徐小珊,閔 彬,王 震,劉 楠,劉 輝,涂艷陽
(1第四軍醫(yī)大學唐都醫(yī)院實驗外科,陜西西安710038;2空軍工程大學門診部,陜西 西安710050)
膠質(zhì)瘤的免疫治療進展
徐小珊1,閔 彬2,王 震1,劉 楠1,劉 輝1,涂艷陽1
(1第四軍醫(yī)大學唐都醫(yī)院實驗外科,陜西西安710038;2空軍工程大學門診部,陜西 西安710050)
膠質(zhì)瘤是最常見的原發(fā)性腦腫瘤[1],僅在美國,每年診斷出新發(fā)膠質(zhì)瘤的患者就有12 000例.膠質(zhì)瘤主要分為四種類型:室管膜瘤、少突膠質(zhì)細胞瘤、混合神經(jīng)膠質(zhì)瘤和星形細胞瘤[2].星形細胞瘤進一步被定義為Ⅰ~Ⅳ級,逐級惡化[3].Ⅳ期膠質(zhì)瘤,多形性膠質(zhì)母細胞瘤(glioblastoma multiforme,GBM)是惡性程度最高的一種類型[4].因為腫瘤細胞是從正常細胞衍化而來,很難單一靶向腫瘤細胞而不會引起嚴重的附帶損傷,這在腦部可能會帶來致命的損害.即使是在最佳治療條件下,罹患GBM的患者從診斷之日起的生存期也不超過15個月[5],而且,GBM腦腫瘤術后復發(fā)率高,且復發(fā)后致死率極高[6-7].這主要是因為手術很難徹底清除癌細胞[8],此外,機體中的膠質(zhì)瘤細胞能夠逃避免疫監(jiān)視持續(xù)存在[9-11],主要原因有以下三點:①腫瘤細胞的免疫原性較弱,多發(fā)突變致使腫瘤抗原丟失[12];②腫瘤細胞能分泌多種免疫抑制因子[13],可抑制免疫細胞活力和抗原提呈能力[14];③腫瘤變態(tài)生長致使調(diào)節(jié)T細胞增多,從而抑制抗原提呈細胞功能與機體免疫反應[15];④腫瘤細胞幾乎不表達粘附分子和共刺激分子[16].因此,增強機體免疫系統(tǒng)的靶向作用將成為臨床上改善膠質(zhì)瘤療效的重要手段[17].本文主要根據(jù)腫瘤的免疫機制將膠質(zhì)瘤的免疫治療分為主動免疫與被動免疫兩大類.
主動免疫治療指的是采用多種免疫方法激活宿主自身免疫系統(tǒng),進而對腫瘤細胞抗原產(chǎn)生免疫應答[18].在膠質(zhì)瘤目前的臨床治療中主要分為以下幾種.
1.1 樹突狀細胞疫苗 樹突狀細胞(dendritic cell,DC)是專職抗原提呈細胞[19-20],DC 可以將腫瘤抗原從外周血中提呈出來,與組織相容性復合體(major histocompatibility complex,MHC)組成復合物,從而被免疫細胞識別.由于中樞系統(tǒng)缺乏DC細胞[21],回輸DC能有效加強T細胞識別與殺傷腫瘤細胞的能力[22-23].近年來,已有眾多研究報道利用熱休克蛋白[24]、膠質(zhì)瘤 RNA 與小囊泡體[25-29]等產(chǎn)物致敏 DC細胞生成 DC疫苗治療膠質(zhì)瘤.Yu等[30]發(fā)現(xiàn)利用GBM相關的4種抗原致敏DC所得到的疫苗能夠有效殺傷膠質(zhì)瘤干細胞.相關學者發(fā)現(xiàn)CIK-DC疫苗在治療復發(fā)性膠質(zhì)瘤患者的臨床試驗中也取得了很大進展[31].而且,與 CIK-DC 疫苗比較而言,iAPA-DC疫苗具有更好的臨床療效[32].此外,已有國外學者[33-34]驗證了腫瘤抗原致敏的DC細胞在腎細胞癌、惡性黑色素瘤等臨床研究中均取得了良好的療效.
1.2 腫瘤細胞疫苗 Ishikawa 等[35]使用皮下注射福爾馬林固定的自體腫瘤細胞的方法治療新診斷的GBM患者以及復發(fā)性GBM患者,然而并沒有觀察到很好的療效.Okada等[36]將IL-4轉(zhuǎn)染入成纖維細胞,同時聯(lián)合膠質(zhì)瘤患者自身的腫瘤細胞注射到患者的皮下,結果顯示,復發(fā)性GBM患者的生存期得到延長.Steiner等[37]發(fā)現(xiàn),給膠質(zhì)瘤患者注射轉(zhuǎn)染了新城病毒的自體腫瘤細胞疫苗可以將39%的患者生存期提高到兩年以上.還有研究[34]表明,利用轉(zhuǎn)導TGF-β2反義載體修飾后的自體膠質(zhì)瘤細胞疫苗可以使患者部分腫瘤消退并激活腫瘤的免疫反應.
1.3 短肽疫苗 短肽疫苗是從腫瘤細胞溶解物中提取出來的,經(jīng)人工修飾合成的一種特異性蛋白多肽[38].研究[39-40]發(fā)現(xiàn),EGFRVIII特異性表達于膠質(zhì)瘤細胞,而且它在膠質(zhì)瘤干細胞中的表達高于普通膠質(zhì)瘤細胞,因此,它可以作為膠質(zhì)瘤免疫治療的靶點之一.Izumoto等[41]進行了一項臨床試驗,用腫瘤相關的WT-1短肽接種患有復發(fā)性GBM的患者,患者的預后無顯著改善.僅使用肽單獨治療癌癥患者的臨床試驗幾乎沒有效果[42],但是聯(lián)合其它手段治療較標準療法療效有所改善.臨床試驗[43]表明,用包含EGFRVIII部分氨基酸序列的多肽疫苗聯(lián)合放化療及GM-CSF因子治療膠質(zhì)瘤,可將患者的平均生存期提高至20個月左右.
腫瘤的被動免疫是指實驗對象輸入外源性免疫效應物質(zhì)[44],此種免疫效應物質(zhì)在宿主免疫功能受損或低下的狀態(tài)仍能自主發(fā)揮治療作用.此種療法不依賴于患者自體的免疫功能.
2.1 特異性抗體免疫治療 利用特異性抗體是靶向體內(nèi)腫瘤抗原的方法之一.有文獻報道,單克隆抗體的免疫治療在多種癌癥患者的臨床免疫治療上都得到了運用[45].有研究者合成了一種能特異性識別EGFRvⅢ的單克隆抗體,其在離體環(huán)境下能夠介導細胞毒性反應,進而殺死腫瘤細胞[46-47].而且,Perera等[25]也證實了抗EGFRvⅢ的單克隆抗體mAb806能夠顯著抑制U87異體移植瘤瘤增長,且這種抑制作用隨抗體濃度的增加而增加[48].此外,Zalutsky 等[49]利用抗細胞外基質(zhì)的單克隆抗體聯(lián)合能發(fā)射a射線的211At用于臨床上治療復發(fā)性膠質(zhì)瘤患者,使患者平均生存期延長到12個月.
2.2 細胞因子免疫治療 細胞因子可以非特異性的激活T細胞,促進其增殖與分化.如IL-2通過促進T細胞增殖來增強細胞毒性T淋巴細胞的活性,從而加強抗腫瘤免疫效應[50].有研究[51-52]證明,IFN-γ,IL-2與IL-7能延長膠質(zhì)瘤模型兔的生存期.此外,具有類似作用的IL-21目前也已進入治療黑色素瘤的II期臨床試驗[53].其它的細胞因子如 TNF-α,IL-15,GM-CSF等也相繼被用于臨床腫瘤研究中[50].除此之外,還有一些細胞因子具有免疫抑制的功能,如TGF-β,IL-10 等[38].膠質(zhì)瘤組織中常伴隨 TGF-β2 的高表達,TGF-β2能夠抑制細胞毒性T淋巴細胞的增殖與活化,從而減弱NK細胞活性,使自體免疫功能受損[54-55].一項臨床試驗[56]表明,靶向 TGF-β2 的藥物能夠延緩膠質(zhì)瘤患者病情的進一步發(fā)展.
目前,膠質(zhì)瘤的免疫治療還處于初步發(fā)展階段,還有很多未知的風險需要探索.由于患者的異質(zhì)性,臨床上缺少個性化的免疫治療.而且,目前膠質(zhì)瘤的免疫治療屬于一種新興治療手段,還處于科研探索階段,離產(chǎn)業(yè)化還有一段距離要走.最重要的是,回輸修飾的免疫細胞治療所帶來的倫理問題急待解決.
大量的實驗研究結果表明,在中樞神經(jīng)系統(tǒng)內(nèi)存在著免疫應答,且膠質(zhì)瘤的發(fā)生與發(fā)展和機體自身的免疫應答能力息息相關.在通過手術切除聯(lián)合放化療治療的基礎上,減輕了腫瘤負荷,同時聯(lián)合各種免疫疫苗制劑,回輸免疫細胞治療,特異性抗體與細胞因子免疫治療等多種膠質(zhì)瘤免疫治療手段,能在一定程度上改善患者的生活質(zhì)量與預后.未來膠質(zhì)瘤的免疫治療能夠極大的緩解患者自體免疫逃避和免疫抑制狀態(tài),增強化療藥物的療效,將手術,放化療與免疫治療等方法綜合起來,根據(jù)患者的異質(zhì)性與病情發(fā)展制定個體化的治療方案,將會為改善膠質(zhì)瘤的臨床療效帶來新的篇章.
[1]王文雯.卡莫司汀植入劑治療腦膠質(zhì)瘤的研究進展[J].中國腫瘤臨床與康復,2015(2):254-256.
[2]Punsoni M,Donahue JE,Elinzano HD,et al.Updates in molecular pathology of central nervous system gliomas in adults[J].R I Med J,2015,98(11):17-19.
[3]Lasocki A, Tsui A, Tacey MA, et al.MRI Grading versus histology:Predicting survival of world health organization grade II-IV astrocytomas[J].AJNR Am J Neuroradiol,2015,36(1):77-83.
[4]Oliveira-Nunes MC, Assad Kahn S, de Oliveira Barbeitas AL, et al.The availability of the embryonic TGF-β protein Nodal is dynamically regulated during glioblastomamultiforme tumorigenesis[J].Cancer Cell Int,2016,16(1):1-10.
[5]Stupp R, Mason WP, van den Bent MJ, et al.Radiotherapy plus concomitant and adjuvanttemozolomide for glioblastoma[J].N Engl J Med,2005,352:987-996.
[6]Zhao J, Zhang L, Dong X, et al.High expression of vimentin is associated with progression and a poor outcome in glioblastoma[J].Appl Immunohistochem Mol Morphol,2016.
[7]Chen L, Li X, Liu L, et al.Erastin sensitizes glioblastoma cells to temozolomide by restraining xCT and cystathionine-γ-lyase function[J].Oncol Rep,2015,33(3):1465-1474.
[8]Aguilar-Cordova CE.Methods of cytotoxic gene therapy to treat tumors:, US20150086541[P].2015.
[9]Zhang X,Rao A, Sette P,et al.IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression[J].Neuro-oncology,2016,18(10): 1402-1412.
[10]唐重陽,葛海濤,林志國,等.失控的CD70在腦膠質(zhì)瘤的發(fā)生與治療中的潛在作用[J].現(xiàn)代生物醫(yī)學進展,2016,16(7):1363-1365.
[11]Mittelbronn M, Platten M, Zeiner P, et al.Macrophage migration inhibitory factor(MIF) expression in human malignant gliomas contributes to immune escape and tumour progression[J].Acta Neuropathol,2011,122(3):353-365.
[12]Li L, Goedegebuure P, Mardis ER, et al.Cancer genome sequencing and its implications for personalized cancer vaccines[J].Cancers,2011,3(4):4191-4211.
[13]Wu AA,Drake V,Huang HS,et al.Reprogramming the tumor microenvironment:tumor-induced immunosuppressive factors paralyz T cells[J].Oncoimmunology,2015,4(7):e1016700.
[14]霍 毅,陳功金,申彥彥,等.組蛋白H2A去泛素化酶MYSM1抑制骨髓來源樹突狀細胞的抗原提呈功能及炎性細胞因子的分泌[J].細胞與分子免疫學雜志,2016,32(12):1654-1657.
[15]陳 新.肝癌小鼠來源的調(diào)節(jié)性T細胞對腫瘤免疫抑制作用的研究[D].溫州:溫州醫(yī)學院,2013.
[16]Fecci PE, Sampson JH.Clinical immunotherapy for brain tumors[J].Neuroimaging Clin N Am,2002,12(4):641-664.
[17]Reardon DA, Wucherpfennig KW, Freeman G, et al.An update on vaccine therapy and otherimmunotherapeutic approaches for glioblastoma[J].Expert Rev Vaccines,2013,12(6):597-615.
[18]Favoino E, Prete M, Marzullo A, et al.CD20-mimotope peptide active immunotherapy in systemic lupus erythematosus and a reappraisalof vaccination strategies in rheumatic diseases[J].Clin Rev Allergy Immunol,2017,52(2):217-233.
[19]Truxova I, Fucikova J, Spisek R, et al.Method for preparing dendritic cells to be used as antigen-presenting cells in immunotherapy:EP2829600[P].2015.
[20]李國亮,王選重,田沁森,等.腦膠質(zhì)瘤綜合治療新進展[J].轉(zhuǎn)化醫(yī)學電子雜志,2017,4(7):16-20.
[21]Quintana FJ, Yeste A, Mascanfroni I D.Role and therapeutic value of dendritic cells in central nervous system autoimmunity[J].Cell Death Differ, 2015, 22(2):215-24.
[22]Ramirez O,Garza KM.Leptin deficiency in vivo enhances the ability of splenic dendritic cells to activate T cells[J].Int Immunol,2014,26(11):627-636.
[23]Tano T, Okamoto M, Goda H, et al.Abstract 4722: Enhancement of the T cell-stimulating ability of dendritic cells by 5-FU via regulationof the expression of ligands for programed cell death 1[J].Cancer Res,2013, 73(8):4722-4722.
[24]徐 杰,陸 華,吳衛(wèi)江,等.人腦膠質(zhì)瘤樹突狀細胞疫苗的臨床應用[J].江蘇醫(yī)藥,2012(10):1193-1196.
[25]肖宗宇,陳曉娟,楊 藝,等.腫瘤干細胞樣細胞RNA致敏樹突狀細胞治療大鼠9L腦腫瘤[J].北京大學學報(醫(yī)學版),2015,47(4):661-666.
[26]張 蕓,紀惜鑾,羅朝霞,等.惡性膠質(zhì)瘤相關抗原表位肽激活的樹突狀細胞致敏的細胞毒性T淋巴細胞靶向治療惡性膠質(zhì)瘤的實驗研究[J].中國臨床藥理學雜志,2017,33(5):448-451.
[27]王 瑩.IL-13Ra2抗原肽致敏樹突狀細胞對人腦膠質(zhì)瘤及其腫瘤干細胞的殺傷效應研究[D].武漢:華中科技大學,2013.
[28]卜 寧,吳海琴,孫秉中.樹突狀細胞負載的exosome疫苗抗膠質(zhì)瘤的實驗研究[J].現(xiàn)代腫瘤醫(yī)學,2010,18(9):1684-1687.
[29]涂艷陽,徐小珊,張永生,等.膠質(zhì)瘤中甲基化沉默腫瘤抑制因子的研究進展[J].轉(zhuǎn)化醫(yī)學電子雜志,2016,3(2):1-7.
[30]Phuphanich S, Wheeler CJ, Rudnick JD, et al.Phase I trial of amulti-epitope-pulsed dendritic cellvaccine forpatients with newlydiagnosed glioblastoma[J].Cancer Immunol Immunother,2013,62(1):125-135.
[31]崔建東,彭清云,李 濤,等.放化療聯(lián)合DC-CIK治療腦膠質(zhì)瘤復發(fā)40例的臨床觀察[J].現(xiàn)代生物醫(yī)學進展,2013,13(20):3860-3862,3991.
[32]Zhu Y, Zheng Y, Mei L, et al.Enhanced immunotherapeutic effect of modified HPV16 E7-pulsed dendritic cell vaccine by an adenoshRNA-SOCS1 virus[J].Int J Oncol,2013,43(4):1151-1159.
[33]Ribas A, Comin-Anduix B, Chmielowski B, et al.Dendritic cell vaccination combined with CTLA4 blockade in patients with metastatic melanoma[J].Clin Cancer Res,2009,15(19):6267-6276.
[34]Berntsen A, Trepiakas R, Wenandy L, et al.Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma:aclinical phase1/2 trail[J].J Immunother,2008,31(8):771-780.
[35]Ishikawa E, Tsuboi K, Yamamoto T, et al.Clinical trial of autologous formalin-fixed tumorvaccine forglioblastoma multiforme patients[J].Cancer Sci,2007,98(8):1226-1233.
[36]Okada H, Lieberman FS, Walter KA, et al.Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas[J].J Transl Med,2007,5:67.
[37]Steiner HH, Bonsanto MM, Beckhove P, et al.Antitumor vaccination of patients with glioblastoma multiforme:a pilot study to assess feasibility, safety, and clinical benefit[ J].J Clin Oncol,2004,22(21):4272-4281.
[38]Ahn BJ, Pollack IF, Okada H.Immune-checkpoint blockade and active immunotherapy for glioma[J].Cancers(Basel),2013,5(4):1379-1412.
[39]Ohno M,Natsume A, Ichiro Iwami K, et al.Retrovirally engineered T-cell-based immunotherapy targeting typeⅢ variant epidermal growth factor receptor,a glioma-associated antigen[J].Cancer Sci,2010,101(12):2518-2524.
[40]Hatiboglu MA, Wei J, Wu AS, et al.Immune therapeutic targeting of glioma cancer stem cells[J].Target Oncol,2010,5(3):217-227.
[41]Izumoto S, Tsuboi A, Oka Y, et al.Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme[J].J Neurosurg.2008,108(5):963-971.
[42]Rosenberg SA, Yang JC, Restifo NP.Cancer immunotherapy:moving beyond current vaccines[J].Nat Med,2004,10(9):909-915.
[43]Sampson JH, Heimberger AB, Archer GE, et al.Immunologic escape after prolonged progression-free survival with epidermalgrowth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma[J].J Clin Oncol,2010,28(31):4722-4729.
[44]Zhou DG, Liang Z, Fan ZY, et al.Effects of passive immunization against peptide tyrosine tyrosine on the growth performance and endocrine hormone levels in blood serum of rats[J].Adv JFood Sci Technol,2013,5(2):99-105.
[45]Harris M.Monoclonal antibodies as therapeutic agents for cancer[J].Lancet Oncol,2004,5(5):292-302.
[46]Wikstrand CJ, Hale LP, Batra SK, et al.Monoclonal antibodies against EGFRvⅢare tumor specific and react with breast and lung carcinomas and malignant gliomas[J].Cancer Res,1995,55(14):3140-3148.
[47]Sampson JH, Crotty LE, Lee S, et al.Unarmed, tumor-specific monoclonal antibody effectively treats brain tumors[J].Proc Natl Acad Sci USA,2000,97(13):7503-7508.
[48]Perera RM, Narita Y, Furnari FB, et al.Treatment of human tumor xenografts with monoclonal antibody 806 in combination with a prototypicalepidermal growth factor receptor-specific antibody generates enhanced antitumor activity[J].Clin Cancer Res,2005,11(17):6390-6399.
[49]Zalutsky MR, Reardon DA, Akabani G, et al.Clinical experience with α-particle-emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6[J].J Nucl Med,2008,49(1):30-38.
[50]Galluzzi L,Vacchelli E, Bravo-San Pedro JM,et al.Classification of current anticancer immunotherapies[J].Oncotarget,2014,5(24):12472-12508.
[51]Mineharu Y, Muhammad AK, Yagiz K, et al.Gene therapy-mediated reprogramming tumor infiltrating T cells using IL-2 and inhibiting NF-kappaB signaling improves the efficacy of immunotherapy in a brain cancer model[J].Neurotherapeutics,2012,9(4):827-843.
[52]Fritzell S, Eberst?l S, Sanden E , et al.IFNγ in combination with IL-7 enhances immunotherapy in two rat glioma models[J].J Neuroimmunol,2013,25 8(1-2):91-95.
[53]Santegoets SJ, Turksma AW, Powell Jr DJ, et al.IL-21 in cancer immunotherapy : At the right place at the right time[J].Oncoimmunology,2013,2(6):e24522.
[54]Hau P, Jachimczak P, Schlingensiepen R, et al.Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas:from preclinicalto phaseⅠ/Ⅱstudies[J].Oligonucleotides,2007,17(2):201-212.
[55]涂艷陽,祁 婧,張永生.膠質(zhì)瘤中分子標記物的應用進展[J].轉(zhuǎn)化醫(yī)學電子雜志,2016,3(7):1-5.
[56]Christofides A,Kosmopoulos M,Piperi C.Pathophysiological mechanisms regulated by cytokines in gliomas[J].Cytokine,2015,71(2):377-384.
Advances in immunotherapy of gliomas
XU Xiao-Shan1, MIN Bin2, WANG Zhen1, LIU Nan1, LIU Hui1,TU Yang-Yang11Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China;2Department of Out-Patient, Air Force Engineering University, Xi'an 710050,China
Glioma is a common intracranial tumor.In the past century,there is little progress in the clinical treatment of gliomas.Immunotherapy, as a new treatment model, has attracted much attention.The efficacy of immunotherapy for glioma is also controversial.In this article, we will discuss the current status of clinical immunotherapy for glioma,the shortcomings of the present stage, and its future potentiality.
glioma; immunotherapy; shortcomings; potentiality
膠質(zhì)瘤作為一種顱內(nèi)常見腫瘤,在過去的一個世紀,其臨床治療方面幾乎沒有顯著的進展.免疫療法作為一種新興的治療模式備受矚目,關于膠質(zhì)瘤免疫治療的效果也有很多爭議.本文就膠質(zhì)瘤臨床免疫治療的現(xiàn)狀、現(xiàn)階段所存在的缺陷,以及其未來的潛力作一綜述.
膠質(zhì)瘤;免疫療法;缺陷;潛力
R739.41
A
2095-6894(2017)12-89-04
2017-08-10;接受日期:2017-08-28
國家自然科學基金項目(81572983,81702458);陜西省重點研發(fā)計劃(2017KW-062),陜西省社會發(fā)展科技攻關項目(2016SF-191)
徐小珊.碩士.E-mail:275720539@ qq.com
涂艷陽.博士,副主任醫(yī)師,副教授.E-mail:tu.fmmu@ gmail.com