷婷丁香| 99热网站在线观看| 嘟嘟电影网在线观看| 国产成人精品久久久久久| 亚洲国产精品一区三区| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 免费观看的影片在线观看| 麻豆成人av视频| 亚洲精品色激情综合| 婷婷色av中文字幕| 边亲边吃奶的免费视频| 美女内射精品一级片tv| 久久久久久久久久成人| 黑人猛操日本美女一级片| 亚洲精品一区蜜桃| 69精品国产乱码久久久| 欧美xxxx性猛交bbbb| 欧美区成人在线视频| 免费大片18禁| 日韩一区二区视频免费看| 亚洲美女视频黄频| 嘟嘟电影网在线观看| 交换朋友夫妻互换小说| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看 | 成年美女黄网站色视频大全免费 | 在线观看免费视频网站a站| 欧美国产精品一级二级三级 | 啦啦啦视频在线资源免费观看| 女性生殖器流出的白浆| 午夜老司机福利剧场| 九九在线视频观看精品| 日韩亚洲欧美综合| 久久久午夜欧美精品| 欧美3d第一页| 国产伦精品一区二区三区视频9| av线在线观看网站| 最近最新中文字幕免费大全7| 日本91视频免费播放| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 噜噜噜噜噜久久久久久91| 伦精品一区二区三区| 久久6这里有精品| 伦理电影大哥的女人| 热re99久久国产66热| 夜夜看夜夜爽夜夜摸| av不卡在线播放| 国内少妇人妻偷人精品xxx网站| 少妇熟女欧美另类| 日韩中字成人| 新久久久久国产一级毛片| 五月玫瑰六月丁香| 97超碰精品成人国产| 亚洲av电影在线观看一区二区三区| 内射极品少妇av片p| 毛片一级片免费看久久久久| 肉色欧美久久久久久久蜜桃| 丝袜脚勾引网站| 国产极品天堂在线| 婷婷色av中文字幕| 亚洲综合色惰| 精品视频人人做人人爽| 人人澡人人妻人| 岛国毛片在线播放| 99久久精品国产国产毛片| 22中文网久久字幕| 美女视频免费永久观看网站| 日本wwww免费看| 日本欧美视频一区| 国产亚洲最大av| 国产在线视频一区二区| 亚洲成人手机| 日韩欧美 国产精品| a级毛色黄片| 一区在线观看完整版| 久久久久久久久久久丰满| 一本色道久久久久久精品综合| 国产免费又黄又爽又色| 成人影院久久| 国产白丝娇喘喷水9色精品| 一区二区三区乱码不卡18| 欧美三级亚洲精品| 亚洲精品日本国产第一区| 日产精品乱码卡一卡2卡三| 女的被弄到高潮叫床怎么办| 99久久精品热视频| 久久国产精品男人的天堂亚洲 | 日韩三级伦理在线观看| 97超碰精品成人国产| 亚洲精品一二三| 亚洲精品国产成人久久av| 欧美激情国产日韩精品一区| 王馨瑶露胸无遮挡在线观看| 欧美精品人与动牲交sv欧美| 欧美3d第一页| 女人精品久久久久毛片| 日韩一区二区视频免费看| 人人妻人人添人人爽欧美一区卜| 精品国产露脸久久av麻豆| 水蜜桃什么品种好| 国产一区二区在线观看日韩| 精品久久久噜噜| 国产视频首页在线观看| www.av在线官网国产| 欧美 亚洲 国产 日韩一| 日日啪夜夜撸| 熟妇人妻不卡中文字幕| 久久久国产一区二区| 午夜免费男女啪啪视频观看| 久久久久久久精品精品| 免费观看av网站的网址| 国产亚洲一区二区精品| 国产伦精品一区二区三区视频9| 精品一区二区三卡| 日本爱情动作片www.在线观看| 插逼视频在线观看| 久久久久国产精品人妻一区二区| 欧美日韩精品成人综合77777| 免费黄频网站在线观看国产| 狂野欧美激情性xxxx在线观看| 亚洲中文av在线| av不卡在线播放| 欧美亚洲 丝袜 人妻 在线| 黑人巨大精品欧美一区二区蜜桃 | 亚洲av.av天堂| 少妇被粗大的猛进出69影院 | 亚洲欧美成人综合另类久久久| 亚洲三级黄色毛片| 91在线精品国自产拍蜜月| 亚洲电影在线观看av| 丝袜脚勾引网站| 五月伊人婷婷丁香| 大又大粗又爽又黄少妇毛片口| 在线观看美女被高潮喷水网站| 九九在线视频观看精品| 97精品久久久久久久久久精品| 成人国产麻豆网| h视频一区二区三区| 国产av国产精品国产| 国产成人精品久久久久久| 免费看av在线观看网站| 成人国产av品久久久| 精品亚洲成a人片在线观看| 色吧在线观看| 一级黄片播放器| 高清毛片免费看| 久久久久精品久久久久真实原创| 久热久热在线精品观看| 日本av免费视频播放| 建设人人有责人人尽责人人享有的| 日韩欧美一区视频在线观看 | 国产欧美日韩综合在线一区二区 | 国产在线视频一区二区| 搡老乐熟女国产| 国产精品不卡视频一区二区| 18禁裸乳无遮挡动漫免费视频| 91精品国产九色| 国产亚洲5aaaaa淫片| 妹子高潮喷水视频| 亚洲熟女精品中文字幕| 午夜免费鲁丝| 久久人人爽人人片av| 亚洲欧美日韩东京热| 亚洲国产精品专区欧美| 嫩草影院入口| 亚洲经典国产精华液单| av国产久精品久网站免费入址| 久久av网站| 亚洲av电影在线观看一区二区三区| 日韩一区二区视频免费看| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成a人片在线观看| 99热国产这里只有精品6| 日韩亚洲欧美综合| 交换朋友夫妻互换小说| 三级国产精品片| 亚洲精品日韩av片在线观看| 熟妇人妻不卡中文字幕| 爱豆传媒免费全集在线观看| 日韩一区二区视频免费看| 国产黄片视频在线免费观看| 久久女婷五月综合色啪小说| 欧美 亚洲 国产 日韩一| 边亲边吃奶的免费视频| 最近2019中文字幕mv第一页| 永久免费av网站大全| av女优亚洲男人天堂| 天堂中文最新版在线下载| 亚洲av免费高清在线观看| 欧美区成人在线视频| av卡一久久| 最近中文字幕2019免费版| 亚洲va在线va天堂va国产| 九九在线视频观看精品| 99九九在线精品视频 | 一级片'在线观看视频| 人妻 亚洲 视频| a级毛片免费高清观看在线播放| 国产精品人妻久久久久久| av天堂久久9| 国产伦在线观看视频一区| 人人妻人人添人人爽欧美一区卜| 国产一区二区三区综合在线观看 | 久久热精品热| 欧美丝袜亚洲另类| 色婷婷av一区二区三区视频| 久久久久久久久久成人| 下体分泌物呈黄色| 精品国产一区二区久久| 蜜桃在线观看..| 99久国产av精品国产电影| 最新中文字幕久久久久| 国产精品不卡视频一区二区| 在现免费观看毛片| 少妇人妻 视频| 欧美高清成人免费视频www| 性色avwww在线观看| 免费观看a级毛片全部| 久久精品熟女亚洲av麻豆精品| 亚洲婷婷狠狠爱综合网| 91aial.com中文字幕在线观看| 成人综合一区亚洲| 美女内射精品一级片tv| 91aial.com中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| 精品卡一卡二卡四卡免费| 只有这里有精品99| 国产淫语在线视频| 日韩欧美精品免费久久| 69精品国产乱码久久久| 国产午夜精品一二区理论片| 国产精品久久久久成人av| 观看av在线不卡| 国产精品人妻久久久久久| 在现免费观看毛片| 九九久久精品国产亚洲av麻豆| 欧美人与善性xxx| 最近2019中文字幕mv第一页| 97超视频在线观看视频| 成人免费观看视频高清|