• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    介孔γ-Al2O3負(fù)載的高分散Ni-Ce-Zr氧化物的制備及其二氧化碳甲烷化研究

    2016-12-29 05:43:10聶望欣鄒秀晶汪學(xué)廣丁偉中魯雄剛
    物理化學(xué)學(xué)報(bào) 2016年11期
    關(guān)鍵詞:物理化學(xué)介孔檸檬酸

    聶望欣 鄒秀晶 汪學(xué)廣 丁偉中 魯雄剛

    (上海大學(xué)材料科學(xué)與工程學(xué)院,省部共建高品質(zhì)特殊鋼冶金與制備國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海市鋼鐵冶金新技術(shù)開(kāi)發(fā)應(yīng)用重點(diǎn)實(shí)驗(yàn)室,上海200072)

    介孔γ-Al2O3負(fù)載的高分散Ni-Ce-Zr氧化物的制備及其二氧化碳甲烷化研究

    聶望欣 鄒秀晶*汪學(xué)廣*丁偉中 魯雄剛

    (上海大學(xué)材料科學(xué)與工程學(xué)院,省部共建高品質(zhì)特殊鋼冶金與制備國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海市鋼鐵冶金新技術(shù)開(kāi)發(fā)應(yīng)用重點(diǎn)實(shí)驗(yàn)室,上海200072)

    采用檸檬酸(CA)-浸漬法制備了介孔γ-Al2O3(γ-MA)負(fù)載的高分散Ni-Ce-Zr氧化物,并將其用于二氧化碳甲烷化反應(yīng)。研究了檸檬酸加入量對(duì)催化劑物理化學(xué)性質(zhì)及催化性能的影響。結(jié)果表明,檸檬酸的加入可明顯提高Ni-Ce-Zr氧化物在γ-Al2O3表面的分散性,同時(shí)可以增加鎳氧化物與載體間的相互作用。制備材料經(jīng)氫氣還原后得到Ni-Ce-Zr/γ-MA催化劑,鎳納米顆粒均勻分散于γ-Al2O3表面。Ni-Ce-Zr/γ-MA催化劑在二氧化碳甲烷化反應(yīng)中表現(xiàn)出了較高的反應(yīng)活性和幾乎100%的甲烷選擇性。反應(yīng)活性隨CA/(Ni+Ce+Zr)摩爾比的增加而增加,主要是由于鎳顆粒尺寸的減小和Ni-Ce-ZrOx物種電子和結(jié)構(gòu)性質(zhì)的提高。CA/(Ni+Ce+ Zr)摩爾比為1的Ni-Ce-Zr/γ-MA催化劑在反應(yīng)300 h內(nèi)活性僅降低7%,并且沒(méi)有明顯積碳。表明催化劑在二氧化碳甲烷化反應(yīng)中具有優(yōu)異的反應(yīng)穩(wěn)定性和抗積碳性能。

    鎳催化劑;檸檬酸輔助;混合金屬氧化物;二氧化碳;甲烷化

    1 Introduction

    Human activities have brought about a severe rise in CO2emissions in the atmosphere.Because of its impact on the environment through the greenhouse effect,CO2fixation has attracted considerable interest in achieving a low carbon economy and society1.With regards to upcoming energy challenges,CO2conversion to biofuels and high-value chemicals seems to be a more attractive and promising approach.Considering that the consumption of fuels is two orders of magnitude higher than chemicals′one,CO2has to be mainly converted into energy carriers such as methane,methanol,and so on2-4.

    CO2methanation(Sabatier reaction,CO2+4H2?CH4+2H2O, ΔH298K=-164.7 kJ·mol-1)shows substantial advantages over CO2conversion to other fuels because methane can be injected directly into existing natural gas pipelines,or be used as a raw material for production of chemicals.As a reversible exothermic reaction,CO2methanation is required to perform at lower temperatures in order to obtain methane yield as high as possible.However,low temperature is favorable for CO disproportionation(2CO?CO2+C, ΔH298K=-172.4 kJ·mol-1),resulting in coke deposition or forming subcarbonyl species.Up to now,it remains a great challenge to develop a highly active and stable catalyst for CO2methanation.

    Ni-based catalysts are preferred as promising candidates for the CO2methantion due to their high intrinsic activity and low cost2-12. However,supported Ni catalysts frequently suffer from severe deactivation due to particle sintering,interaction of metal particles with carbon monoxide,formation of mobile nickel subcarbonyls, and coke deposition.Numerous investigations have been directed toward improving metal-support interaction,adding promoters, and adopting improved preparation methods2-4.Ni-Ce-Zr mixed oxides are believed to be one of the potential catalysts for CO2methanation due to their high oxygen storage capacity and properties to activate CO22,3.Nevertheless,these Ni catalysts are frequently insufficient to meet the demands of the reaction because of low surface areas,which preclude dispersion of the active metals.Some efforts have been devoted to introducing Ni-Ce-Zr mixed oxides in the support with high surface area for the dispersion of active metals.γ-Alumina was usually used as support of Ni-Ce-Zr oxides due to the large surface area and stability13-15. Synthesis of highly dispersed Ni catalyst requires a strong interaction between support and nickel oxide species.Numerous studies have been conducted to increase the dispersion of supported metal oxide by modifying the impregnation solution on support,such as using organic metal precursors and adding organic chelating additives.Citric acid(CA)has frequently been chosen as a chelating agent of metal ions in the catalyst preparation because of its excellent ability to chelate metal ions16-19.The use of chelating agents has several implications in the material properties:morphology of active phase,dispersion of metal oxides in the support,and the promotion of highly active phases20-27.

    In this work,mesoporous γ-alumina supported Ni-Ce-Zr mixed oxides(Ni-Ce-Zr/γ-MA)were prepared by a CA-assisted impregnation method.Metal oxide species were uniformly dispersed on mesoporous γ-alumina surface.Their catalytic behavior for CO2methanation was investigated in detail.The obtained catalysts showed excellent catalytic activity and almost 100%CH4selectivity in the temperature range of 150-400°C.

    2 Experimental

    2.1Catalyst synthesis

    All reagents were analytical-grade,purchased from Sinopharm Chemical Reagent Co.,Ltd.and used as received without purification.

    Mesoporous γ-alumina was prepared via one-pot template-free partial hydrolysis route,as proposed in our previous study28. Typically,0.1 mol of Al(NO3)3·9H2O was dissolved in 50 mL of deionized water at 70°C,and was dropped slowly with 1 mol·L-1(NH4)2CO3aqueous solution under vigorous magnetic stirring until a formation of transparent gel,and then the gel beaker was covered with plastic film and aged at 30°C for 48 h.After this,the crude gel was dispersed in an open glass dish at 100°C for 24 h. The as-prepared solid was treated at 200°C in air for 10 h to remove ammonium nitrate,and further calcined at 500°C for 10 h in air at a heating rate of 1°C·min-1.

    Ni-Ce-Zr/γ-MA materials were prepared by the impregnation method in the presence of citric acid.In a typical synthesis,Ni (NO3)2·6H2O,Ce(NO3)3·6H2O,Zr(NO3)4·5H2O and required amounts of citric acid were dissolved in 10 mL of deionized water at room temperature.5 g γ-MA was added in the above solution and stirred at room temperature for 2 h,and then continuously stirred at 80°C until the water was evaporated out.The obtained solid was dried at 100°C for 24 h and calcined at 500°C for 10 h.The nominal compositions of the Ni-Ce-Zr/γ-MAcatalysts were fixed at 15%(w,mass fraction)Ni and 10%(w)Ce-ZrO2with a Ce/Zr molar ratio of 0.7:0.3,respectively,which were confirmed to be optimum for CO2methanation in the preliminary experiments.The amounts of CAwith different CA/(Ni+Ce+Zr)molar ratios in the range of 0-2 were utilized.The final materials were denoted as Ni-Ce-Zr/γ-MA-n,where n represents CA/(Ni+Ce+ Zr)molar ratios in the reaction solutions.

    2.2Catalyst characterization

    Powder X-ray diffraction(XRD)was performed with a Bruker AXS D8Advance(Germany)diffractometer using Cu Kαradiation at 40 kV and 40 mA.N2adsorption and desorption isotherms weremeasured using a Micromeritics ASAP 2020 Sorptometer (America)at liquid nitrogen temperature(-196°C).Before the measurement,each sample was degassed at 300°C for 6 h.The specific surface areas(SBET)were evaluated using the Brunauer-Emmett-Teller(BET)method in the relative pressure(p/p0)range from 0.05 to 0.25.Pore size distribution curves were calculated using the desorption branch of the isotherms and the Barrett-Joyner-Halenda(BJH)method.The pore sizes(Dp)were obtained from the peak positions of the distribution curves.The pore volumes(Vp)were takenat the p/p0of 0.990single point.Temperatureprogrammed reduction with H2(H2-TPR)was performed on a fixed-bed reactor.Prior to the measurement,0.1 g of the sample placed in a quartz reactor was first pretreated in an Ar stream(30 mL·min-1)at 200°C for 0.5 h to remove moisture and other absorbed impurities.After this,H2-TPR was conducted with a gas mixture of 5%(volume fraction)H2in Ar at 30 mL·min-1.The temperature was raised to 1000°C with a heating rate of 10°C· min-1.The amount of H2uptake was measured with a thermal conductivity detector(TCD).Thermogravimetric(TG)analysis of the used catalysts was carried out on a Netzsch STA 4449 F3 thermogravimetric analyzer(Germany).The samples were first treated at 50°C for 0.5 h,and then were heated to 800°C in an air flow of 30 mL·min-1at a heating rate of 10°C·min-1.Transmission electron microscopy(TEM)micrographs were acquired with a JEOL JEM-2010F field emission microscope(Japan)operating at 200 kV.

    2.3Catalyst test and analysis

    CO2methanation was performed at atmospheric pressure in a vertical continuous-flow fixed-bed reactor(inner diameter of 8 mm and a length of 800 mm)at atmospheric pressure.The reaction gases were controlled using mass flow controllers.The actual temperature of the catalyst was monitored using a thermocouple placed in the middle of the catalyst bed.200 mg of catalyst diluted with 800 mg of quartz particles(60-80 mesh)was placed between two layers of quartz wool in the center of the reactor.Prior to the reaction,the catalyst was first reduced in situ at 600°C at a heating rate of 10°C·min-1under a 20 mL·min-1flow of H2for 2 h and then cooled to the set reaction temperature (150-400°C).The effluent gas was cooled in a condenser at room temperature and passed a drierite bed to remove all water.Finally, the dried gas products were analyzed using an on-line chromatogram(GC)-TCD chromatograph using TDX-01 and Molecular Sieve 5A packed column.The flow rate of the outlet gas was measured by a soap flow meter.The overall mass balance was more than 98%on the basis of carbon in the starting reactants.

    On the basis of the carbon balance in the effluent gas under assumption of no carbon deposition,the conversion of CO2(XCO2) and the selectivities of CH4(SCH4)and CO(SCO)were calculated with the formulae shown as follows:

    where,Fi,inand Fi,outwere the flow rate of i component(i=CO2, CH4,CO)in the feed and effluent gas,respectively.

    The turnover frequencies(TOFs)of the Ni-Ce-Zr/γ-MA-n catalysts for the CO2methanation are defined as the number(n) of converted CO2molecules per surface metal Ni atom and hour. In order to precisely determine the intrinsic reaction rate on the metal active sites,the CO2methanation was carried out at a high gas hourly space velocity(GHSV)to obtain a low CO2conversion (≤20%).For this,a 50 mg catalyst powder diluted with 200 mg of quartz powder was used for the reaction.

    On the assumption that all Ni ions were completely reduced into metallic Ni atoms and formed spherical particles with a diameter (dXRD)determined by the Scherrer equation to the Ni(200)diffraction peaks,and the distance between metal atoms in Ni crystallites was assumed to be 0.249 nm.TOF(h-1)was calculated by the equation as follows:

    where,NCO2is the flow rate of CO2in mol·h-1in the feed;NNiis the mole number of Ni in 50 mg catalyst.

    3 Results and discussion

    3.1Physicochemical properties of Ni-Ce-Zr/γ-MA-nmaterials

    N2sorption measurement was first employed to investigate textural properties of the prepared materials.Fig.1 presents the N2adsorption-desorption isotherms and BJH pore size distributions of the prepared γ-MA support and Ni-Ce-Zr/γ-MA-n(n=0,0.5, 1.0,2.0)materials.The γ-MAsupport exhibited characteristic type IV isotherms with apparent hysteresis loops and narrow pore size distribution in the range of 3.0-4.5 nm,which was indicative of the mesoporous structures,as reported in the previous study28. After the incorporation of Ni-Ce-Zr oxides,N2sorption isotherms and pore size distributions showed no observable change.This result indicated that the mesoporous structures of the γ-MA ma-terials were maintained in the Ni-Ce-Zr/γ-MA-n samples calcined at 500°C,which were also illustrated by the TEM images(not shown).

    Fig.1 (a)N2adsorption-desorption isotherms and (b)BJH pore size distributions of the prepared γ-MAsupport and Ni-Ce-Zr/γ-MA-n materials

    Table 1 summarizes the specific surface areas,pore volumes and pore diameters of the γ-MAand Ni-Ce-Zr/γ-MA-n(n=0,0.5, 1.0,2.0)materials.The γ-MA support had a specific surface area of 348 m2·g-1,a pore volume of 0.30 cm3·g-1,and a pore size of 3.4 nm.The incorporation of Ni-Ce-Zr oxides resulted in a remarkable loss of specific surface areas and pore volumes mainly as a result of the increase in the density of the materials,but pore sizes of the Ni-Ce-Zr/γ-MA-n samples were still retained at (3.5±0.2)nm.However,the Ni-Ce-Zr/γ-MA-n(n=0.5,1.0,2.0) presented much larger specific surface areas(~300 m2·g-1)and pore volumes(~0.27 cm3·g-1)than the Ni-Ce-Zr/γ-MA-0 sample (172 m2·g-1,0.16 cm3·g-1).This result could be attributed to the surface blockage of parts of pores in the γ-MA support resulted from the agglomeration of Ni-Ce-Zr oxides on the surface of the Ni-Ce-Zr/γ-MA-0 sample29-31.

    Fig.2 illustrates the XRD patterns of the Ni-Ce-Zr/γ-MA-n(n= 0,0.5,1.0,2.0)materials.All the Ni-Ce-Zr/γ-MA-n samples showed three diffraction peaks around 2θ=37.6°,45.8°,66.7°, corresponding to the reflections for γ-Al2O3,similar to γ-MA28.In the case of Ni-Ce-Zr/γ-MA-0 sample,other two-group strong diffraction peaks were observed,which were indicative of the formation of large crystallites:one group at 2θ=28.6°,33.1°, 47.6°,56.4°could be assigned to the Ce-rich Ce-ZrO2solid solution formed by the dissolution of ZrO2into cubic CeO2structure32;the other at 2θ=37.3°,43.3°,62.9°,75.4°was corresponding to cubic NiO phase.Upon addition of CAin the reaction solution,the diffraction intensities of either the Ce-ZrO2solid solution or the NiO phase sharply attenuated,and finally completely disappeared when the CA/(Ni+Ce+Zr)molar ratio was increased to 1.0.These results demonstrated that the presence of CA in the precursor solutions significantly promoted the dispersion of Ni-Ce-Zr oxide species on the surface of the γ-MAsupport. This kind of promotion effect of CA in the reaction solutions on the dispersion of metal oxide species on the support surfaces seemed plausible to be explained by the following aspects.In the mixed aqueous solution of Ce,Zr,and Ni nitrates and CA,metal ions reacted with CAmolecules to constitute metal-CAcomplexes, which could effectively inhibit the hydrolysis of metal ions and thermal decomposition.The metal-CA complexes with higher melting points were homogeneously immobilized on the surface of γ-MA in the dried procedure.Upon calcinations at elevated temperatures,metal-CA complexes were in situ decomposed to monolayer-dispersed metal oxide species on the support surface, or interact with each other at the molecular scale to produce highlydispersed microcrystals in the γ-MAframeworks.In the case of the preparation process in the absence of CA,the molecules of metal nitrates without complexation could move freely in the host pores in the immobilized procedure because they had relatively lower melting points(56.7°C for Ni(NO3)2;96°C for Ce(NO3)3).The metal nitrates moved towards the pore mouths and agglomerated at the pore mouths or on the exterior surface due to the capillary forces in the drying and heat-treating process,and finally produced larger metal oxide crystallites,blocking the pores of the support20.

    Table 1 Textural properties for the prepared materials

    Fig.2 XRD patterns of the prepared Ni-Ce-Zr/γ-MA-n materials calcined at 500°C

    Fig.3 H2-TPR profiles of the prepared Ni-Ce-Zr/γ-MA-n materials

    It is common knowledge that Ni-based catalysts should first be pre-reduced to generate metallic Ni active sites.Thus,it is important to investigate the reducibility of the prepared materials and the Ni crystallite sizes formed after the reduction,which strongly affect the catalytic activity,the stability and the resistance to carbon deposition of the catalysts for CO2methanation.Fig.3 displays the TPR profiles of Ni-Ce-Zr/γ-MA-n(n=0,0.5,1.0,2.0) materials calcined at 500°C.It could be seen that the presence of CA in the reaction solutions had significant influence on types of Ni species,the reducibility of Ni2+ions and the interaction of Ni species with the support.In terms of the Ni-Ce-Zr/γ-MA-0 sample, the H2-TPR profile showed two distinct H2consumption peaks in the temperature range of ca 350-650°C and 650-900°C,respectively.The former was ascribed to the reduction of free NiOcrystallites;and the latter was associated with the reduction of surface nickel aluminate-like species on the γ-MAsupport,which had a strong interaction with the support5-7.However for the Ni-Ce-Zr/γ-MA-n(n=0.5,1.0,2.0)materials,a broadened H2consumption occurred in the range of 450-750°C,and meanwhile, the reduction peaks for the NiO crystallites and surface nickel aluminate-like species in the Ni-Ce-Zr/γ-MA-0 sample completely disappeared.These results demonstrated that CA in the precursor solutions not only promoted the dispersion of metal oxide species on the surface of the γ-MA support,but also significantly improved the interaction between Ni species and the support,as observed in the XRD patterns of Fig.2 and the TPR result of Fig.3, due to the mixing of metal ions at atomic level on the support surface15.The apparent asymmetry of H2consumption profiles in the shape revealed considerable heterogeneity of NiO species on the support surface,which might be associated with the distribution of the Ce-ZrO2species on the surfaces.

    Fig.4 XRD patterns of the Ni-Ce-Zr/γ-MA-n materials reduced at 600°C for 2 h

    Fig.4 illustrates the XRD patterns of the Ni-Ce-Zr/γ-MA-n(n= 0,0.5,1.0,2.0)materials reduced with H2at 600°C for 2 h,at which they showed the optimum catalytic performance in the preliminary study and applied for the CO2methanation in the present paper.It could be seen that all the reduced Ni-Ce-Zr/γ-MA-n catalysts exhibited three new diffraction peaks at 44.5°,51.8°, and 76.4°,corresponding to Ni(111),(200),and(220)reflections, respectively.This result demonstrated that Ni2+ions in the samples were reduced to metallic Ni crystallites.The peak intensity of Ni crystallites in the Ni-Ce-Zr/γ-MA-0 catalyst was much stronger than those of Ni crystallites in the Ni-Ce-Zr/γ-MA-n(n=0.5,1.0, 2.0)catalysts by the CA-assisted impregnation method,which was in consistence with the dispersion of Ni oxide species shown in Fig.2.This result suggested that the Ni crystallite sizes formed strongly depended on the dispersion of the Ni oxide species on the surface of the Ni-Ce-Zr/γ-MA-n materials.The diffraction peaks associated with the Ce-ZrO2solid solution had no discernible change,indicating that the dispersion of the Ce-ZrO2species on the surface was maintained during the reduction process.Table 2 lists the apparent Ni crystallite sizes estimated from broadening of the Ni(200)reflection using the Scherrer formula.Upon the addition of CA in the precursor solutions,the Ni crystallite sizes rapidly declined from 11.5 nm for the Ni-Ce-Zr/γ-MA-0 to 5.4 nm at n=0.5,and further to 5.1 nm at n=2.0.The promotion effect of the Ni dispersion was further confirmed by the TEM results displayed in Fig.5 and Table 2,which exhibited that the darker Ni nanoparticles were homogeneously distributed throughout the mesoporous alumina frameworks,and the addition of CA significantly improved the dispersion of metallic Ni particles.

    Table 2 Ni crystallite sizes of the Ni-Ce-Zr/γ-MA-n catalysts reduced at 600°C and TOF values for the CO2methanation

    3.2Catalysis reaction

    The CO2methanation was conducted at atmospheric pressure in the range of 150-400°C.The Ce-Zr/γ-MAmaterials had been proven to be inactive for the CO2methanation,indicating that the metallic Ni was responsible for the catalytic reactivity.In the reaction process,no other products were observed besides H2,CO, CO2,and CH4in the exit gas.Fig.6 illustrates that all the Ni-Ce-Zr/ γ-MA-n(n=0,0.5,1.0,2.0)catalysts had excellent catalytic activities and the CH4selectivities of≥99.7%(not shown).The CO2conversions rapidly increased with elevating the reaction temperature and exhibited the maximum values at~300°C. Obviously over the whole range of reaction temperature,the CO2conversions over the Ni-Ce-Zr/γ-MA-n(n=0.5,1.0,2.0)catalystswere much higher than those over the Ni-Ce-Zr/γ-MA-0 prepared without CA in the reaction solution,and at 300°C,could reach~92%,close to chemical equilibrium value(~93%).These results demonstrated that CA in the reaction solution significantly enhanced the catalytic activity of the Ni-Ce-Zr/γ-MA-n catalysts for the CO2methanation,likely due to the promotion of the dispersion of Ni species.

    Fig.5 TEM images of the Ni-Ce-Zr/γ-MA-n materials

    Fig.6 Activities as a function of reaction temperature over the Ni-Ce-Zr/γ-MA-n catalysts for CO2methanation

    In order to further analyze the interrelation between the catalytic properties and the Ni active sites over the Ni-Ce-Zr/γ-MA-n for the CO2methanation,TOFs,which reflect the intrinsic activity of the active sites in the catalyst,were measured at a low CO2conversion(≤20%),where the possibility of either the external or internal diffusion limitations were almost completely eliminated by the experiments of varying the GHSVs and the CO2methanation could be considered to be governed by chemical kinetics. Table 2 summarizes the CO2conversions and the corresponding TOFs over the Ni-Ce-Zr/γ-MA-n(n=0,0.5,1.0,2.0)catalysts for the CO2methanation under the reaction conditions:GHSV,60000 mL·g-1·h-1,H2/CO2,4/1(molar ratio),reaction temperature, 250°C,and reaction time,1 h.It could be seen that the TOF of Ni active sites over the Ni-MgO/γ-MA-0 catalyst was lower than those over the Ni-Ce-Zr/γ-MA-n(n=0.5,1.0,2.0).However,in the case of the Ni-Ce-Zr/γ-MA-n(n=0.5,1.0,2.0)with the similar Ni crystallite sizes,the TOFs were found to increase with the CA/(Ni+Ce+Zr)molar ratio in the reaction solutions.It was known in the N2sorption results of Fig.1 that all the Ni-Ce-Zr/γ-MA-n catalysts had the mesoporous frameworks with similar pore sizes and pore size distributions,which could be assumed to have the approximate kinetics of heat transfer and mass transport in the reaction process.Therefore,it could be concluded that the intrinsic rates for the CO2methanation over the Ni-Ce-Zr/γ-MA-n catalysts not only depended on the Ni crystallite sizes or the number of surface Ni atoms,but also had a strong correlation with the amounts of CAused in the reaction solution.It was speculated that the presence of CA might affect the electronic and structure natures of Ni-Ce-ZrOxspecies formed on the support surface32,resulting in the improvement of the catalytic properties of Ni active sites.

    Fig.7 Stability of Ni-Ce-Zr/γ-MA-1.0 catalyst for CO2methanation

    The Ni-Ce-Zr/γ-MA-1.0 catalyst was selected to examine the long-term stability for the CO2methanation.Fig.7 illustrates the catalytic properties as a function of reaction time at the given reaction conditions.It could be seen that the catalyst exhibited the initial LPG conversion of~82.3%,where the CO2methanation was controlled by chemical kinetics.During the test period of~300 h,the CO2conversions only showed a slight decline to 76.6%with a deactivation degree of~7%,and the CH4selectivity almost kept unchanged,which was indicative of an excellent catalytic stability.

    It has been established that carbon deposition and Ni sintering were mainly responsible for the deactivation of Ni-based catalysts during CO2methanation3.Thus,the carbon deposition on the Ni-Ce-Zr/γ-MA-1.0 catalyst used for the CO2methanation at 300°C for 300 h was investigated by the TG profile displayed in Fig.8. Only trace amount of carbon was deposited on the catalyst,indicating that the Ni-Ce-Zr/γ-MA-1.0 catalyst had excellent anticoking ability for the CO2methantion.Fig.9 illustrates that the XRD patterns of the Ni-Ce-Zr/γ-MA-1.0 catalyst before and after the reaction.It could be seen that the XRD patterns of the used catalyst almost remained unchanged.This result indicated that after the reaction,the mesoporous γ-Al2O3framework and the dispersion of metal species were still retained.This point was alsorevealed by the TEM image in Fig.10 for the spent Ni-Ce-Zr/γ-MA-1.0 catalyst,in which the spent catalyst showed a homogenous wormhole-like mesoporous structure and highly dispersed Ni nanoparticles with a mean Ni particle size of 6.9 nm,similar to the counterpart before the reaction.

    Fig.8 Thermogravimetric(TG)profile of the spent Ni-Ce-Zr/γ-MA-1.0 catalyst for CO2methanation at 300°C for 300 h

    Fig.9 XRD patterns of the Ni-Ce-Zr/γ-MA-1.0 catalyst

    Fig.10 TEM image of the spent Ni-Ce-Zr/γ-MA-1.0 catalyst for CO2methanation at 300°C for 300 h

    4 Conclusions

    Mesoporous γ-alumina supported Ni-Ce-Zr mixed oxides(Ni-Ce-Zr/γ-MA)were prepared by the citric acid-assisted impregnation method.The addition of citric acid in the precursor solution strongly affected on dispersion of metal oxide species,reducibility of Ni2+ions and the Ni crystallite sizes formed,resulting in the improvement of catalytic properties of the Ni-Ce-Zr/γ-MAcatalysts for the CO2methanation.Compared with the Ni-Ce-Zr/γ-MA catalyst prepared by the citric acid-free impregnation method,the catalysts by the citric acid-assisted method showed much higher catalytic activity,and could achieve the CO2conversion close to chemical equilibrium value at 300°C due to both the decrease in the Ni crystallite size and the variation in the electronic and structure natures of Ni-Ce-ZrOxspecies.The Ni-Ce-Zr/γ-MA-1.0 catalyst was demonstrated to have excellent catalytic activity,longterm stability and high anti-coking ability for the CO2methanation.

    (1) Abe,T.;Tanizawa,M.;Watanabe,K.;Taguchi,A.Energy Environ.Sci.2009,2,315.doi:10.1039/b817740f

    (2) Wang,W.;Wang,S.P.;Ma,X.B.;Gong,J.L.Chem.Soc.Rev. 2011,40,3703.doi:10.1039/c1cs15008a

    (3) Gao,J.J.;Liu,Q.;Gu,F.N.;Liu,B.;Zhong,Z.Y.;Su,F.B. RSC Adv.2015,5,22759.doi:10.1039/c4ra16114a

    (4) Aziz,M.A.A.;Jalil,A.A.;Triwahyono,S.;Ahmad,A.Green Chem.2015,17,2647.doi:10.1039/c5gc00119f

    (5) Chang,F.W.;Kuo,M.S.;Tsay,M.T.;Hsieh,M.C.Appl.Catal. A 2003,247,309.doi:10.1016/S0926-860X(03)00181-9

    (6) Perkas,N.;Amirian,G.;Zhong,Z.Y.;Teo,J.;Gofer,Y.; Gedanken,A.Catal.Lett.2009,130,455.doi:10.1007/s10562-009-9952-8

    (7) Zhang,R.B.;Liang,L.;Zeng,X.R.;Shang,J.Y.;Wang,T.; Cai,J.X.Acta Phys.-Chim.Sin.2012,28,1951.[張榮斌,梁蕾,曾憲榮,商金艷,汪 濤,蔡建信.物理化學(xué)學(xué)報(bào),2012,28, 1951.]doi:10.3866/PKU.WHXB201206041

    (8) Song,H.L.;Yang,J.;Zhao,J.;Chou,L.J.Chin.J.Catal.2010, 31,21.doi:10.1016/S1872-2067(09)60036-X

    (9) Lu,B.W.;Kawamoto,K.Fuel 2013,103,699.doi:10.1016/j. fuel.2012.09.009

    (10) Ocampo,F.;Louis,B.;Kiwi-Minsker,L.;Roger,A.C.Appl. Catal.A 2011,392,36.doi:10.1016/j.apcata.2010.10.025

    (11) Cai,W.;Zhong,Q.;Zhao,Y.X.Catal.Commun.2013,39,30. doi:10.1016/j.catcom.2013.04.025

    (12) Fan,Z.G.;Sun,K.H.;Rui,N.;Zhao,B.R.;Liu,C.J.J.Energy Chem.2015,24,655.doi:10.1016/j.jechem.2015.09.004

    (13) Guo,Z.L.;Huang,L.Q.;Chu,W.;Luo,S.Z.Acta Phys.-Chim. Sin.2014,30,723.[郭章龍,黃麗瓊,儲(chǔ) 偉,羅仕忠.物理化學(xué)學(xué)報(bào),2014,30,723.]doi:10.3866/PKU.WHXB201402242

    (14) Liu,H.Z.;Zou,X.J.;Wang,X.G.;Lu,X.G.;Ding,W.Z. J.Nat.Gas Chem.2012,21,703.doi:10.1016/S1003-9953(11) 60422-2

    (15) Luisetto,I.;Tuti,S.;Battocchio,C.;Lo Mastro,S.;Sodo,A. Appl.Catal.A 2015,500,12.doi:10.1016/j.apcata.2015.05.004

    (16) Boullosa-Eiras,S.;Zhao,T.J.;Vanhaecke,E.;Chen,D.; Holmen,A.Catal.Today 2011,178,12.doi:10.1016/j. cattod.2011.08.029

    (17) Villarreal,A.;Ramirez,J.;Caero,L.C.;Villalon,P.C.; Gutierrez-Alejandre,A.Catal.Today 2015,250,60.doi: 10.1016/j.cattod.2014.03.035

    (18) Chen,J.J.;Labruyere,V.;Mauge,F.;Quoineaud,A.A.;Hugon, A.;Oliviero,L.J.Phys.Chem.C 2014,118,30039. doi:10.1021/jp510470g

    (19) Liu,X.Q.;Li,S.H.;Sun,M.T.;Yu,C.L.;Huang,B.C.Acta Phys.-Chim.Sin.2016,32,1236.[劉小青,李時(shí)卉,孫夢(mèng)婷,喻成龍,黃碧純.物理化學(xué)學(xué)報(bào),2016,32,1236.]doi:10.3866/ PKU.WHXB201602251

    (20) Hu,Y.;Wang,X.G.;Tan,M.W.;Zou,X.J.;Ding,W.Z.;Lu,X. G.ChemCatChem 2016,8,1055.doi:10.1002/cctc.201501384

    (21) Klimova,T.E.;Valencia,D.;Mendoza-Nieto,J.A.;Hernandez-Hipolito,P.J.Catal.2013,304,29.doi:10.1016/j. jcat.2013.03.027

    (22) Castillo-Villalon,P.;Ramirez,J.;Vargas-Luciano,J.A.J.Catal. 2014,320,127.doi:10.1016/j.jcat.2014.09.021

    (23) Dik,P.P.;Klimov,O.V.;Koryakina,G.I.;Leonova,K.A.; Pereyma,V.Y.;Budukva,S.V.;Gerasimov,E.Y.;Noskov,A.S. Catal.Today 2014,220-222,124.doi:10.1016/j. cattod.2013.07.004

    (24) Liu,G.L.;Geng,Y.X.;Pan,D.M.;Zhang,Y.;Niu,T.;Liu,Y. Fuel Process Technol.2014,128,289.doi:10.1016/j. fuproc.2014.07.010

    (25) Greluk,M.;Rybak,P.;Slowik,G.;Rotko,M.;Machocki,A. Catal.Today 2015,242,50.doi:10.1016/j.cattod.2014.07.032

    (26) Greluk,M.;Rotko,M.;Machocki,A.Catal.Lett.2016,146, 163.doi:10.1007/s10562-015-1628-y

    (27) Wu,H.D.;Duan,A.J.;Zhao,Z.;Qi,D.H.;Li,J.M.;Liu,B.; Jiang,G.Y.;Liu,J.;Wei,Y.C.;Zhang,X.Fuel 2014,130,203. doi:10.1016/j.fuel.2014.04.038

    (28) Shang,X.F.;Wang,X.G.;Nie,W.X.;Guo,X.F.;Zou,X.J.; Ding,W.Z.;Lu,X.G.J.Mater.Chem.2012,22,23806. doi:10.1039/c2jm35508f

    (29) Mendoza-Nieto,J.A.;Robles-Mendez,F.;Klimova,T.E.Catal. Today 2015,250,47.doi:10.1016/j.cattod.2014.05.002

    (30) Calderon-Magdaleno,M.A.;Mendoza-Nieto,J.A.;Klimova,T. E.Catal.Today 2014,220-222,78.doi:10.1016/j. cattod.2013.06.002

    (31) Li,B.T.;Qian,X.Y.;Wang,X.J.Int.J.Hydrog.Energy 2015, 40,8081.doi:10.1016/j.ijhydene.2015.04.104

    (32) Ye,Q.;Wang,R.P.;Xu,B.Q.Acta Phys.-Chim.Sin.2006,22, 33.[葉 青,王瑞璞,徐柏慶.物理化學(xué)學(xué)報(bào),2006,22,33.] doi:10.3866/PKU.WHXB201206041

    Preparation of Highly Dispersed Ni-Ce-Zr Oxides over Mesoporous γ-Alumina and Their Catalytic Properties for CO2Methanation

    NIE Wang-Xin ZOU Xiu-Jing*WANG Xue-Guang*DING Wei-Zhong LU Xiong-Gang
    (Shanghai Key Laboratory of Advanced Ferrometallurgy,State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering,Shanghai University,Shanghai 200072,P.R.China)

    Highly dispersed Ni-Ce-Zr mixed oxides supported on mesoporous γ-alumina(Ni-Ce-Zr/γ-MA)were prepared by a citric acid(CA)-assisted impregnation method and evaluated as catalysts for the methanation of CO2with H2.The effects of the CAcontent of the reaction solution on the physicochemical properties and the catalytic performance of the Ni-Ce-Zr/γ-MAcatalysts were investigated in detail.The addition of CApromoted the dispersion of the Ni-Ce-Zr oxide species on the γ-alumina surface and improved the interactions between the Ni oxide species and the support,resulting in the formation of homogeneously dispersed Ni nanoparticles in the γ-MAframeworks upon reduction with H2.The resulting Ni-Ce-Zr/γ-MAcatalysts were highly active and showed almost 100%selectivity for CH4during the methanation of CO2at temperatures in the range of 150-400°C.Notably,the catalytic activity increased as the molar ratio of CA/(Ni+Ce+Zr)increased in the range of 0-2.This effect was most likely caused by the associated decrease in the Ni particle size and the improved electronic and structural properties of the Ni-Ce-ZrOxspecies.The results of a stability test for the Ni-Ce-Zr/γ-MAcatalyst prepared with a CA/(Ni+Ce+Zr)molar ratio of 1.0 showed that there was only a 7%decrease in the CO2conversion following a reaction time of 300 h at 300°C with negligible coke deposition,indicating excellent catalytic stability and good anti-coking ability of these systems for the methanation of CO2.

    Nickel catalyst;Citric acid-assistance;Mixed metal oxide;Carbon dioxide;Methanation

    O643

    10.3866/PKU.WHXB201607291

    Received:June 2,2016;Revised:July 28,2016;Published online:July 29,2016.

    *Corresponding authors.ZOU Xiu-Jing,Email:xjzou@shu.edu.cn.WANG Xue-Guang,Email:wxg228@shu.edu.cn;Tel:+86-21-56338244.

    The project was supported by the Innovation Program of Shanghai Municipal Education Commission,National Key Basic Research Program of China(973)(2014CB643403),National Science Fund for Distinguished Young Scholars,China(51225401),and Basic Major Research Program of Science and Technology Commission Foundation of Shanghai,China(14JC1491400).

    上海市教育委員會(huì)科研項(xiàng)目,國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2014CB643403),國(guó)家杰出青年科學(xué)基金(51225401)及上海市科委基礎(chǔ)重點(diǎn)項(xiàng)目(14JC1491400)資助

    猜你喜歡
    物理化學(xué)介孔檸檬酸
    小蘇打檸檬酸自制清潔劑
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    功能介孔碳納米球的合成與應(yīng)用研究進(jìn)展
    檸檬酸中紅外光譜研究
    Chemical Concepts from Density Functional Theory
    新型介孔碳對(duì)DMF吸脫附性能的研究
    有序介孔材料HMS的合成改性及應(yīng)用新發(fā)展
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    光催化Fe(Ⅲ)/檸檬酸降解諾氟沙星
    午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪| 免费在线观看成人毛片| 午夜免费男女啪啪视频观看| 美女大奶头黄色视频| 99热国产这里只有精品6| 97在线视频观看| 免费观看的影片在线观看| 久久精品国产a三级三级三级| 十八禁网站网址无遮挡 | 久久青草综合色| 欧美日韩av久久| 国产高清三级在线| 日本黄大片高清| 99久久中文字幕三级久久日本| av天堂久久9| 国产美女午夜福利| 18+在线观看网站| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 久久久国产精品麻豆| 国产 一区精品| 久久久久人妻精品一区果冻| 免费看日本二区| 亚洲性久久影院| 精品久久国产蜜桃| av女优亚洲男人天堂| 老女人水多毛片| h日本视频在线播放| 国产熟女午夜一区二区三区 | 精品人妻熟女av久视频| 成人美女网站在线观看视频| 美女大奶头黄色视频| 国产男女内射视频| 欧美日韩av久久| 久久狼人影院| 国产免费福利视频在线观看| 日本猛色少妇xxxxx猛交久久| 大香蕉97超碰在线| 久久婷婷青草| 这个男人来自地球电影免费观看 | 中文乱码字字幕精品一区二区三区| 精品亚洲成国产av| 国产女主播在线喷水免费视频网站| 亚洲精品色激情综合| 亚洲精品国产av成人精品| 97在线人人人人妻| 男女免费视频国产| 亚洲精品国产成人久久av| 国产精品99久久99久久久不卡 | 91久久精品电影网| 中国国产av一级| 国产精品国产三级国产专区5o| 少妇被粗大的猛进出69影院 | a级一级毛片免费在线观看| 我的老师免费观看完整版| 精品午夜福利在线看| 在线 av 中文字幕| 国产精品人妻久久久久久| 亚洲精品日韩在线中文字幕| 视频中文字幕在线观看| 自线自在国产av| 黄色日韩在线| 欧美精品国产亚洲| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 2022亚洲国产成人精品| 91在线精品国自产拍蜜月| 美女视频免费永久观看网站| 国产av精品麻豆| 少妇人妻久久综合中文| 日韩免费高清中文字幕av| 一个人免费看片子| 男女啪啪激烈高潮av片| 久久青草综合色| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 丰满人妻一区二区三区视频av| 精品国产国语对白av| 久久精品国产亚洲av天美| 黄色日韩在线| 国产精品免费大片| 国产一级毛片在线| 黄色日韩在线| 日韩大片免费观看网站| 亚洲欧美中文字幕日韩二区| 国产又色又爽无遮挡免| av福利片在线| 我要看黄色一级片免费的| 日本欧美视频一区| 国产亚洲5aaaaa淫片| 人人妻人人添人人爽欧美一区卜| 国产爽快片一区二区三区| h日本视频在线播放| 亚洲国产精品专区欧美| 水蜜桃什么品种好| 岛国毛片在线播放| 精品一区二区免费观看| 男人和女人高潮做爰伦理| 精品一品国产午夜福利视频| 亚洲精品久久久久久婷婷小说| 丰满迷人的少妇在线观看| 另类精品久久| 欧美激情极品国产一区二区三区 | 少妇人妻一区二区三区视频| 亚洲精品国产av成人精品| 日韩视频在线欧美| 国产午夜精品久久久久久一区二区三区| 视频中文字幕在线观看| 亚洲av在线观看美女高潮| 国产av精品麻豆| 777米奇影视久久| 国产黄色视频一区二区在线观看| 国产在线免费精品| 高清av免费在线| 亚洲精品第二区| 国产成人一区二区在线| 成人国产av品久久久| 国产精品伦人一区二区| 99视频精品全部免费 在线| 亚洲国产欧美在线一区| 成人二区视频| 亚洲欧美一区二区三区黑人 | 伊人久久精品亚洲午夜| 一本色道久久久久久精品综合| 五月天丁香电影| 80岁老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 丰满少妇做爰视频| 18+在线观看网站| 免费观看a级毛片全部| 好男人视频免费观看在线| 在线观看一区二区三区激情| 亚洲精品,欧美精品| 一区二区三区四区激情视频| 精品一区二区三卡| 99热国产这里只有精品6| 午夜福利影视在线免费观看| 尾随美女入室| 一级毛片 在线播放| 欧美日韩av久久| 麻豆成人av视频| 日本wwww免费看| 五月天丁香电影| 欧美老熟妇乱子伦牲交| 七月丁香在线播放| 日本黄色片子视频| av.在线天堂| av一本久久久久| 香蕉精品网在线| 国产熟女欧美一区二区| 久久人人爽av亚洲精品天堂| 精品亚洲成a人片在线观看| 国产免费一级a男人的天堂| 亚洲国产精品专区欧美| 韩国高清视频一区二区三区| 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 日韩 亚洲 欧美在线| 在线精品无人区一区二区三| 久久久国产一区二区| 国产日韩欧美视频二区| 欧美日韩一区二区视频在线观看视频在线| 多毛熟女@视频| 成人二区视频| 永久免费av网站大全| 偷拍熟女少妇极品色| 亚洲图色成人| 一区二区三区精品91| 美女福利国产在线| 国产午夜精品一二区理论片| 久久久久久伊人网av| 欧美日韩av久久| 国产一区二区三区综合在线观看 | 亚洲熟女精品中文字幕| 色婷婷久久久亚洲欧美| 欧美激情极品国产一区二区三区 | 日韩制服骚丝袜av| 韩国av在线不卡| 五月开心婷婷网| 日韩三级伦理在线观看| 亚洲精品国产av蜜桃| 人妻夜夜爽99麻豆av| 国产综合精华液| 97在线人人人人妻| 国产精品无大码| 日韩欧美精品免费久久| 国产伦在线观看视频一区| 美女国产视频在线观看| 亚洲av综合色区一区| 色网站视频免费| 91久久精品国产一区二区三区| 狠狠精品人妻久久久久久综合| 高清黄色对白视频在线免费看 | 国产精品久久久久久久电影| 日本av手机在线免费观看| 一个人免费看片子| 少妇丰满av| av女优亚洲男人天堂| 国产在线视频一区二区| 色哟哟·www| 99热这里只有精品一区| 这个男人来自地球电影免费观看 | 国产乱人偷精品视频| 在线观看av片永久免费下载| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| 777米奇影视久久| 国产精品伦人一区二区| 男女边摸边吃奶| 国产成人a∨麻豆精品| 久久久精品免费免费高清| 又大又黄又爽视频免费| 天堂俺去俺来也www色官网| 插逼视频在线观看| 日日摸夜夜添夜夜爱| 日韩电影二区| 成人国产av品久久久| 久久精品熟女亚洲av麻豆精品| av免费观看日本| 亚洲国产色片| 大陆偷拍与自拍| 欧美少妇被猛烈插入视频| 成年av动漫网址| 日韩av在线免费看完整版不卡| 18禁在线无遮挡免费观看视频| 久久久欧美国产精品| 国产伦精品一区二区三区视频9| 最近2019中文字幕mv第一页| av.在线天堂| 久久久久久久精品精品| 两个人免费观看高清视频 | 亚洲丝袜综合中文字幕| 最近最新中文字幕免费大全7| 三级国产精品片| 欧美区成人在线视频| 久久人人爽av亚洲精品天堂| av视频免费观看在线观看| 少妇人妻久久综合中文| 国产欧美日韩一区二区三区在线 | 丰满乱子伦码专区| 亚洲av成人精品一区久久| 欧美日韩精品成人综合77777| 欧美日韩av久久| av天堂中文字幕网| 久久6这里有精品| 久热这里只有精品99| 一区二区av电影网| 免费看日本二区| 日韩欧美 国产精品| 啦啦啦中文免费视频观看日本| 成年女人在线观看亚洲视频| 国产欧美另类精品又又久久亚洲欧美| 高清毛片免费看| 亚洲av国产av综合av卡| 成年人午夜在线观看视频| h日本视频在线播放| 久久影院123| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 久久久久网色| 免费观看av网站的网址| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 黄色毛片三级朝国网站 | 午夜福利视频精品| 99re6热这里在线精品视频| 色哟哟·www| 新久久久久国产一级毛片| 亚洲熟女精品中文字幕| 天堂俺去俺来也www色官网| 大话2 男鬼变身卡| 国产精品久久久久成人av| www.av在线官网国产| 国产视频首页在线观看| 国产av一区二区精品久久| 亚洲av.av天堂| 极品教师在线视频| 欧美日韩视频精品一区| 性色av一级| 我的老师免费观看完整版| 精品国产国语对白av| 一个人看视频在线观看www免费| 2018国产大陆天天弄谢| videos熟女内射| 精品国产乱码久久久久久小说| 亚洲精品第二区| 亚洲国产精品一区二区三区在线| 午夜福利影视在线免费观看| 色网站视频免费| 亚洲,一卡二卡三卡| 在线播放无遮挡| 一边亲一边摸免费视频| 久久国产精品男人的天堂亚洲 | 欧美日韩视频精品一区| 国产69精品久久久久777片| 日韩人妻高清精品专区| 亚洲国产色片| 亚洲精品aⅴ在线观看| 亚洲综合精品二区| 精品国产露脸久久av麻豆| 亚洲,一卡二卡三卡| 亚洲无线观看免费| 18禁在线播放成人免费| 人妻 亚洲 视频| 亚洲国产欧美在线一区| 国产免费又黄又爽又色| 亚州av有码| 婷婷色综合大香蕉| 在线免费观看不下载黄p国产| 免费观看在线日韩| 美女cb高潮喷水在线观看| 人人妻人人澡人人爽人人夜夜| 久久ye,这里只有精品| 一级毛片aaaaaa免费看小| 亚州av有码| 又爽又黄a免费视频| 国产极品粉嫩免费观看在线 | 亚洲图色成人| 精华霜和精华液先用哪个| 日韩一区二区三区影片| 只有这里有精品99| 久久99热6这里只有精品| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区| 熟女电影av网| 99久久精品国产国产毛片| 久久久久国产网址| 日日爽夜夜爽网站| 大香蕉久久网| 久久韩国三级中文字幕| 国产探花极品一区二区| 国产av国产精品国产| 亚洲在久久综合| √禁漫天堂资源中文www| 中文字幕久久专区| 一级a做视频免费观看| 日韩视频在线欧美| 日本猛色少妇xxxxx猛交久久| 欧美一级a爱片免费观看看| 国产精品国产三级国产av玫瑰| 欧美成人午夜免费资源| 亚洲怡红院男人天堂| 晚上一个人看的免费电影| 如日韩欧美国产精品一区二区三区 | 国产精品久久久久久av不卡| 国产精品.久久久| 嫩草影院新地址| 麻豆成人av视频| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 少妇被粗大的猛进出69影院 | 男女啪啪激烈高潮av片| 少妇熟女欧美另类| 黄片无遮挡物在线观看| 婷婷色av中文字幕| 成人黄色视频免费在线看| 国产精品一二三区在线看| freevideosex欧美| 国产精品99久久99久久久不卡 | a级毛片免费高清观看在线播放| 日韩电影二区| 激情五月婷婷亚洲| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 80岁老熟妇乱子伦牲交| 亚洲国产精品一区三区| 国产在线视频一区二区| av卡一久久| 欧美最新免费一区二区三区| 性色avwww在线观看| 99视频精品全部免费 在线| 性色avwww在线观看| 成人亚洲欧美一区二区av| 最后的刺客免费高清国语| 熟女电影av网| 中文乱码字字幕精品一区二区三区| 国产成人精品无人区| 亚洲国产精品成人久久小说| 天天躁夜夜躁狠狠久久av| 欧美xxxx性猛交bbbb| 日韩人妻高清精品专区| 国产精品国产三级国产专区5o| 国产极品天堂在线| 国产精品久久久久久精品古装| 日本色播在线视频| 久久精品国产亚洲av天美| 亚洲伊人久久精品综合| 成人美女网站在线观看视频| 欧美国产精品一级二级三级 | 精品少妇内射三级| 在线天堂最新版资源| 大香蕉97超碰在线| 日韩av不卡免费在线播放| 欧美xxxx性猛交bbbb| 国产黄色免费在线视频| 免费看日本二区| 欧美bdsm另类| 精品亚洲乱码少妇综合久久| 亚洲av福利一区| 国产欧美日韩精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 国产精品久久久久久久电影| 麻豆成人午夜福利视频| 国产精品国产三级专区第一集| 国产亚洲一区二区精品| 欧美bdsm另类| 免费黄频网站在线观看国产| 午夜久久久在线观看| 人人妻人人看人人澡| 美女xxoo啪啪120秒动态图| 国产成人freesex在线| 亚洲,一卡二卡三卡| 黄色日韩在线| 老司机亚洲免费影院| 国内少妇人妻偷人精品xxx网站| 97精品久久久久久久久久精品| 欧美亚洲 丝袜 人妻 在线| 一级av片app| 欧美bdsm另类| tube8黄色片| 亚洲内射少妇av| 国产精品人妻久久久久久| 少妇裸体淫交视频免费看高清| 黄色一级大片看看| 日韩免费高清中文字幕av| 国产成人精品无人区| 亚洲精品第二区| 深夜a级毛片| 精品99又大又爽又粗少妇毛片| 久久久久久久久大av| 国产免费又黄又爽又色| 欧美少妇被猛烈插入视频| 亚洲无线观看免费| 精品少妇内射三级| 国产精品一区二区性色av| 少妇人妻精品综合一区二区| 成人黄色视频免费在线看| 亚洲不卡免费看| av免费在线看不卡| 80岁老熟妇乱子伦牲交| 国产高清有码在线观看视频| 全区人妻精品视频| 少妇人妻精品综合一区二区| 国产一区二区在线观看日韩| 极品少妇高潮喷水抽搐| 午夜久久久在线观看| 中国美白少妇内射xxxbb| 日日爽夜夜爽网站| 午夜福利在线观看免费完整高清在| 国产精品久久久久久精品电影小说| 国产极品天堂在线| 亚洲美女搞黄在线观看| 久久久国产一区二区| 久久亚洲国产成人精品v| 啦啦啦视频在线资源免费观看| 精品国产一区二区三区久久久樱花| 中文乱码字字幕精品一区二区三区| 久久久午夜欧美精品| 欧美日韩亚洲高清精品| 一本—道久久a久久精品蜜桃钙片| 日韩一区二区视频免费看| 美女xxoo啪啪120秒动态图| 国产白丝娇喘喷水9色精品| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠久久av| 婷婷色av中文字幕| 十分钟在线观看高清视频www | 日韩三级伦理在线观看| 日韩在线高清观看一区二区三区| 91精品伊人久久大香线蕉| 免费观看av网站的网址| 久久鲁丝午夜福利片| 美女福利国产在线| 久久99一区二区三区| 建设人人有责人人尽责人人享有的| 久久精品国产自在天天线| 久久久国产欧美日韩av| 久久午夜综合久久蜜桃| 国产黄片美女视频| 欧美日韩av久久| 成人黄色视频免费在线看| videos熟女内射| 久久久精品94久久精品| 免费大片黄手机在线观看| 99久久精品国产国产毛片| 久久久午夜欧美精品| 蜜桃久久精品国产亚洲av| 五月玫瑰六月丁香| 日韩在线高清观看一区二区三区| 亚洲高清免费不卡视频| 日韩欧美 国产精品| 国产精品久久久久久精品古装| 桃花免费在线播放| 国产成人午夜福利电影在线观看| 六月丁香七月| 日韩av不卡免费在线播放| 在线亚洲精品国产二区图片欧美 | 国产高清有码在线观看视频| 欧美三级亚洲精品| 国产69精品久久久久777片| 亚洲av男天堂| a级片在线免费高清观看视频| 一二三四中文在线观看免费高清| 高清黄色对白视频在线免费看 | 成人国产av品久久久| .国产精品久久| 精品人妻熟女av久视频| 99热国产这里只有精品6| 欧美97在线视频| 国产精品女同一区二区软件| 你懂的网址亚洲精品在线观看| 久久精品夜色国产| 99久久精品热视频| 亚洲丝袜综合中文字幕| 久久 成人 亚洲| 天天操日日干夜夜撸| 欧美日韩亚洲高清精品| 2018国产大陆天天弄谢| 大香蕉久久网| 黄色视频在线播放观看不卡| 免费播放大片免费观看视频在线观看| 国产欧美日韩精品一区二区| 卡戴珊不雅视频在线播放| 纵有疾风起免费观看全集完整版| 欧美日韩亚洲高清精品| 一边亲一边摸免费视频| av有码第一页| 国产黄色视频一区二区在线观看| 亚洲欧美成人综合另类久久久| 在线观看免费视频网站a站| 久久97久久精品| 国产女主播在线喷水免费视频网站| 极品教师在线视频| 少妇的逼好多水| 少妇高潮的动态图| 欧美xxxx性猛交bbbb| 国产伦精品一区二区三区视频9| 国产在线男女| 成人无遮挡网站| 国产亚洲5aaaaa淫片| 中文在线观看免费www的网站| 国产精品一区二区在线不卡| 国产av精品麻豆| 国产亚洲一区二区精品| 国产一区亚洲一区在线观看| 久久精品国产亚洲av涩爱| 一本一本综合久久| 观看av在线不卡| h视频一区二区三区| 国产成人a∨麻豆精品| 亚洲精品视频女| 中文字幕人妻熟人妻熟丝袜美| 一级二级三级毛片免费看| 插逼视频在线观看| 成人二区视频| 日韩av免费高清视频| av有码第一页| 国产中年淑女户外野战色| 日日撸夜夜添| 亚洲久久久国产精品| 成年人午夜在线观看视频| 日韩精品有码人妻一区| 免费看不卡的av| 婷婷色综合www| 91aial.com中文字幕在线观看| 国产高清三级在线| 久久97久久精品| 男女啪啪激烈高潮av片| 涩涩av久久男人的天堂| 天美传媒精品一区二区| 久久99一区二区三区| 熟妇人妻不卡中文字幕| 久久午夜综合久久蜜桃| 午夜福利在线观看免费完整高清在| 欧美成人精品欧美一级黄| 国国产精品蜜臀av免费| 美女脱内裤让男人舔精品视频| 国产无遮挡羞羞视频在线观看| 午夜激情久久久久久久| 亚洲经典国产精华液单| 国产精品一二三区在线看| 777米奇影视久久| 伦理电影大哥的女人| 免费在线观看成人毛片| 精品午夜福利在线看| 女性生殖器流出的白浆| 少妇人妻精品综合一区二区| 18禁裸乳无遮挡动漫免费视频| 成年人免费黄色播放视频 | 国产成人精品久久久久久| 久久久久久久国产电影| 久久午夜综合久久蜜桃| 寂寞人妻少妇视频99o| 中文字幕亚洲精品专区| 亚洲欧洲精品一区二区精品久久久 | 在线精品无人区一区二区三| av女优亚洲男人天堂| 少妇人妻久久综合中文| 国产探花极品一区二区| 亚洲人与动物交配视频| 一本色道久久久久久精品综合| 欧美激情极品国产一区二区三区 | 久久久久网色| 精品久久久久久电影网| 国产毛片在线视频| 成年人午夜在线观看视频| 日本vs欧美在线观看视频 | 高清欧美精品videossex| 国产一区二区在线观看日韩| 18+在线观看网站| 老司机影院成人|