• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    銅摻氧化鋅多孔納米棒的水熱合成及其光催化性能

    2016-12-29 05:43:06王元有周國(guó)強(qiáng)劉天晴
    物理化學(xué)學(xué)報(bào) 2016年11期
    關(guān)鍵詞:乙醛物理化學(xué)氧化鋅

    王元有 周國(guó)強(qiáng) 張 龍 劉天晴,*

    (1揚(yáng)州大學(xué)化學(xué)化工學(xué)院,江蘇省環(huán)境材料與環(huán)境工程重點(diǎn)實(shí)驗(yàn)室,江蘇揚(yáng)州225002;2揚(yáng)州工業(yè)職業(yè)技術(shù)學(xué)院化工系,江蘇揚(yáng)州225127)

    銅摻氧化鋅多孔納米棒的水熱合成及其光催化性能

    王元有1,2周國(guó)強(qiáng)1張 龍1劉天晴1,*

    (1揚(yáng)州大學(xué)化學(xué)化工學(xué)院,江蘇省環(huán)境材料與環(huán)境工程重點(diǎn)實(shí)驗(yàn)室,江蘇揚(yáng)州225002;2揚(yáng)州工業(yè)職業(yè)技術(shù)學(xué)院化工系,江蘇揚(yáng)州225127)

    通過(guò)兩步法合成銅摻雜的氧化鋅納米棒,通過(guò)X射線衍射(XRD)、掃描電子顯微鏡(FESEM)、透射電子顯微鏡(TEM)、X射線光電子能譜(XPS)和紫外-可見(jiàn)(UV-Vis)分光光譜等技術(shù)對(duì)系列樣品進(jìn)行了表征,研究并探索了銅摻雜的氧化鋅納米棒光降解染料羅丹明B(RhB)和氣體乙醛的催化活性。通過(guò)對(duì)多孔Cu摻雜ZnO納米棒光催化分解乙醛進(jìn)行了評(píng)價(jià)。多孔Cu摻雜ZnO納米棒(CZ-5)光催化劑具有最高的催化分解乙醛的能力,比其它多孔Cu摻雜ZnO納米棒具有很高的催化活性。多孔Cu摻雜ZnO納米棒光催化劑在室溫下在可見(jiàn)光(435 nm)下照射16 h,5.50×10-4(φ,體積分?jǐn)?shù))的乙醛氣體完全降解為二氧化碳(CO2)。多孔銅摻雜的氧化鋅納米棒光催化劑的光催化性能的改善主要?dú)w因于銅和氧化鋅納米棒之間的協(xié)同作用。這種改進(jìn)的光催化協(xié)同作用歸因于Cu摻雜ZnO的可見(jiàn)光吸收的延伸和光生電子空穴對(duì)的抗重組。

    半導(dǎo)體;銅摻雜的氧化鋅;納米棒;光催化

    Key Words:Semiconductor;Cu-doped ZnO;Nanorod;Photocatalysis

    1 Introduction

    Acetaldehyde(CH3CHO)is a major pollutant that causes sick house syndrome and is a common outdoor pollutant found in many industrial products,including paints,treated wood,solvents, plastics,and fabrics.The indoor environment plays an important role in human health,because people generally spend more than 80%of their time in indoors,which contributes a higher risk from inhalation of pollutants than outdoors.Furthermore,acetaldehyde is a colorless,flammable,widespread gas in air at room temperature.So people are mostly exposed to acetaldehyde by inhalation. Low-level exposure to acetaldehyde could cause damage to the human body,related symptoms such as eye and throat irritation, chest tightness and breath shortness.High-dose exposure increases the risk of acute poisoning,while prolonged exposure may lead to chronic toxicity and even cancer,Hence,it is necessary to identify and remove acetaldehyde from the indoor environment for improving indoor air quality and human being′s health.In addition,because of the increasing concern on CH3CHO in the indoor environment,the abatement of CH3CHO is of significant practical interest at low temperature,especially at room temperature.Many studies have been carried out on the abatement and removal of acetaldehyde from the atmosphere,and a number of effective methods have been developed.Among several methods used in the removal of acetaldehyde in an indoor environment,the most economical and simple way is photocatalytic removal of the acetaldehyde for indoor air purification.This method has many advantages,such as high removal efficiency,a low function temperature(room temperature),atmospheric pressure,a wide range of applications,simple operation of equipment,and no secondary pollution.Thus,photocatalytic technology is drawing attention as a way to get rid of acetaldehyde.Photocatalytic approach commonly uses semiconductor photocatalytic material.In Previous studies,A lot of semiconductors have been applied in photocatalytic for formaldehyde degradation,such as ZnO,CeO2, Ta2O5,InVO4,MnO2,TiO2,and Bi2O31-9.Doping a single metal or nonmetal into ultraviolet light-active titanium dioxide photocatalysts have been the most attractive strategies to design and develop efficient visible light active TiO2nanoparticle photocatalysts for decontamination of toxic organic compounds in polluted air and water,such as(Sr,N)/TiO210,(Ni,B)/TiO211,(La,N)/TiO212, (La,S)/TiO213,(Fe,C)/TiO214,(V,B)/TiO215,and(V,C)/TiO216, have been developed and investigated especially for environmental remediation purposes.To the best of the authors′knowledge,there are no reports on acetaldehyde degradation with Cudoped ZnO photocatalysts.photocatalytic degradation of organic pollutants has attracted great interest due to its unique features. Among various semiconductor materials,ZnO is one of the most promising candidates for the degradation of organic pollutants because of its low cost,environmental friendliness and wide band gap(3.37 eV).Various ZnO nanostructures were prepared and utilized as efficient photocatalysts for the photocatalytic degradation of various organic pollutants17-22.However,poor photon absorption of ZnO limits its application in visible light photocatalyst due to a wide band gap of 3.37 eV.In order to shift the optical absorption of ZnO into the visible region,one possible approach is to dope ZnO photocatalyst with various impurities.Cu is the best choice as impurity for ZnO due to the minimum size mismatch between Cu and Zn.A few methods have been used successfully to synthesize the Cu-doped ZnO nanostructures23-27. In spite of achievements in the synthesis of Cu-doped ZnO nanostructures,further exploration of some facile,mild,low-cost, and high-yield synthetic routes to manufacture tailored nanostructured materials is still desired.Astudy of a more complicated system will provide deeper insight into the development of a more practical catalyst applicable to a real contaminated target.The obtained Cu-doped ZnO nanostructures show remarkably enhanced photocatalytic performances for acetaldehyde degradation under simulated solar light irradiation,higher than those of pure ZnO materials.Furthermore,the photocatalytic activity enhancement mechanism of the Cu-doped ZnO nanostructures and the process of charge separation and transfer at the surface or interface were also discussed.Herein,we reported a simple and economical two step reactions to synthesize uniform Cu-doped ZnO nanorods,which displayed high visible light photodegradation activities for the degradation of RhB aqueous solution and acetaldehyde(CH3CHO)gas.

    2 Experimental

    2.1Materials

    All the chemical reagents used in this work include sodium hydroxide(NaOH),H2O2(30%(w,mass fraction)),zinc nitrate hexahydrate(Zn(NO3)2·6H2O),copper nitrate trihydrate (Cu(NO3)2·3H2O),potassium hydrogen phthalate(KHC8H4O4), rhodamine B(RhB),acetaldehyde(CH3CHO),and ethanol (C2H5OH).All chemicals were analytically pure and were used as received without further purification.Deionized water was used throughout the experiment.All reagents were from Shanghai Chemicals Inc.,China.All reagents were analytically pure.

    2.2Methods

    A typical synthesis of precursor(zinc phthalate hydrate)is as follows:6 mmol Zn(NO3)2·6H2O was dissolved in 50 mL distilled water and then 6 mmol KHC8H4O4was put into the solution with stirring.After that,12 mmol NaOH was added into the above solution.Finally the mixed solution was transferred into a Teflonlined autoclave of 80 mL capacity and was filled up to 85%of the total volume with deionized water.After being sealed and heated at 120°C for 6 h,the autoclave was cooled to room temperature naturally.The resulting products were collected by centrifugation, washed with distilled water and ethanol for several times,and finally dried in vacuum at 70°C for 6 h.To obtain Cu doped precursor,similar procedure was performed under the same reaction condition except using 6 mmol Zn(NO3)2·6H2O and dif-ferent stoichiometric amounts of Cu(NO3)2·3H2O were added to the resultant mixed solution.Porous Cu-doped ZnO nanorods could be yielded when the precursors were heated in a muffle oven at 500°C for 2 h,respectively.Cu-doped ZnO nanorods were prepared for different Cu2+molar concentrations namely 1%,2%, and 5%,and were indexed as samples‘CZ-1’,‘CZ-2’,and‘CZ-5’,respectively.

    2.3Characterization

    The phase purity of the products was characterized by X-ray diffraction(XRD,German Bruker AXSD8 ADVANCE X-ray diffractometer)using a X-raydiffractometer with Cu Kαradiation (λ=0.15418 nm).Morphology information of theas-prepared particles was obtained on a Japan Hitachi S-4800 field emission scanningelectron microscope(SEM).Transmission electron microscope(TEM)images,highresolution transmission electron microscopy(HRTEM)images,high angle annulardark field (HAADF)images,and elemental mapping images were obtained on an American FEI Tecnai G2 F30 S-TWIN field-emission transmission electronmicroscopy(operated at 300 kV).Diffuse reflectance spectra(DRS)were measured using a UV-Vis spectrophotometer(Shimadzu,UV-2600)equipped with an integrating sphere unit(Shimadzu,ISR-2600 Plus).Fluorescence spectra were obtained using a photoluminescence spectrometer(JASCO,FP-8500).X-ray photoelectron spectra(XPS)were recorded on an ESCALAB 250Xi system(Thermo Scientific).

    2.4Photocatalytic testing

    RhB aqueous solution photodegradation evaluation test:the photocatalytic activities of as-prepared products were tested by degrading an organic dye,RhB in aqueous solution.Amixture of 60 mL 1×10-5mol·L-1RhB aqueous solution,5 mL H2O2(30% (w)),and 10 mg prepared samples were put in bottle with a capacity of 200 mL and stirred in the dark for 30 min.Then the mixture was continuously agitated throughout the experiment and irradiated by a 250 W Xe lamp,cut-off filter(>420 nm).After a given irradiation time,about 3 mL the mixture was withdrawn and immediately centrifuged.The photocatalytic degradation process of RhB was monitored by measuring its absorption with a UV-Vis spectrophotometer.

    CH3CHO gaseous phase photo degradation evaluation test:0.1 g samples were spread on the bottom of a watch-glass.The watchglass was put and 125 mL 5.50×10-4(φ,volume fraction)acetaldehyde/pure air mixture gases were injected into the Tedlar bag (polyvinyl fluoride,As ONE Co.Ltd.).The bag was located in dark room for 2 h to ensure the adsorption equilibrium.Then the samples were irradiated under LED lamp(central wavelength of 435 nm)with 3 mW·cm-2light intensity.The concentration variation of acetaldehyde and CO2evolution were monitored by on-line gas chromatography(Agilent Technologies,3000AMicro-GC,TCD detector)equipped with OV1 and PLOT-Q columns.

    3 Results and discussion

    3.1XRD curves of as-synthesized samples

    The crystal structures of the as-prepared precursor and the samples obtained after annealing were characterized via XRD (Fig.1).In Fig.1(a),it can be seen that all peaks of the precursor can be indexed to zinc phthalate hydrate Zn[C6H4(COO)2]·H2O. ZnO and Cu-doped ZnO nanorods were obtained after calcination of the precursor in air at 500°C(Fig.1(b)).It was found that all the samples exhibited the typical character of wurtzite hexagonal phase structure according to the standard JCPDS(36-1451)card. No any other impure diffraction peaks were detected,At low Cu2+concentration the local supersaturation is not achieved and hence Cu2+ions may be incorporated into ZnO lattice suggesting that Cu is highly dispersed in the sample,or they are too small to be detected.With further increase in the Cu2+concentration,new peak appearing at 2θ=38.6°was found when the molar content of Cu atoms was increased to 5%(x,molar fraction),which are attributed to(111)plane for the CuO crystalline structure.

    3.2Component analysis and Barrett-Emmett-Tellertests of ZnO samples

    To understand the component of these pure ZnO and Cu-doped ZnO samples clearly,the total amount of Cu in ZnO was determined by WDXRF and the results are shown in Table 1.It shows that each of the samples has similar composition and if contains Zn and Cu.Thus,it can be concluded that the as-synthesized samples are devoid of any other impurity atoms.It can also be found that the atomic ratio of Cu/Zn was to be about 0.000,0.009, 0.025,0.046,which is close to the experimental dopant concentration.

    Fig.1 XRD patterns of(a)Zn[C6H4(COO)2]·H2O precursors,(b)ZnO and Cu-doped ZnO nanorods

    Furthermore,the obvious changes can be seen in Barrett-Emmett-Teller(BET)and pore size of the as-synthesized pure ZnO and Cu-doped ZnO,which are shown in Table 1.Comparing with the specific surface area pore size of pure ZnO,the specific surface area of Cu-doped ZnO samples have been enlarged,which may be suitable for increasing the photocatalytic activity of the Cudoped ZnO samples.

    Table 1 Elemental composition,pore size and BET of the as-synthesized samples

    3.3FESEM and HRTEM images of the samples

    Fig.2 FESEM images of(a)Zn[C6H4(COO)2]·H2O precursor,(b)ZnO nanorods,and(c-e)Cu-doped ZnO nanorods(CZ-1,CZ-2,and CZ-5); (f,g)TEM images of Cu-doped ZnO nanorods;(h)HRTEM image of Cu-doped ZnO nanorods; (i-l)STEM image and elemental mapping of a single Cu-doped ZnO nanorod

    The morphologies of the precursor and ZnO were investigated with SEM.Fig.2(a)shows the SEM images of the precursor.It can be seen that Zn[C6H4(COO)2]·H2O precursor much was obtained. The length of a single nanorod was approximately 3-5 mm and the diameter varied in the range between 70-150 nm.Compared with the precursor,the composition analyses of the 5%(x)Cudoped ZnO sample were characterized by HRTEM energy-dispersive X-ray spectroscopy(EDS)mapping(scanning model of HRTEM)using a FEI F30 microscope equipped with an EDAX energy EDS.High resolution scanning transmission electron microscopy-EDS(HRSTEM-EDS)mapping results in Fig.2(i-l) of as-synthesized 5%(x)Cu-doped ZnO sample revealed that the composition of the sample contains Cu,Zn and O.Thus,it can beconcluded that the as-synthesized 5%(x)Cu-doped ZnO sample were devoid of any other impurity.As-prepared samples(undoped ZnO and Cu-doped ZnO)after calcination in air possessed similar rod shape morphology(Fig.2(b)and Fig.2(c-e)).However,the surface of rods has become much rough.For Cu-doped ZnO(CZ-5),it looked like bead-like chains composed of lots of nanoparticles bound with each other along a definite direction from the TEM image(Fig.2(f)).And a lot of pores were found in the enlarge TEM image(Fig.2(g)).The porous structure on the ZnO nanorods would be the result of loss of volatile gases such as H2O and CO2during the heat treatment.The interplanar spacing of 0.26 nm in Fig.2(h)is equal to the bulk ZnO(002),indicating that the crystal lattice does not expand or contract.The STEM and elemental mapping images(Fig.2(i-l))further confirm that the Cudoped ZnO nanorods were prepared.Different colors indicate different elements:green,red,and orange refer to Zn,Cu,and O elements,respectively.

    3.4UV-Vis diffuse reflectance spectra

    The optical absorption spectra of undoped and Zn1-xCuxO(where x=0.0,0.010,0.02,0.05)samples by UV-DRS spectrum in the range of 200-800 nm were presented.From Fig.3(a),it can be seen that the excitonic absorption peak of undoped ZnO and Cudoped ZnO nanorods appear around 375 nm,which is the absorption edge of ZnO.The excitonic absorption peak of as prepared undoped and Cu doped samples become broad as the molar ratio increases.In addition,for Cu-doped ZnO nanorods,a broad absorption covers the range of 400-800 nm.This may be attributed to efficient harvesting of visible light by Cu-doping in ZnO and provides the possibility of enhancing visible light absorption28.Fig.3(b)shows the representative photoluminescence (PL)spectra of the as-prepared samples with the excitation wavelength of 325 nm at room temperature.There are two peaks in undoped ZnO:one is the UV near-band-edge(NBE)emission centered at 375 nm;the other is a broad green region centered at 580 nm.Compared with that of pure ZnO,the emission of Cudoped ZnO is dramatically reduced,It might also suggest that the green emissionoftheas-synthesizedCu-dopedZnO(CZ-5)samples may be attributed to oxygen vacancies defects at the surface or in the bulk.indicating the decreased recombination of photogenerated holes with the electrons in intrinsic or extrinsic defects after photo irradiation process,which will enhance the photocatalytic efficiency.Fig.3(c)shows a plot of(αhν)2vs hν,which gives an absorption edge energy that corresponds to the band gap (Eg).The band gaps of the Cu-doped ZnO products were estimated to be 3.16,3.01,2.97,and 2.92 eV,respectively.The effect of Cudoped ZnO products is clearly noted on its band gap.

    3.5XPS spectra of the samples

    To clarify the elemental composition and chemical state of the as-synthesized 5%(x)Cu-doped ZnO nanorods,XPS spectra were carried out with the binding energies calibrated using C 1s(284.8 eV),as shown in Fig.4.The peaks can be ascribed to Zn,O,C,and Cu(Fig.4(a))confirming the sample is prepared comparing to the only Zn,O,C elements present in the 5%(x)Cu-doped ZnO nanorods(Fig.4(b))as shown in Fig.4.Zn,O,Cu elements were found in Fig.4.Two strong peaks in Fig.4 center on 1020.9 and 1043.9 eV,which are in agreement with the binding energies of Zn 2p3/2and Zn 2p1/2,respectively.The Cu 2p binding energies of the as-prepared samples were 932.6 eV(Cu 2p3/2)and 952.2 eV(Cu 2p1/2),respectively,which also proved the existence of Cu2+in the as-synthesized Cu-doped ZnO sample.O 1s profile is asymmetric and can be fitted into two symmetrical peaks at 529.9 and 531.3 eV,which agrees well with the branched ZnO and the reported value for ZnO29,30.Therefore,the result of XPS further confirms that the samples are composed of ZnO and CuO.

    Fig.3 (a)DRS and(b)PLspectra of ZnO and Cu doped ZnO nanorods and(c)plots of(αhν)2vs hν for ZnO,CZ-1,CZ-2,and CZ-5

    3.6Photocatalytic performance

    Photocurrents for the as-synthesized Cu-ZnO and ZnO electrodes were also measured on a Zahner workstation(Zahner, German)with a LW405 light(10 mW·cm-2)as the accessory light source to investigate the electronic interaction between CuO andZnO(Fig.5).Generally,semiconductor photo catalysis involves the generation of electrons in the conduction band and holes in the valence band within a semiconductor upon light irradiation at energies equal to or greater than the band gap of the semiconductor.Subsequently,the utilization of photo excited charge carriers to initiate redox reactions with suitable substrates on the semiconductor surface.To further understand the heterojunction effect on the photocatalytic activity enhancement of CZ-5 nanorods,we carefully studied the photo induced charge transfer properties of the CZ-5 nanorods.It was clear that fast and uniform photocurrent responses were observed in both electrodes and the photoresponsive phenomenon was entirely reversible.Under visible light irradiation,It is known that the higher the photocurrent intensity,the more effective the separation of photo-induced carriers.The photocurrent density of the Cu-ZnO electrode was higher than that of the pure ZnO electrode(Fig.5).The photocurrent enhancement of the Cu-ZnO photocatalyst indicated an enhanced photoinduced electrons and holes separation when comparing with pure ZnO.

    Fig.4 XPS spectra of the CZ-5(a)and the scan of(b)Cu 2p,(c)Zn 2p,and(d)O 1s

    Fig.5 Transient photocurrent response for ZnO and Cu doped ZnO nanorods under visible light irradiation

    The photocatalytic activities of as-fabricated products were evaluated by measuring CO2evolution form the photocatalytic decomposition of acetaldehyde.Fig.6(a,b)shows the time course of CO2liberation of samples with different of dopant concentrations.From Fig.6(a,b)we can conclude that the porous Cu-doped ZnO nanorods(CZ-5)photocatalyst shows the highest CO2generation concentration,which is higher activity than that of porous ZnO nanorods.When the dopant concentration is low (<0.01 mol),the as-fabricated samples show a low CO2liberation rate as in the case of pure ZnO.However,with increase in the concentration of the dopant,the CO2liberation rate rapidly improved,which demonstrated that a high content dopant is beneficial for enhancement of photocatalytic activities.When the content of dopant reached 0.05 mol,the fabricated sample showed the highest CO2liberation rate,and with further increase in concentration of the dopant,the CO2liberation rate decreased. Namely,5.50×10-4(φ)CH3CHO gas is fully degraded to CO2by this porous Cu-doped ZnO nanorods photocatalyst within 16 h at room temperature under 435 nm visible light irradiation.The photocatalytic performance improvement of the porous Cu-doped ZnO nanorods photocatalyst is mainly attributed its intimate interfacial contact between Cu and ZnO nanorods.This improvedphotocatalysis was attributed to the synergistic actions of Cudoped ZnO for the extension of visible light absorption and the anti-recombination of photogenerated electron-hole pairs,which are also well accordance with the PL analysis results in Fig.3(b). Therefore,many more photogenerated holes and electrons prefer to be involved in the photocatalytic reaction rather than be annihilated by the form of radiation.Meanwhile,porous Cu-doped ZnO nanorod is with good stability and high efficiency after photocatalytic reaction because this photocatalyst still retains 99% photocatalytic activity after three CH3CHO degradation recycles (Fig.6(e)).Besides,the photodegradation experiments of RhB aqueous solution were further carried out to investigate the universality of this photocatalyst.Obviously,RhB dyes photodegradation results in solution in Fig.6(c)present a similar tendency with CH3CHO ones in gaseous phase.In summary,porous Cudoped ZnO nanorod has excellent photodegradation performance in RhB dye and CH3CHO gas under visible light irradiation.It is clear that optimal Cu doping has increased the photocatalytic degradation efficiency in comparison to undoped ZnO sample. Without any photocatalyst,the degradation of RhB hardly occurs when subjected to the visible light irradiation for 120 min.

    Fig.6 Photocatalytic performance evaluation curves of the as-prepared photocatalysts

    It is well known that the photocatalytic decomposition of organic pollutants accords with the pseudo first-order kinetic model. The degradation rate constant was calculated from the experimental data using Eq.(1)31,

    where,kris the degradation rate constant,and t is the degradation time.The value of degradation rate constant krfor RhB dyes was calculated from the slope of the kinetics plot obtained by plotting the natural logarithm of concentration ratio,ln(C0/C),vs the ir-radiation time,t,as shown in Fig.6(d),respectively.The kinetic parameters like degradation rate constant kr,half-life value(t1/2), and linear coefficient(r2)calculated from the kinetics plots are given in Table 2.

    Table 2 Degradation parameter of RhB by the photocatalysts

    The rate constant for the 5%(x)Cu-doped ZnO sample was k= 3.9×10-2min-1.which was larger than that of the reported Cudoped samples(k=3.229×10-2min-1)32and that of the pure ZnO samples.These results reveal that Cu doping enhances the photocatalytic efficiency of pure ZnO under visible light.

    Both H2O2and Cu-doped ZnO nanorods play an important role in the degradation of RhB.Studies on oxidative degradation of organic dyes with H2O2have been reported previously using CuO as catalyst33.The degradation proceeds by an adsorption-oxidationdesorption mechanism34,35.Several free radical species are believed to be responsible for the degradation of dyes,including HO·, HOO·,or O2·.

    In the current work,similar processes may also be involved. Firstly,RhB and H2O2are adsorbed on the surface of Cu-doped ZnO nanorods.Secondly,H2O2is decomposed into free radical species,such as HO·,HOO·,or O2·as induced by the highly active catalyst.The nascent free radical species have high oxidative ability and cause destructive oxidation of the organic dye. Thirdly,small molecules from the dye degradation are desorbed of Cu-doped ZnOnanorods surface,and the catalyst is recovered36.

    Moreover,it can also be seen in BET,UV-Vis spectra and potocurrent spectra of the as-synthesized ZnO samples that the enhanced photocatalytic activity of Cu-doped ZnO nanorods can also be attributed to enlarged surface area,higher excitonic peaks and enhanced photoinduced electrons and holes separation of the Cu-doped ZnO sample.

    The possible schematic diagram for Cu-doped ZnO photocatalytic degradation of RhB dye and CH3CHO gas under visible light irradiation is shown in Scheme 1.

    The proposed mechanism for the photocatalytic decomposition of organic pollutants by Cu-doped ZnO nanorods can be described as follows:

    In fact,photocatalysis is a complicated process,which is associated with not only the structure-related physical properties,but also structure-related catalytic processes.The possible schematic diagram for Cu-doped ZnO photocatalytic degradation of RhB dye and CH3CHO gas under visible light irradiation is shown in Scheme 1.The possible scheme can be seen in the follow:

    Scheme 1 Proposed photocatalytic mechanism of the porous Cu-doped ZnO nanorod

    It is generally accepted that,when semiconductor materials are irradiated by UV light or visible light with a photon energy(hν) greater than their band gap energies,an electron(e-)in the valence band(VB)can be excited to the conduction band(CB)with the simultaneous generation of a hole(h+)in the VB,so the electrone hole pairs will appear37-39.

    A suitable scavenger can provide to trap the electron or hole, which is prevented recombination and made subsequent redox reaction.Herein,Cu ions substitute in ZnO lattices sever as photogenerated electron trappers to restrain the recombination of electrons and holes.In this process,the electrons at the trapping states can absorbed O2molecules or dissolved oxygen to produce superoxide radical anions(·O2-).In addition,the photo-generated holes can be trapped by the Cu or Zn-related defect state(such as interstitial site of Cu(Cui))and will be further transformed into hydroxyl radicals(·OH).The free radicals·O2-and·OH produced in the reactions are regarded as strong oxidants to decompose organic pollutants or acetaldehyde(CH3CHO).

    4 Conclusions

    In summary,we reported Cu-doped ZnO nanorods that were synthesized through a two-step method.The products were characterized by XRD,FESEM,HRTEM,PL,and UV-Vis.The photocatalytic activity was explored by degradation of RhB dye and CH3CHO gas.The photocatalytic results show that doping of Cu into ZnO can enhance the photocatalytic efficiency of ZnO under visible light irradiation.Consequently,Cu-doped ZnO is a promising material for practical application in photocatalytic materials.

    (1) Ai,Z.H.;Huang,Y.;Lee,S.C.;Zhang,L.Z.J.Alloy.Compd. 2011,509,2044.doi:10.1016/j.jallcom.2010.10.132

    (2) Guo,Q.;Zhou,C.Y.;Ma,Z.B.;Ren,Z.F.;Fan,H.J.;Yang,X. M.Acta Phys.-Chim.Sin.2016,32,28.[郭 慶,周傳耀,馬志博,任澤峰,樊紅軍,楊學(xué)明.物理化學(xué)學(xué)報(bào),2016,32,28.] doi:10.3866/PKU.WHXB201512081

    (3) Liao,Y.C.;Xie,C.S.;Liu,Y.;Chen,H.;Li,H.Y.;Wu,J.Ceram.Int.2012,38,4437.doi:10.1016/j.ceramint.2012.03.016

    (4) Tian,H.;He,J.H.;Liu,L.L.;Wang,D.H.;Hao,Z.P.;Ma,C. Y.Microporous Mesoporous Mat.2012,151,397.doi:10.1016/j. micromeso.2011.10.003

    (5) Yang,L.P.;Liu,Z.Y.;Shi,J.W.;Zhang,Y.Q.;Hu,H.;Shang, W.F.Sep.Purif.Technol.2007,54,204.doi:10.1016/j. seppur.2006.09.003

    (6) You,Y.;Zhang,S.Y.;Wan,L.;Xu,D.F.Appl.Surf.Sci.2012, 258,3469.doi:10.1016/j.apsusc.2011.11.099

    (7) Zhang,L.;Fu,H.;Zhang,C.;Zhu,Y.J.Solid State Chem.2006, 179,804.doi:10.1016/j.jssc.2005.12.003

    (8) Zhou,J.;Mullins,D.R.Surf.Sci.2006,600,1540.doi:10.1016/ j.susc.2006.02.009

    (9) Zhu,Y.;Yu,F.;Man,Y.;Tian,Q.;He,Y.;Wu,N.J.Solid State Chem.2005,178,224.doi:10.1016/j.jssc.2004.11.015

    (10) Sakatani,Y.;Ando,H.;Okusako,K.;Koike,H.;Nunoshige,J.; Takata,T.;Kondo,J.N.;Hara,M.;Domen,K.J.Mater.Res. 2004,19,2100.doi:10.1557/JMR.2004.0269

    (11) Zhao,W.;Ma,W.;Chen,C.;Zhao,J.;Shuai,Z.J.Am.Chem. Soc.2004,126,4782.doi:10.1021/ja0396753

    (12) Sakatani,Y.;Nunoshige,J.;Ando,H.;Okusako,K.;Koike,H.; Takata,T.;Kondo,J.N.;Hara,M.;Domen,K.Chem.Lett. 2003,32,1156.doi:10.1246/cl.2003.1156

    (13) Li,X.K.;Ma,D.D.;Zheng,Y.P.;Zhang,H.;Ding,D.;Chen, M.S.;Wan,H.L.Acta Phys.-Chim.Sin.2015,31,1753.[李曉坤,馬冬冬,鄭燕萍,張 宏,丁 丁,陳明樹(shù),萬(wàn)惠霖.物理化學(xué)學(xué)報(bào),2015,31,1753]doi:10.3866/PKU.WHXB201507091

    (14) Bu,Y.Y.;Chen,Z.Y.RSC Adv.2014,4,45397.doi:10.1039/ C4RA06641C

    (15) Bettinelli,M.;Dallacasa,V.;Falcomer,D.;Fornasiero,P.; Gombac,V.;Montini,T.;Romano,L.;Speghini,A.J.Hazard. Mater.2007,146,529.doi:10.1016/j.jhazmat.2007.04.053

    (16) Yang,X.;Cao,C.;Hohn,K.;Erickson,L.;Maghirang,R.; Hamal,D.;Klabunde,K.J.Catal.2007,252,296.doi:10.1016/ j.jcat.2007.09.014

    (17) Akpan,U.G.;Hameed,B.H.J.Hazard.Mater.2009,170,520. doi:10.1016/j.jhazmat.2009.05.039

    (18) Hayata,K.;Gondalb,M.A.;Khaleda,M.M.;Ahmedc,S.; Shemsi,A.M.Appl.Catal.A:Gen.2011,393,122. doi:10.1016/j.apcata.2010.11.032

    (19) Chen,S.F.;Zhao,W.;Liu,W.;Zhang,S.J.Appl.Surf.Sci. 2008,255,2478.doi:10.1016/j.apsusc.2008.07.115

    (20) Rehman,S.;Ullah,R.;Butt,A.M.;Gohar,N.D.J.Hazard. Mater.2009,170,560.doi:10.1016/j.jhazmat.2009.05.064

    (21) Xu,C.;Cao,L.;Su,G.;Liu,W.;Qu,X.;Yu,Y.J.Alloy.Compd. 2010,497,373.doi:10.1016/j.jallcom.2010.03.076

    (22) Dindar,B.;I?li,S.J.Photochem.Photobiol.A:Chem.2001, 140,263.doi:10.1016/S1010-6030(01)00414-2

    (23) Yu,J.Y.;Zhuang,S.D.;Xu,X.Y.;Zhu,W.C.;Feng,B.;Hu,J. G.J.Mater.Chem.A 2015,3,1199.doi:10.1039/c4ta04526b

    (24) Liang,G.F.;Hu,L.W.;Feng,W.P.;Li,G.D.;Jing,A.H.Appl. Surf.Sci.2014,296,158.doi:10.1016/j.apsusc.2014.01.065

    (25) Xue,H.;Chen,Y.;Xu,X.L.;Zhang,G.H.;Zhang,H.;Ma,S. Y.Phys.E 2009,41,788.doi:10.1016/j.physe.2008.12.017

    (26) Kamalianfar,A.;Halim,S.A.;Azak,K.Ceram.Int.2014,40, 3193.doi:10.1016/j.ceramint.2013.09.123

    (27) Guo,Q.;Minton,T.K.;Yang,X.M.Chin.J.Catal.2015,36, 1649.[郭 慶,Minton,T.K.,楊學(xué)明.催化學(xué)報(bào),2015,36, 1649.]doi:10.1016/S1872-206760935-4

    (28) Rajneesh,M.;Karthikeyan,K.;Sang-Jae,K.Solid State Commun.2012,152,375.doi:10.1016/j.ssc.2011.12.008

    (29) Sahu,D.;Panda,N.R.;Acharya,B.S.;Panda,A.K.Ceram.Int. 2014,40,11041.doi:10.1016/j.ceramint.2014.03.119

    (30) Yang,M.Q.;He,J.H.J.Colloid Interface Sci.2011,355,15. doi:10.1016/j.jcis.2010.11.022

    (31) Li,X.J.;Sheng,J.Y.;Chen,H.H.;Xu,Y.M.Acta Phys.-Chim. Sin.2015,31,540.[李曉金,盛珈怡,陳海航,許宜銘.物理化學(xué)學(xué)報(bào),2015,31,540.]doi:10.3866/PKU.WHXB201501131

    (32) Pawar,R.C.;Choi,D.H.;Lee,J.S.;Lee,C.S.Mater.Chem. Phys.2015,151,167.doi:10.1016/j.matchemphys.2014.11.051

    (33) Yang,M.;He,J.J.Colloid Interface Sci.2011,355,15. doi:10.1016/j.jcis.2010.11.022

    (34) Zhang,Y.;Chen,L.;Zheng,Z.;Yang,F.Solid State Sci.2009, 11,1265.Doi:10.1016/j.solidstatesciences.2009.03.018

    (35) Segal,S.R.;Suib,S.L.;Foland,L.Chem.Mater.1997,9,2526. doi:10.1021/cm9702934

    (36) Zhang,W.;Yang,Z.;Wang,X.;Zhang,Y.;Wen,X.;Yang,S. Catal.Commun.2006,7,408.doi.org/10.1016/j. catcom.2005.12.008

    (37) Chu,F.H.;Huang,C.W.;Hsin,C.L.;Wang,C.W.;Yu,S.Y. Ye,P.H.;Wu,W.W.Nanoscale 2012,4,1471.doi:10.1039/ c1nr10796h

    (38) Liu,Y.;Zhao,N.;Gao,W.RSC Adv.2013,3,21666. doi:10.1039/c3ra42902d

    (39) Macwan,D.P.;Dave,P.N.;Chaturvedi,S.J.Mater.Sci.2011, 46,3669.doi:10.1007/s10853-011-5378-y

    Synthesis and Photocatalytic Characterization of Porous Cu-Doped ZnO Nanorods

    WANG Yuan-You1,2ZHOU Guo-Qiang1ZHANG Long1LIU Tian-Qing1,*

    (1Jiangsu Key Laboratory of Environmental Material and Environmental Engineering,School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225002,Jiangsu Province,P.R.China;2Department of Chemical Engineering,Yangzhou Polytechnic Institute,Yangzhou 225127,Jiangsu Province,P.R.China)

    A two-step method was developed for the selective synthesis of porous ZnO nanorods(undoped and Cu doped):first,Zn[C6H4(COO)2]·H2O and Cu doped Zn[C6H4(COO)2]·H2O nanorods were synthesized via the hydrothermal reaction of Zn(NO3)2·6H2O,NaOH,KHC8H4O4,and Cu(NO3)2·3H2O at 120°C for 6 h;second, porous undoped and doped ZnO nanorods were obtained by thermal decomposition of the precursors in air at 500°C for 2 h,respectively.The porous ZnO nanorods were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS), and ultraviolet-visible(UV-Vis)spectroscopy.The photocatalytic degradation of rhodamine B(RhB)aqueous solution shows that the porous Cu-doped ZnO nanorods have the highest photodegradation performance with visible light and acetaldehyde(CH3CHO)gas degradation.These results are because of the special interface structures of the catalysts and fast separation of its photogenerated charge carriers.These favorable photocatalytic properties of the doped microstructures demonstrate their potential for degradation of wastewater and aldehydes.

    O643

    10.3866/PKU.WHXB201608304

    Received:June 27,2016;Revised:August 30,2016;Published online:August 30,2016.

    *Corresponding author.Email:tqliu@yzu.edu.cn;Tel:+86-514-87975244.

    The project was supported by the National Natural Science Foundation of China(21505118),Natural Science Foundation of Jiangsu Province,China (BK2150438),Jiangsu Key Laboratory of Environmental Material and Environmental Engineering,China(K13065),PriorityAcademic Program Development of Jiangsu Higher Education Institutions,Senior Visiting Scholar Program of Jiangsu Higher Vocational College,China(2015FX089), and Qing Lan Project of Jiangsu Province,China.

    國(guó)家自然科學(xué)基金(21505118),江蘇省自然科學(xué)基金(BK2150438),江蘇省環(huán)境材料與環(huán)境工程重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(K13065),高職院校高級(jí)訪問(wèn)學(xué)者計(jì)劃(2015FX089)和江蘇省“青藍(lán)工程”資助項(xiàng)目

    猜你喜歡
    乙醛物理化學(xué)氧化鋅
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Chemical Concepts from Density Functional Theory
    氧化鋅中氯的脫除工藝
    銦摻雜調(diào)控氧化鋅納米棒長(zhǎng)徑比
    對(duì)乙醛與新制氫氧化銅反應(yīng)實(shí)驗(yàn)的改進(jìn)
    氯霉素氧化鋅乳膏的制備及質(zhì)量標(biāo)準(zhǔn)
    p53和γ-H2AX作為乙醛引起DNA損傷早期生物標(biāo)記物的實(shí)驗(yàn)研究
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    L-半胱氨酸對(duì)乙醛消除及A549細(xì)胞內(nèi)環(huán)境抗氧化作用
    国产成人免费无遮挡视频| 大片免费播放器 马上看| 日韩欧美精品免费久久| 水蜜桃什么品种好| 男人爽女人下面视频在线观看| 免费观看无遮挡的男女| 国产av国产精品国产| 亚洲精品av麻豆狂野| 在线观看免费高清a一片| 一二三四中文在线观看免费高清| 亚洲欧美日韩卡通动漫| 热re99久久国产66热| 在线观看免费高清a一片| 日韩欧美精品免费久久| 成年人午夜在线观看视频| 秋霞在线观看毛片| 亚洲欧美成人精品一区二区| 亚洲精品久久久久久婷婷小说| 亚洲国产欧美在线一区| av女优亚洲男人天堂| av在线老鸭窝| av.在线天堂| 极品人妻少妇av视频| 啦啦啦中文免费视频观看日本| 国产黄色视频一区二区在线观看| 精品一品国产午夜福利视频| 亚洲一码二码三码区别大吗| 国产精品三级大全| 水蜜桃什么品种好| 国产伦理片在线播放av一区| 22中文网久久字幕| 久久精品国产自在天天线| 一区二区av电影网| 国产亚洲最大av| 99九九在线精品视频| 天天躁夜夜躁狠狠躁躁| 99精国产麻豆久久婷婷| 亚洲av男天堂| 午夜福利影视在线免费观看| 午夜影院在线不卡| 美女大奶头黄色视频| 少妇的逼好多水| 在现免费观看毛片| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 在线观看国产h片| 狂野欧美激情性bbbbbb| 尾随美女入室| 亚洲美女黄色视频免费看| 成人漫画全彩无遮挡| 一边摸一边做爽爽视频免费| 热99久久久久精品小说推荐| 成人黄色视频免费在线看| 在线观看美女被高潮喷水网站| 日韩一区二区三区影片| 不卡视频在线观看欧美| 精品国产乱码久久久久久小说| 久久久久久久精品精品| 韩国精品一区二区三区 | 国产男女内射视频| 99热全是精品| 久久久久久久久久成人| 人人妻人人澡人人看| 精品少妇久久久久久888优播| 成人二区视频| 国产成人精品福利久久| 日本vs欧美在线观看视频| av卡一久久| 内地一区二区视频在线| 天堂中文最新版在线下载| 777米奇影视久久| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲 | 亚洲精品久久久久久婷婷小说| 国产国拍精品亚洲av在线观看| 亚洲国产色片| 亚洲欧美成人精品一区二区| 欧美bdsm另类| 久久国产亚洲av麻豆专区| 性色av一级| 久久久久久久久久成人| 哪个播放器可以免费观看大片| 国产成人av激情在线播放| 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频| 日韩中字成人| av国产久精品久网站免费入址| 国产亚洲精品第一综合不卡 | 亚洲欧美一区二区三区国产| 99国产精品免费福利视频| 日本av免费视频播放| xxxhd国产人妻xxx| av黄色大香蕉| 国产免费福利视频在线观看| 一级毛片电影观看| 国产精品一二三区在线看| 欧美激情 高清一区二区三区| 街头女战士在线观看网站| 成人漫画全彩无遮挡| 国产一级毛片在线| 国产av码专区亚洲av| 爱豆传媒免费全集在线观看| 免费黄色在线免费观看| 成人亚洲精品一区在线观看| 少妇人妻久久综合中文| 最近2019中文字幕mv第一页| 日韩,欧美,国产一区二区三区| 最黄视频免费看| 午夜福利视频精品| tube8黄色片| 天堂中文最新版在线下载| 有码 亚洲区| 水蜜桃什么品种好| 女人久久www免费人成看片| 精品久久久久久电影网| 亚洲人与动物交配视频| 在线精品无人区一区二区三| 精品久久久久久电影网| 侵犯人妻中文字幕一二三四区| 久久久精品免费免费高清| 亚洲欧美精品自产自拍| 日日撸夜夜添| 高清av免费在线| 久久久久久久久久人人人人人人| 国产精品久久久久久久电影| 国产 一区精品| 看非洲黑人一级黄片| 久久久国产一区二区| 久久99热这里只频精品6学生| 97人妻天天添夜夜摸| 久久人人97超碰香蕉20202| 亚洲三级黄色毛片| 国产成人精品在线电影| 亚洲色图 男人天堂 中文字幕 | 毛片一级片免费看久久久久| a级毛色黄片| 精品一区二区三卡| 久久女婷五月综合色啪小说| 如日韩欧美国产精品一区二区三区| 久久影院123| 欧美 日韩 精品 国产| 国产av精品麻豆| 大片电影免费在线观看免费| 女的被弄到高潮叫床怎么办| 久久久久久久久久久久大奶| 一区二区三区四区激情视频| 99久久人妻综合| 制服丝袜香蕉在线| 啦啦啦中文免费视频观看日本| 涩涩av久久男人的天堂| 一级,二级,三级黄色视频| 天美传媒精品一区二区| 精品人妻一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 国产成人av激情在线播放| av线在线观看网站| 久久久亚洲精品成人影院| 青春草亚洲视频在线观看| 国产精品久久久久久久久免| 国产精品久久久久久久电影| 青青草视频在线视频观看| 黑人巨大精品欧美一区二区蜜桃 | 国产日韩欧美视频二区| 99精国产麻豆久久婷婷| 国产高清国产精品国产三级| 丁香六月天网| 国产精品国产三级专区第一集| av在线播放精品| av黄色大香蕉| 日韩av在线免费看完整版不卡| 精品少妇久久久久久888优播| 亚洲美女搞黄在线观看| freevideosex欧美| 婷婷色综合www| 日韩欧美一区视频在线观看| 精品国产一区二区久久| 侵犯人妻中文字幕一二三四区| 国产探花极品一区二区| 日韩大片免费观看网站| 97精品久久久久久久久久精品| 日本黄色日本黄色录像| 亚洲欧洲日产国产| 中文字幕亚洲精品专区| 日韩av在线免费看完整版不卡| 久久 成人 亚洲| 在线观看一区二区三区激情| 五月伊人婷婷丁香| 侵犯人妻中文字幕一二三四区| 欧美激情国产日韩精品一区| 全区人妻精品视频| 一级毛片 在线播放| 亚洲高清免费不卡视频| 国产亚洲精品第一综合不卡 | 中文字幕亚洲精品专区| 午夜日本视频在线| 18禁在线无遮挡免费观看视频| 男女无遮挡免费网站观看| 在线观看免费日韩欧美大片| 夜夜骑夜夜射夜夜干| 考比视频在线观看| 爱豆传媒免费全集在线观看| 曰老女人黄片| 久久精品国产鲁丝片午夜精品| 又黄又爽又刺激的免费视频.| 丝瓜视频免费看黄片| 热99久久久久精品小说推荐| 人妻一区二区av| 在线天堂最新版资源| 久久久久精品久久久久真实原创| 国产亚洲最大av| 免费高清在线观看日韩| 成人黄色视频免费在线看| 亚洲,一卡二卡三卡| 黄色 视频免费看| 亚洲性久久影院| 永久网站在线| 亚洲一级一片aⅴ在线观看| 精品国产国语对白av| 久久精品国产a三级三级三级| 国产伦理片在线播放av一区| 国产精品国产三级专区第一集| 99九九在线精品视频| 少妇的逼水好多| 成人国产麻豆网| 水蜜桃什么品种好| 免费av不卡在线播放| 欧美少妇被猛烈插入视频| 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| videossex国产| 热99久久久久精品小说推荐| 久久久久视频综合| 国产一级毛片在线| 日韩av在线免费看完整版不卡| 9191精品国产免费久久| 蜜桃在线观看..| 观看av在线不卡| 女性被躁到高潮视频| 色5月婷婷丁香| 亚洲精品乱久久久久久| 飞空精品影院首页| 最新的欧美精品一区二区| 成人无遮挡网站| a级片在线免费高清观看视频| 日韩大片免费观看网站| 久热久热在线精品观看| 精品福利永久在线观看| 99九九在线精品视频| 免费在线观看完整版高清| 99久久中文字幕三级久久日本| 国产精品久久久久久精品古装| 大话2 男鬼变身卡| 亚洲综合精品二区| 五月开心婷婷网| 伦理电影免费视频| 男人添女人高潮全过程视频| 一本—道久久a久久精品蜜桃钙片| 在线观看www视频免费| 在线看a的网站| 国产免费视频播放在线视频| 国产伦理片在线播放av一区| www.熟女人妻精品国产 | 免费不卡的大黄色大毛片视频在线观看| 黄色 视频免费看| 久久久亚洲精品成人影院| 美国免费a级毛片| 亚洲国产日韩一区二区| 美女xxoo啪啪120秒动态图| 国产日韩欧美在线精品| 久久久久久伊人网av| 美女视频免费永久观看网站| 22中文网久久字幕| 日韩免费高清中文字幕av| 国产精品人妻久久久久久| 国产精品人妻久久久影院| 亚洲国产成人一精品久久久| 蜜臀久久99精品久久宅男| 欧美 亚洲 国产 日韩一| 亚洲中文av在线| 成人漫画全彩无遮挡| 成年女人在线观看亚洲视频| 国产成人精品婷婷| 精品99又大又爽又粗少妇毛片| 性高湖久久久久久久久免费观看| 搡女人真爽免费视频火全软件| videossex国产| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 久久久久久久精品精品| 女人被躁到高潮嗷嗷叫费观| 国产欧美亚洲国产| 亚洲国产av新网站| 日韩免费高清中文字幕av| 精品一品国产午夜福利视频| 成人手机av| 最近中文字幕高清免费大全6| 高清毛片免费看| 狠狠婷婷综合久久久久久88av| 一边亲一边摸免费视频| 久久精品夜色国产| 深夜精品福利| 国产精品秋霞免费鲁丝片| 99久国产av精品国产电影| 少妇的逼水好多| 久久精品久久久久久噜噜老黄| 一本久久精品| 精品人妻在线不人妻| 国产精品成人在线| av卡一久久| 久久这里有精品视频免费| 我的女老师完整版在线观看| 日日啪夜夜爽| 美女国产视频在线观看| 国产日韩欧美亚洲二区| 我的女老师完整版在线观看| 国产亚洲av片在线观看秒播厂| 看非洲黑人一级黄片| 另类精品久久| 国产精品一国产av| 国产成人欧美| 制服诱惑二区| 亚洲av综合色区一区| 一级,二级,三级黄色视频| 五月天丁香电影| 熟女电影av网| 99九九在线精品视频| 少妇高潮的动态图| 国产精品久久久久久av不卡| 日韩熟女老妇一区二区性免费视频| 日本av手机在线免费观看| 欧美老熟妇乱子伦牲交| 男女国产视频网站| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 国产精品麻豆人妻色哟哟久久| 欧美人与性动交α欧美精品济南到 | 日韩不卡一区二区三区视频在线| 在线亚洲精品国产二区图片欧美| 26uuu在线亚洲综合色| 亚洲国产欧美日韩在线播放| 街头女战士在线观看网站| 麻豆乱淫一区二区| 欧美亚洲 丝袜 人妻 在线| 少妇 在线观看| 永久免费av网站大全| 国产精品嫩草影院av在线观看| 免费观看av网站的网址| 五月天丁香电影| 制服丝袜香蕉在线| 久久久久精品性色| 日韩av不卡免费在线播放| 国产 精品1| 男女下面插进去视频免费观看 | 91国产中文字幕| 亚洲五月色婷婷综合| 欧美精品一区二区大全| 一二三四在线观看免费中文在 | 国语对白做爰xxxⅹ性视频网站| 性高湖久久久久久久久免费观看| 9191精品国产免费久久| 一级毛片黄色毛片免费观看视频| 免费日韩欧美在线观看| 成人毛片a级毛片在线播放| 曰老女人黄片| 亚洲精品日韩在线中文字幕| 久久精品久久久久久久性| 国产黄频视频在线观看| 国产精品久久久久久精品古装| 欧美精品一区二区免费开放| 香蕉精品网在线| 中文字幕人妻熟女乱码| 久久人人97超碰香蕉20202| 成人国产麻豆网| 日韩制服丝袜自拍偷拍| 女人精品久久久久毛片| 精品一区二区三卡| 亚洲四区av| 免费女性裸体啪啪无遮挡网站| 一本大道久久a久久精品| 免费观看在线日韩| a级毛片黄视频| 中文天堂在线官网| 侵犯人妻中文字幕一二三四区| 视频在线观看一区二区三区| 天堂俺去俺来也www色官网| 欧美亚洲 丝袜 人妻 在线| 天堂俺去俺来也www色官网| 亚洲美女黄色视频免费看| 亚洲精品中文字幕在线视频| 看非洲黑人一级黄片| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人看| 日韩制服丝袜自拍偷拍| 各种免费的搞黄视频| 国产又爽黄色视频| 欧美少妇被猛烈插入视频| 热99久久久久精品小说推荐| 观看美女的网站| 免费大片黄手机在线观看| 黄色毛片三级朝国网站| 国产熟女欧美一区二区| 老司机影院成人| 天天操日日干夜夜撸| 最近2019中文字幕mv第一页| 街头女战士在线观看网站| 黄色 视频免费看| 99热国产这里只有精品6| 老熟女久久久| 国产一区亚洲一区在线观看| 午夜福利乱码中文字幕| 久久久久人妻精品一区果冻| 久久精品国产亚洲av涩爱| 免费观看性生交大片5| 九草在线视频观看| 成人无遮挡网站| 日本-黄色视频高清免费观看| 在现免费观看毛片| 汤姆久久久久久久影院中文字幕| 亚洲精品中文字幕在线视频| 亚洲国产av新网站| 成人综合一区亚洲| 在线观看国产h片| 国产在线视频一区二区| 久久精品国产综合久久久 | 一边摸一边做爽爽视频免费| 欧美日韩精品成人综合77777| 亚洲美女搞黄在线观看| 五月玫瑰六月丁香| 久久久欧美国产精品| 在线观看美女被高潮喷水网站| 国产在线免费精品| 亚洲国产最新在线播放| 国产女主播在线喷水免费视频网站| 久久精品夜色国产| 午夜av观看不卡| 国产欧美日韩一区二区三区在线| 亚洲av成人精品一二三区| av黄色大香蕉| √禁漫天堂资源中文www| 日韩一区二区视频免费看| 国产亚洲av片在线观看秒播厂| av播播在线观看一区| 久久久久久久国产电影| 日韩大片免费观看网站| h视频一区二区三区| 国产亚洲最大av| 午夜免费男女啪啪视频观看| 天堂8中文在线网| 欧美激情极品国产一区二区三区 | 亚洲精品aⅴ在线观看| 人妻系列 视频| 看非洲黑人一级黄片| 精品亚洲乱码少妇综合久久| 免费不卡的大黄色大毛片视频在线观看| 精品人妻一区二区三区麻豆| 又大又黄又爽视频免费| 中文字幕亚洲精品专区| 男人操女人黄网站| 国产无遮挡羞羞视频在线观看| 国产 一区精品| 国产在线一区二区三区精| 在线观看三级黄色| 亚洲性久久影院| 嫩草影院入口| 亚洲av欧美aⅴ国产| 妹子高潮喷水视频| 国产成人91sexporn| 精品一区二区三卡| 国产成人av激情在线播放| 波野结衣二区三区在线| 成年人午夜在线观看视频| 国产精品偷伦视频观看了| 亚洲美女搞黄在线观看| 高清av免费在线| 国产成人一区二区在线| 丰满少妇做爰视频| 天天躁夜夜躁狠狠久久av| 丝袜在线中文字幕| 一级毛片 在线播放| 欧美变态另类bdsm刘玥| 日日摸夜夜添夜夜爱| 天堂中文最新版在线下载| 99热全是精品| 亚洲欧洲国产日韩| 男人添女人高潮全过程视频| 校园人妻丝袜中文字幕| 免费观看av网站的网址| 99热这里只有是精品在线观看| 搡女人真爽免费视频火全软件| 成人综合一区亚洲| 精品少妇久久久久久888优播| 美女脱内裤让男人舔精品视频| 国产 精品1| 婷婷色综合大香蕉| 免费少妇av软件| 黑人欧美特级aaaaaa片| 九九在线视频观看精品| 少妇 在线观看| 最新中文字幕久久久久| 久久婷婷青草| 久久 成人 亚洲| 久久99一区二区三区| 妹子高潮喷水视频| 亚洲一级一片aⅴ在线观看| kizo精华| 18禁在线无遮挡免费观看视频| 欧美精品一区二区大全| 中文字幕制服av| 亚洲国产欧美在线一区| 久久久久精品人妻al黑| 老司机亚洲免费影院| 亚洲美女黄色视频免费看| 精品亚洲成国产av| 美女xxoo啪啪120秒动态图| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区国产| 国产国语露脸激情在线看| 久久精品熟女亚洲av麻豆精品| 综合色丁香网| 一级毛片黄色毛片免费观看视频| 99热这里只有是精品在线观看| 日本vs欧美在线观看视频| 久久久欧美国产精品| 美女内射精品一级片tv| 91午夜精品亚洲一区二区三区| 久久久久久人妻| 国产精品三级大全| 国产免费现黄频在线看| 97精品久久久久久久久久精品| 搡女人真爽免费视频火全软件| 午夜免费观看性视频| 久久国产亚洲av麻豆专区| 亚洲av欧美aⅴ国产| 18禁观看日本| 精品久久国产蜜桃| 黄色一级大片看看| 美女国产高潮福利片在线看| 免费在线观看黄色视频的| 男人添女人高潮全过程视频| 啦啦啦视频在线资源免费观看| 男的添女的下面高潮视频| 天天躁夜夜躁狠狠躁躁| 一级毛片电影观看| 亚洲成人av在线免费| 麻豆精品久久久久久蜜桃| 一区二区av电影网| 97超碰精品成人国产| 在线观看免费高清a一片| 男女啪啪激烈高潮av片| 伊人久久国产一区二区| 成人漫画全彩无遮挡| 日本免费在线观看一区| 韩国高清视频一区二区三区| 黑人高潮一二区| 捣出白浆h1v1| a级毛片黄视频| 久久久久精品久久久久真实原创| 80岁老熟妇乱子伦牲交| 欧美日韩国产mv在线观看视频| 国产极品天堂在线| 国产高清三级在线| av国产精品久久久久影院| 最近最新中文字幕大全免费视频 | 自拍欧美九色日韩亚洲蝌蚪91| 欧美日本中文国产一区发布| 人妻少妇偷人精品九色| 日韩制服骚丝袜av| a级片在线免费高清观看视频| 亚洲精品国产av成人精品| 街头女战士在线观看网站| 久久国产精品男人的天堂亚洲 | 久久99一区二区三区| 中文字幕免费在线视频6| 夫妻午夜视频| 亚洲成人av在线免费| 欧美丝袜亚洲另类| 国产国拍精品亚洲av在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲精品第二区| 一本色道久久久久久精品综合| 伦精品一区二区三区| 亚洲国产精品成人久久小说| 日韩制服骚丝袜av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黄色视频在线播放观看不卡| 亚洲欧美成人综合另类久久久| 亚洲欧美成人精品一区二区| 咕卡用的链子| 国产精品国产av在线观看| 性色avwww在线观看| 91aial.com中文字幕在线观看| 国产淫语在线视频| 精品国产国语对白av| 如日韩欧美国产精品一区二区三区| 国产淫语在线视频| videossex国产| 欧美日韩视频精品一区| 午夜免费观看性视频| av电影中文网址| 婷婷色综合大香蕉| 国产成人午夜福利电影在线观看| av不卡在线播放| 看非洲黑人一级黄片| 宅男免费午夜| 中文乱码字字幕精品一区二区三区| 国产麻豆69| 免费在线观看完整版高清| av女优亚洲男人天堂| 日日撸夜夜添| 久久久久国产网址| 国产精品久久久久成人av| 久久久亚洲精品成人影院| 18禁观看日本| 久久人人爽人人爽人人片va| 成年人免费黄色播放视频|