• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米鈉基蒙脫土復(fù)合超強(qiáng)機(jī)械性能雙網(wǎng)絡(luò)抗菌水凝膠

    2016-12-29 05:42:59向雙飛東為富馬丕明施冬健陳明清
    物理化學(xué)學(xué)報(bào) 2016年11期
    關(guān)鍵詞:鈉基蒙脫土機(jī)械性能

    李 婷 向雙飛 東為富 馬丕明 施冬健 陳明清

    (江南大學(xué)化學(xué)與材料工程學(xué)院,江蘇無錫214122)

    納米鈉基蒙脫土復(fù)合超強(qiáng)機(jī)械性能雙網(wǎng)絡(luò)抗菌水凝膠

    李 婷 向雙飛 東為富 馬丕明 施冬健 陳明清*

    (江南大學(xué)化學(xué)與材料工程學(xué)院,江蘇無錫214122)

    通過兩步自由基聚合法成功制備了納米蒙脫土復(fù)合雙網(wǎng)絡(luò)水凝膠。蒙脫土與陽(yáng)離子單體進(jìn)行離子交換后以離子鍵作用于凝膠網(wǎng)絡(luò)體系成為化學(xué)交聯(lián)點(diǎn),同時(shí)吸附大分子鏈作為水凝膠的物理交聯(lián)點(diǎn)。雙網(wǎng)絡(luò)結(jié)構(gòu)進(jìn)一步提高凝膠的機(jī)械性能。力學(xué)性能結(jié)果表明,隨著蒙脫土含量增加,水凝膠的楊氏模量、拉伸強(qiáng)度、壓縮模量以及壓縮強(qiáng)度提高,同時(shí)增加第一網(wǎng)絡(luò)單體濃度,雙網(wǎng)絡(luò)水凝膠的機(jī)械性能進(jìn)一步提高。掃描電鏡微觀形貌分析表明,蒙脫土的加入促進(jìn)水凝膠的網(wǎng)絡(luò)結(jié)構(gòu)更加緊密,并形成大量的纖維狀微網(wǎng)絡(luò)結(jié)構(gòu),由此,水凝膠的力學(xué)性能明顯提高。抑菌實(shí)驗(yàn)表明,因含有季銨鹽陽(yáng)離子,水凝膠對(duì)大腸桿菌以及金黃色葡萄球菌都具有良好的抑菌效果。

    納米蒙脫土;納米復(fù)合凝膠;雙網(wǎng)絡(luò);機(jī)械性能;抗菌性能

    1 Introduction

    Polymer hydrogels are hydrophilic three-dimensional polymeric networks with large amount of water which could keep a certain shape in water.Hydrogels have been used in a variety of applications1,such as separation membranes,biosensors,artificial muscles,chemical valves2,superabsorbents3,and drug delivery devices but the network defects of polymer gels often limit the maximum strain they can achieve4.In recent years,gel scientists have created several types of robust hydrogels,such as slide-ring hydrogels5,nanocomposite(NC)hydrogels6,double-network(DN) hydrogels7-11,tetra-PEG hydrogels12,macromolecular microsphere composite hydrogels13,14,and hydrophobic association hydrogels15, which are supposed to expand applications of gels.

    Double network hydrogels are regarded as one of the most robust synthetic hydrogels16.They are comprised of a rigid and brittle first network of densely-cross-linked short chains in dilute concentration and a soft and stretchable second network of looselycross-linked long chains in high concentration17.Fu et al.have combined the advantages of DN gels and NC gels to achieve silicagrafted DN gels with high mechanical properties18,in which the functional silica nanoparticles are used as macro-crosslinkers to copolymerize with the first network and subsequently swollen to host the polymerization of a second network.

    Recently,nanocomposite gels are focused as new class of hydrogels and consisting of organic/inorganic network structures with superior mechanical properties19-21.In these NC hydrogels, the dispersed clay platelets just act as physical crosslinkers and a number of flexible polymer chains are linked by them.It was considered that the polymer chains were attached to clay platelets through ionic or polar interactions22.In our previous study,we have fabricated nanocomposite double-network gels with excellent mechanical properties by compositing of carbon nanotubes (CNTs)without organic modification23.

    The aim of this work was to synthesize and characterize the double-network hydrogels which had the cationic structure exchanged with montmorillonite(MMT).MMT consists of positively charged platelets and charge-balanced anions in the interlayer.The positively charged platelets have a single-layer thickness of~1 nm24.In our paper,(3-acrylamidopropyl)trimethylammonium chloride hydrogels by compositing MMT was fabricated as the first nanocomposite network and swollen to balance in acrylamide solution,then polymerized to form the second network.It was believed that the participation of MMT into the hydrogels led to formation of a stretchable microcomplex structure due to positively charged quaternary ammonium groups connected to network matrix throughout the ionic band.In addition,the quaternary ammonium groups made the DN hydrogels show antibacterial ability,which may expand applications of the gel.

    2 Experimental

    2.1Materials

    (3-Acrylamidopropyl)trimethylammonium chloride(ATC, 74%-76%in water)was purchased fromTokyo Kasei Kogyo Co., Ltd.,Shanghai,China,N,N′-methylene-bis-acrylamide(MBAA, 99.0%),acrylamide(AAm,A.R.),2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone(Irgacure 2959,98%)and ammonium persulphate(APS,A.R.)were purchased from Aladdin Chemistry Co.Ltd.,Shanghai,China,and used as received. Montmorillonite(MMT,PGW)was supplied by Nanocor Inc., America and used as received.

    2.2Preparation

    Scheme 1 Schematic illustration of the preparation of PATC/PAAm/MMT nanocomposite DN hydrogels

    The DN hydrogels were prepared by a two-step free-radical polymerization in aqueous medium(Scheme 1).The nomenclature and compositions of DN hydrogels were summarized in Table 1. Firstly,an amount of MMT clay was dispersed in distilled water and allowed to stir for 24 h(speed of stirrer was 250 r·min-1).Then,the dispersed MMT solution was sonicated for 30 min.The cross-linking agent MBAA,the initiator Irgacure 2959,and the monomer ATC were added into an aqueous dispersion of MMT (varied at 0.5%,1%,and 2%(mass ratio of MMT to ATC)with respect to the mass of ATC).The mixture was injected into a rectangular frame of silicone rubber of a thickness of 1.5 mm which was sandwiched between two glass plates for platelike gel preparation.The polymerization was performed by irradiating UV light with a mercury lamp of 400 W for 1 h and the sample cell was set at the distance of 15 cm from the lamp.Next,these PATC gels were immersed and swollen in the second network precursor solution which contained 2 mol·L-1of AAm,0.001 mol·L-1of MBAA,and 0.002 mol·L-1ofAPS for 3 days.The swollen PATC gel was synthesized at 60°C for 10 h in a reaction container to yield a PATC/PAAm/MMT nanocomposite double-network hydrogel.

    Table 1 Composition of PATC/PAAm/MMT nanocomposite DN hydrogels

    2.3Measurements and characterization

    2.3.1 Swelling experiments

    The as-prepared three cylindrical samples with 10 mm diameter and 5 mm height were swelled in a large amount of water to reach swelling equilibrium for the swelling experiments.The swollen samples were weighed at set intervals followed by blotting off the excess water from the sample surface with a filter paper.The swelling ratios(SR)were calculated by the following equation, SR=(Ms-Md)/Md×100%,where Msand Mdwere the masses of the swollen and corresponding dried hydrogels,respectively.

    2.3.2 Tensile measurements

    Equilibrium swollen samples(in water)were used for tensile tests of DN hydrogels.All the tensile tests were carried out at 25°C in air environment and pre-cut dumbbell shaped gel samples standardized as the sizes(length of the thinner portion(L):10 mm, width of the thinner portion(b):4 mm,thickness(w):1.5-3.0 mm)were used.Tensile tests were measured with the tensile tester Instron 5960(Instron Co.)and an elongation speed of 20 mm· min-1was applied to determine the tensile properties of each sample.At least three specimens were tested for each hydrogel. Elastic modulus,yield stress,fracture stress,and ultimate strain were calculated from the stress-strain measurement.The fracture stress,defined as engineering stress,was determined as the stress at breaking point.The ultimate strain was determined as the strain at breaking point.The initial slope in the region of 0.5 m·m-1<strain<1 m·m-1of the first loading stress-strain curve was used to calculate the initial elastic modulus.The yield stress was determined as the point at which slope of stress-strain curves becomes zero,if such point was not observed,the yield stress was estimated as the point where the slope of the stress-strain curve changed dramatically.

    2.3.3 Compressive measurements

    Compressive tests were measured on cylindrical samples of 8 mm in diameter and 4-6 mm with the tensile tester Instron 5960 (Instron Co.)at 25°C.The compressive rate was 1 mm·min-1.The compressive fracture stress σfdetermined as the stress at breaking point was approximately calculated as σf=F/πR2,where R is the original radius of the specimen.The Young′s modulus(E)was determined as the slope of stress-strain curves in the region of 0 m·m-1<strain<0.1 m·m-1.The strain under compression is defined as the change in the thickness(h)relative to the original thickness(h0)of the freestanding specimen,ε=(h0-h(huán))/h0.At least three specimens were tested for each hydrogel.

    2.3.4 Scanning electron microscopy

    The micromorphology of hydrogel samples was evaluated using a Hitachi S4800 scanning electron microscope(Tokyo,Japan)at an accelerating voltage of 10 kV.Firstly,the hydrogel samples were cut into 20 mm×2 mm pieces,and rapidly quenched into liquid nitrogen and freeze-dried.Then,the samples were fractured using a cold scalpel after freeze-dried.The fractured surfaces of cross-section were observed by scanning electron microscopy (SEM)after sputter-coating with a thin gold layer.

    2.3.5 In vitro antibacterial effect

    Two bacterial strains,namely E.coli and S.aureus(from School of Pharmaceutical Science of Jiangnan University),were subjected to this analysis.They were both cultured on nutrient broth,then subcultured monthly and subsequently stored at 4°C. The strains were incubated for 24 h at 37°C on a rotary shaker in 250 mL flasks filled with 50 mL of mediums.The effect of hydrogels on Gram-negative(E.coli)and Gram-positive(S.aureus), pathogenic bacteria was investigated according to the agar diffusion method25-28.Each gel sample was placed in the middle of sterilized Petridishes after the bacterium suspension was added. All of the gel samples were incubated at 37°C for 24 h.

    3 Results and discussion

    3.1Swelling behavior

    The swelling behaviors of the PATC/PAAm/MMT nanocomposite DN hydrogels with different MMT content were shown in Fig.1.As could be seen from Fig.1(a),the swelling ratios of the hydrogels with 1%of MMT in water increased with time going until reaching equilibrium at about 30 h.With increasing the content of MMT,the equilibrium-swelling ratio(ESR)of the PATC/PAAm/MMT nanocomposite DN gels was much lower than that of neat DN gels,which was due to the fact that MMT was easily to form physical and chemical cross-linkers and increased the cross-linking degree of DN network.Thus,the ESR decreased with increasing the content of MMT.

    According to Fig.1(b),the swelling ratios of the hydrogels with 2%of MMT reached equilibrium at about 7 h,which was much faster than the gels with 1%.It was attributed to the increasing repulsion force of ionic of the monomer,which provided more space to absorb water.The ESR of nanocomposite DN gels with 1%and 2%were similar and lower than that of DN gels without MMT.However,with the MMT content of 0.5%,the ESR reached 5.44 which was similar to the ESR of neat DN gels.

    It was inferred that nano-clay could occupy the void space in gels in order to provide the space to contain more water during swelling and resulted in a more porous and higher swelling degree network23.However,2M-MMT DN hydrogels with the increasing amount of the exchange reaction between the monomer and MMT would have greater degree of crosslinking in the first network.It formed a rigid and tight skeleton so the equilibrium-swelling ratio of 2M-MMT DN hydrogels was much smaller than 1M-MMT DN hydrogels.Results indicated that the ESR of the PATC/PAAm/ MMT nanocomposite DN gels was determined to both swelling and crosslinking of MMT.

    Fig.1 Swelling curves of nanocomposite DN hydrogels composited with various MMT contents

    3.2Tensile properties

    The data of Young′s modulus,yield stress,ultimate stress,and ultimate strain for the neat and nanocomposites DN gels with different amount of ATC were listed in Table 2.The compressive stress-strain curves of DN hydrogels(ATC-1M)were shown in Fig.2.Obviously,the addition of MMTled to an increase inYoung′s modulus and yield strength.As can be seen from Fig.2(a),the yield strength increased from 0.37 MPa for neat DN gel to 0.54 MPa for MMT-1.0.With further increase to the amount of MMT, all of Young′s modulus,yield stress,and ultimate stress decreased while the ultimate strain increased.Since the exchange reaction between cationic monomer and MMT increased,the hydrophilicity of modified MMT decreased slightly and a small part of the modified MMT may aggregate in the system during the preparation of the gel,which caused the stress concentration.So the yield strength and ultimate stress decreased when the mass ratio of MMT toATC increased from 1%to 2%.Furthermore,yielding phenomenon was observed in the DN gels,which showed necking phenomena during stretching.On tensile tests of DN gels that made from relatively sparse(fragile)first networks,narrowing zones(“necks”)appeared in the sample and grew up with further stretching,as shown in Fig.2(b).

    Table 2 Ttensile properties of the PATC/PAAm/MMT nanocomposite DN hydrogels

    Fig.2 (a)Tensile stress-strain curves of the PATC/PAAm/MMT nanocomposite DN hydrogels; (b)pictures demonstrating the necking process

    The improvement in tensile properties might be explained as the follows:(1)there were the strong physical interactions between polymer chains and MMT,and MMT could be used as physical cross-linkers;and(2)MMT clay into the hydrogels led to formation of a stretchable microcomplex structure due to positively charged quaternary ammonium groups connected to network matrix throughout the covalent bonds.So besides the crosslinker N,N′-methylene-bis-acrylamide,MMT clay also played a role as chemical cross-linkers,and reinforce the hydrogels.

    Fig.3 showed effects of different MMT content on mechanical properties of hydrogels with different amount of ATC.As shown in Fig.3,the ultimate stress increased from 0.4 MPa for 1M-MMT-2.0 gel to 1.74 MPa for 2M-MMT-2.0 gel,but decreased in ultimate strain.Compared with the gel withATC-1M,the addition of ATC may enhance ultimate stress obviously,however,there was a decrease in ultimate strain.It was due to the rigid and brittle first network which comprised of ATC.The mechanical properties of DN hydrogels were determined both by the first network and the second network.Hydrogels with smaller equilibrium-swelling ratio and greater degree of crosslinking in the first network would have the higher tensile strength than others.Since the increase content of cationic monomer and the exchange reaction between the monomer and MMT,the first network formed with the greater degree of crosslinking that increased tensile strength and modulus of the nanocomposite DN hydrogels.

    3.3 Compressive properties

    Fig.3 Ultimate stress and ultimate strain of PATC/PAAm/MMT nanocomposite DN hydrogels as a function of MMT content

    The compressive stress-strain curves were shown in Fig.4,and the data of mechanical properties were summarized in Table 3.As shown in Fig.4,the compressive strengths(at 0.90 and 0.99 m·m-1strain)of the gels with MMT were higher than the neat gels. Furthermore,when the content of MMT was 1%,the compressive stress of the PATC/PAAm/MMT nanocomposite DN hydrogels significantly increased from 13.48 to 18.36 MPa at a strain of 0.99 m·m-1.However,the mechanical properties for PATC/PAAm/ MMT nanocomposite DN hydrogels decreased with further increasing the amount of MMT clay.This was probably a consequence of local concentration of stress and a similar phenomenon had been reported in previous studies32.It was clear that the PATC/PAAm/MMT nanocomposite DN hydrogels exhibited superior strength and toughness.

    Fig.4 Compressive stress-strain curves for PATC/PAAm/MMT nanocomposite DN hydrogels

    Table 3 Compressive properties of PATC/PAAm/MMT nanocomposite DN hydrogels

    According to Fig.5,there was an increase in the compressive stress of the hydrogel at a strain of 0.99 m·m-1with the addition of ATC which was owing to a rigid and brittle first network of ATC.Hydrogels with smaller equilibrium-swelling ratio and greater degree of crosslinking in the first network would have the higher mechanical properties than others.The increase amount of the exchange reaction between ATC and MMT made the first network form a rigid skeleton which increased compressive properties of the hydrogels.

    3.4Morphology

    Fig.6 showed the SEM micrographs of freeze-dried the PATC/ PAAm/MMT nanocomposite DN gels with different MMT contents.It was quite clear that neat PATC/PAAm hydrogel exhibited somewhat porous structure with micro-network structures.With further increasing of the amount of MMT,the porous became irregular.Similarly,there were large quantities of micro-network structures located in the pores.

    As can be seen from Fig.6,when the content of MMT was 1%, a large amount of micro-network structures located on the pore walls,which was more than the pores without MMT.As reported previously,the formation of embedded micro-network structures led to increase in the compressive strength and toughness23,29-31. The compressive stress of PATC/PAAm DN gels was 13.48 MPa at a fracture strain of 0.99 m·m-1,whereas that of nanocomposite DN hydrogel with 1%MMT reached 18.36 MPa at a strain of 0.99 m·m-1.It seems that the addition of MMT may improve mechanical properties of nanocomposite DN hydrogels.

    Unlike the neat PATC/PAAm,which had a common large-pore structure at the micrometer scale,the present NC xerogels with 2% MMT displayed a layered pore structure with the further increasing of the amount of MMT.Inside the microporous structure, a great many micro-network structures were present(Fig.6).MMT played a role as physical and chemical cross-linkers,which immobilized part of the networks during swelling which may lead to the formation of micro-network structures.The formation of embedded micro-network structures would make a contribution to an improvement in mechanical properties of the hydrogels.

    3.5Antibacterial ability of the nanocomposite DN hydrogels

    Fig.5 Compressive stress of the hydrogel at a strain of 0.99 m·m-1of PATC/PAAm/MMT nanocomposite DN hydrogels as a function of MMT content

    The antibacterial test resulted for DN hydrogels were shown in Fig.7 and the data were obviously shown in Table 4.The diameter of inhibition ring(Ri)was calculated as Ri=Rt-Rh,where Rtwas the diameter of the tests and Rhwas the diameter of the DN hydrogels.As a control,the pure AAm/AAm DN hydrogel showed no inhibition ability.As can be seen from the size of inhibitionzones,similar antibacterial activity was observed for E.coli and S.aureus.It was noticed that higher inhibition zone sizes against all strains were observed with 2M-MMT-0 DN hydrogels which had more amounts ofATC than others.Hence,it can be also stated thatATC would be the effective antimicrobial components.

    Fig.6 SEM micrographs of the PATC/PAAm/MMT nanocomposite DN hydrogels

    Fig.7 Antibacterial test results for E.coli(A)and S.aureus(B)after 24 h incubation

    Table 4 Diameter of inhibition ring ofAAm/AAm DN hydrogels and PATC/PAAm/MMT nanocomposite DN hydrogels

    4 Conclusions

    The nanocomposite DN hydrogels had been successfully prepared by free radical copolymerization of cationic monomer (ATC)and acrylamide in presence of nano Na-montmorillonite. It was believed that the participation of MMT into the hydrogels led to formation of a stretchable microcomplex structure due to positively charged quaternary ammonium groups connected to network matrix throughout the ionic band.Besides MMT,double networks also played an important part to improve the mechanical properties of the hydrogels.In addition,the quaternary ammonium groups made the DN hydrogels show antibacterial ability,which may expand applications of gels.

    (1) Jin,S.P.;Liu,M.Z.;Chen,S.L.;Bian,F.L.;Chen,Y.;Wang, B.;Zhan,F.L.;Liu,S.X.Acta Phys.-Chim.Sin.2007,23(3), 438.[金淑萍,柳明珠,陳世蘭,卞鳳玲,陳 勇,王 斌,詹發(fā)祿,劉守信.物理化學(xué)學(xué)報(bào),2007,23(3),438.]doi:10.3866/ PKU.WHXB20070330

    (2) Arndt,K.F.;Kuckling,D.;Richter,A.Polym.Adv.Technol. 2000,11(8-12),496.doi:10.1002/1099-1581(200008/12)11:8/ 12<496::AID-PAT996>3.3.CO;2-Z

    (3) Liu,Y.;Xie,J.;Zhu,M.;Zhang,X.Macromol.Mater.Eng. 2002,69(289),1074.doi:10.1002/mame.200400154

    (4) Calvert,P.Adv.Mater.2009,21(7),743.doi:10.1002/ adma.200800534

    (5) Okumura,Y.;Ito,K.Adv.Mater.2001,13(7),485.doi:10.1002/ 1521-4095(200104)13:7<485::AID-ADMA485>3.0.CO;2-T

    (6) Haraguchi,K.;Takehisa,T.Adv.Mater.2002,14(16),1120. doi:10.1002/1521-4095(20020816)14:16<1120::AIDADMA1120>3.0.CO;2-9

    (7) Nakajima,T.;Kurokawa,T.;Ahmed,S.;Wu,W.L.;Gong,J.P. Soft Matter 2013,9,1955.doi:10.1039/c2sm27232f

    (8) Nakajima,T.;Fukuda,Y.;Kurokawa,T.;Sakai,T.;Chung,U.; Gong,J.P.ACS Macro Lett.2013,2(6),1293.doi:10.1021/ mz4002047

    (9) Ronken,S.;Wirz,D.;Daniels,A.U.;Kurokawa,T.;Gong,J.P.; Arnold,M.P.Biomech.Model.Mechan.2013,12(2),243. doi:10.1007/s10237-012-0395-6

    (10) Liu,H.X.;Zhang,L.H.;Tan,Y.Y.;Wei,C.;Lü,J.;Yu,C.B. Acta Polym.Sin.2013,12,1573.[劉紅霞,張麗華,譚玉園,韋春,呂 建,余傳柏.高分子學(xué)報(bào),2013,12,1573.]doi: 10.3724/SP.J.1105.2013.13205

    (11) Tian,S.;Shan,G.R.;Wang,L.Y.Acta Polym.Sin.2010,10, 1175.[田 帥,單國(guó)榮,王露一.高分子學(xué)報(bào),2010,10,1175.] doi:10.3724/SP.J.1105.2010.09372

    (12) Zu,G.Q.;Shen,J.;Wang,W.Q.;Zou,L.P.;Xu,W.W.;Zhang, Z.H.Acta Phys.-Chim.Sin.2015,31(2),360.[祖國(guó)慶,沈軍,王文琴,鄒麗萍,許維維,張志華.物理化學(xué)學(xué)報(bào),2015,31 (2),360.]doi:10.3866/PKU.WHXB201412243

    (13) Malkoch,M.;Vestberg,R.;Gupta,N.;Mespouille,L.;Dubois, P.;Mason,A.F.;Hedrick,J.L.;Liao,Q.;Frank,C.W.; Kingsbury,K.;Hawker,C.J.Chem.Commun.2006,26(26), 2774.doi:10.1039/b603438a

    (14) Huang,T.;Xu,H.;Jiao,K.;Zhu,L.;Brown,H.;Wang,H.Adv. Mater.2007,19(12),1622.doi:10.1002/adma.200602533

    (15) Jiang,G.;Liu,C.;Liu,X.;Zhang,G.;Yang,M.;Liu,F.Macromol.Mater.Eng.2009,294(12),815.doi:10.1002/ mame.200900160

    (16) Gong,J.P.Soft Matter 2010,6,2583.doi:10.1039/b924290b

    (17) Ahmed,S.;Nakajima,T.;Kurokawa,T.;Haque,M.A.;Gong,J. P.Polymer 2014,55(3),914.doi:10.1016/j. polymer.2013.12.066

    (18) Wang,Q.;Hou,R.X.;Cheng,Y.J.;Fu,J.Soft Matter 2012,8, 6048.doi:10.1039/C2SM07233E

    (19) Haraguchi,K.;Song,L.Macromolecules 2007,40(15),5526. doi:10.1021/ma070695p

    (20) Hu,Z.;Chen,G.Adv.Mater.2014,26(34),5950.doi:10.1002/ adma.201400179

    (21) Shen,M.;Li,L.;Sun,Y.;Xu,J.;Guo,X.;Prud′Homme,R.K. Langmuir 2014,30(6),1636.doi:10.1021/la4045623

    (22) Haraguchi,K.;Li,H.J.;Matsuda,K.;Takehisa,T.;Elliott,E. Macromolecules 2005,38(8),33.doi:10.1021/ma047431c

    (23) Dong,W.F.;Huang,C.G.;Wang,Y.;Sun,Y.J.;Ma,P.M.; Chen,M.Q.Int.J.Mol.Sci.2013,14(11),22380.doi:10.3390/ ijms141122380

    (24) Dalaran,M.;Emik,S.;Gü?lü,G.;?yim,T.B.;?zgümü?,S. Desalination 2011,279(s1-3),170.doi:10.1016/j. desal.2011.06.004

    (25) Lalani,R.;Liu,L.Biomacromolecules 2012,13(6),1853. doi:10.1021/bm300345e

    (26) Zhao,J.;Ma,L.;Millians,W.;Wu,T.;Ming,W.H.ACS Appl. Mater.Interfaces 2016,8,8737.doi:10.1021/acsami.6b00748

    (27) Wang,M.Z.;Wang,T.;Yuan,K.;Du,J.Z.Chin.J.Polym.Sci. 2016,34(1),44.doi:10.1007/s10118-016-1725-4

    (28) Zhou,C.C.;Wang,M.Z.;Zou,K.D.;Chen,J.;Zhu,Y.Q.;Du, J.Z.ACS Macro Lett.2013,2,1021.doi:10.1021/mz400480z

    (29) Wang,Q.;Hou,R.X.;Cheng,Y.J.;Fu,J.Soft Matter 2012,8, 6048.doi:10.1039/C2SM07233E

    (30) Huang,M.;Furukawa,H.;Tanaka,Y.;Nakajima,T.;Osada,Y.; Gong,J.P.Macromolecules 2007,40(18),6658.doi:10.1021/ ma062482q

    (31) Nakajima,T.;Furukawa,H.;Tanaka,Y.;Nakajima,T.;Osada, Y.;Gong,J.P.Macromolecules 2009,42(6),2184.doi:10.1021/ ma802148p

    (32) Li,T.;Xiang,S.F.;Ma,P.M.;Bai,H.Y.;Dong,W.F.;Chen,M. Q.J.Polym.Sci.Pol.Phys.2015,53(14),1020. doi:10.1002/polb.23732

    Double-Network Hydrogel Consisting of Nano Na-Montmorillonite with Enhanced Mechanical and Antimicrobial Properties

    LITing XIANG Shuang-Fei DONG Wei-Fu MAPi-Ming SHIDong-Jian CHEN Ming-Qing*
    (School of Chemical and Material Engineering,Jiangnan University,Wuxi 214122,Jiangsu Province,P.R.China)

    (3-Acrylamidopropyl)trimethylammonium chloride(ATC),acrylamide and montmorillonite(MMT) without organic modification were synthesized through free radical polymerization to strengthen the mechanical properties of hydrogels.MMT platelets were considered as chemical“plane”cross-linkers different from“point”cross-linkers because of the cation-exchange reaction between MMT and ATC(cationic monomer) during the synthesis of hydrogels,while a double network was used to improve the mechanical properties of the hydrogels.Investigations of compressive and tensile properties indicated that compressive modulus and stress,fracture stress,ultimate strain and Young′s modulus were significantly improved in the presence of MMT. The mechanical properties of double-network hydrogels improved with increasing monomer concentration of the first network.Scanning electron microscopy(SEM)revealed that large quantities of micro-network structures were located in the pores and the formation of embedded micro-network structures led to an increase in the compressive strength and toughness.Moreover,the gels with ATC exhibited good antibacterial effects against E.coli and S.aureus.These developments provide a new route to prepare hydrogels with high mechanical properties.

    Montmorillonite;Nanocomposite hydrogel;Double-network;Mechanical property; Antibacterial property

    O648

    10.3866/PKU.WHXB201608261

    Received:June 29,2016;Revised:August 26,2016;Published online:August 26,2016.

    *Corresponding author.Email:mq-chen@jiangnan.edu.cn;Tel:+86-510-85917763.

    The project was supported by the National Natural Science Foundation of China(51373070),Research Project of Chinese Ministry of Education, China(113034A),and Fundamental Research Funds for the Central Universities,China(JUSRP51624A).

    國(guó)家自然科學(xué)基金(51373070),教育部科學(xué)技術(shù)研究項(xiàng)目(113034A)及中央高?;究蒲谢?JUSRP51624A)資助

    猜你喜歡
    鈉基蒙脫土機(jī)械性能
    鈉基蒙脫土有機(jī)化改性及其在PA66中的應(yīng)用
    Nd摻雜氧化鋅/蒙脫土復(fù)合材料的制備及其催化活性研究
    云南化工(2020年11期)2021-01-14 00:50:46
    鈉基膨潤(rùn)土改性水泥砂漿基本性能研究
    高壓電纜大截面分割導(dǎo)體焊接后的機(jī)械性能及緩沖阻水層設(shè)計(jì)
    電線電纜(2018年4期)2018-08-31 05:57:30
    硫化溫度對(duì)硅橡膠絕緣線機(jī)械性能的影響
    電線電纜(2018年2期)2018-05-19 02:03:43
    改性蒙脫土處理電鍍廢水中Cr(VI)的研究
    CO2插層作用下有機(jī)蒙脫土膨脹/結(jié)構(gòu)行為的分子模擬
    γ射線輻照對(duì)超高分子量聚乙烯片材機(jī)械性能和結(jié)晶度的影響
    核技術(shù)(2016年4期)2016-08-22 09:05:24
    天然鈉基膨潤(rùn)土防水毯在人工湖(龍子湖)工程中的應(yīng)用
    亞臨界電站鍋爐高溫過熱器管屏機(jī)械性能研究
    河南科技(2014年8期)2014-02-27 14:07:50
    色综合站精品国产| 99香蕉大伊视频| 精品一区二区三区av网在线观看| 国产免费现黄频在线看| 99国产精品一区二区蜜桃av| 亚洲第一av免费看| 不卡一级毛片| 国产成+人综合+亚洲专区| 国产精品美女特级片免费视频播放器 | 国产又爽黄色视频| 激情视频va一区二区三区| av天堂久久9| 久久人妻av系列| 成人18禁高潮啪啪吃奶动态图| 精品午夜福利视频在线观看一区| 成人三级做爰电影| 国产精品爽爽va在线观看网站 | 最近最新中文字幕大全免费视频| 亚洲激情在线av| 美女大奶头视频| 999精品在线视频| 亚洲av成人一区二区三| 丁香六月欧美| 99久久综合精品五月天人人| 国产午夜精品久久久久久| 久久精品国产99精品国产亚洲性色 | 99久久久亚洲精品蜜臀av| 可以在线观看毛片的网站| 女警被强在线播放| 夜夜爽天天搞| 一个人免费在线观看的高清视频| 国产xxxxx性猛交| 制服人妻中文乱码| 女同久久另类99精品国产91| 久久久久久久久中文| 成熟少妇高潮喷水视频| 久久久久九九精品影院| 国产av精品麻豆| 80岁老熟妇乱子伦牲交| 大型黄色视频在线免费观看| 国产精品一区二区精品视频观看| 成人特级黄色片久久久久久久| 日韩国内少妇激情av| 99国产精品一区二区三区| 成人永久免费在线观看视频| 国产精品电影一区二区三区| 最近最新中文字幕大全电影3 | 久久香蕉激情| 国产欧美日韩综合在线一区二区| 日本撒尿小便嘘嘘汇集6| tocl精华| 日韩大码丰满熟妇| 天堂中文最新版在线下载| 亚洲专区中文字幕在线| 欧美人与性动交α欧美精品济南到| 在线观看午夜福利视频| 欧美日韩亚洲综合一区二区三区_| 国产又爽黄色视频| 中文字幕精品免费在线观看视频| 1024视频免费在线观看| av免费在线观看网站| 国产高清videossex| 一级作爱视频免费观看| 视频在线观看一区二区三区| 久久中文字幕人妻熟女| 18禁观看日本| 欧美成人性av电影在线观看| 日韩欧美一区二区三区在线观看| 国产精品影院久久| 麻豆成人av在线观看| 91九色精品人成在线观看| 人妻久久中文字幕网| 纯流量卡能插随身wifi吗| 人妻久久中文字幕网| av片东京热男人的天堂| tocl精华| 又大又爽又粗| 电影成人av| 亚洲狠狠婷婷综合久久图片| 亚洲成人免费av在线播放| 亚洲 欧美一区二区三区| 黄片播放在线免费| 成人18禁高潮啪啪吃奶动态图| 免费在线观看亚洲国产| 精品熟女少妇八av免费久了| 精品第一国产精品| 日韩中文字幕欧美一区二区| 日韩欧美三级三区| 精品免费久久久久久久清纯| 日韩视频一区二区在线观看| 91精品三级在线观看| 久热这里只有精品99| 久久午夜综合久久蜜桃| 99久久国产精品久久久| 在线观看一区二区三区激情| 国产精品乱码一区二三区的特点 | 精品国产乱子伦一区二区三区| 777久久人妻少妇嫩草av网站| 激情视频va一区二区三区| 少妇被粗大的猛进出69影院| 亚洲性夜色夜夜综合| 日韩欧美免费精品| 久久99一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 天天躁狠狠躁夜夜躁狠狠躁| 国产精品久久久久久人妻精品电影| 日韩欧美在线二视频| 亚洲中文字幕日韩| 久久精品人人爽人人爽视色| av网站在线播放免费| 午夜激情av网站| 国产真人三级小视频在线观看| 一个人免费在线观看的高清视频| 一边摸一边抽搐一进一小说| 性少妇av在线| 国产精品一区二区免费欧美| 一边摸一边抽搐一进一出视频| 亚洲欧洲精品一区二区精品久久久| 免费看十八禁软件| 国产成人av教育| 国产成人啪精品午夜网站| svipshipincom国产片| 可以在线观看毛片的网站| svipshipincom国产片| 亚洲精品久久午夜乱码| 热re99久久精品国产66热6| 午夜a级毛片| 男女下面插进去视频免费观看| 欧美丝袜亚洲另类 | 一区二区三区国产精品乱码| 久久久久国产精品人妻aⅴ院| 悠悠久久av| 深夜精品福利| 免费看十八禁软件| 校园春色视频在线观看| 成人影院久久| 国产激情欧美一区二区| 看黄色毛片网站| 欧美大码av| 亚洲成av片中文字幕在线观看| 国产亚洲欧美在线一区二区| 亚洲人成伊人成综合网2020| 啦啦啦在线免费观看视频4| 少妇粗大呻吟视频| 岛国视频午夜一区免费看| 一边摸一边抽搐一进一小说| svipshipincom国产片| 91在线观看av| 亚洲熟女毛片儿| 国产xxxxx性猛交| 欧美日韩亚洲综合一区二区三区_| 免费不卡黄色视频| 日日夜夜操网爽| 欧美国产精品va在线观看不卡| 日本免费一区二区三区高清不卡 | 亚洲成人国产一区在线观看| 亚洲七黄色美女视频| 夜夜夜夜夜久久久久| 窝窝影院91人妻| 手机成人av网站| 国产精品偷伦视频观看了| 国产亚洲精品久久久久5区| 欧美日韩视频精品一区| 狂野欧美激情性xxxx| 黑人操中国人逼视频| 日韩中文字幕欧美一区二区| 久久国产精品男人的天堂亚洲| 欧美黑人欧美精品刺激| 俄罗斯特黄特色一大片| 这个男人来自地球电影免费观看| 最新在线观看一区二区三区| 精品久久久久久久久久免费视频 | 久久亚洲真实| 久久精品成人免费网站| 美女扒开内裤让男人捅视频| 男男h啪啪无遮挡| 水蜜桃什么品种好| 欧美激情极品国产一区二区三区| 成人亚洲精品av一区二区 | 极品人妻少妇av视频| 欧美激情久久久久久爽电影 | 国产精品久久视频播放| 国产精品电影一区二区三区| 国产精品国产av在线观看| 18禁裸乳无遮挡免费网站照片 | 国产成人av教育| 美女国产高潮福利片在线看| 亚洲成av片中文字幕在线观看| 夜夜夜夜夜久久久久| 亚洲五月色婷婷综合| 久久久国产精品麻豆| 法律面前人人平等表现在哪些方面| 欧美亚洲日本最大视频资源| 电影成人av| 一级毛片精品| 久热这里只有精品99| 欧美成狂野欧美在线观看| 91在线观看av| 天堂√8在线中文| 亚洲成国产人片在线观看| 成人特级黄色片久久久久久久| 免费高清在线观看日韩| xxxhd国产人妻xxx| 日韩欧美一区视频在线观看| 色婷婷av一区二区三区视频| 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 久久 成人 亚洲| 在线观看一区二区三区| 桃色一区二区三区在线观看| 又紧又爽又黄一区二区| 成人亚洲精品一区在线观看| 三级毛片av免费| 热re99久久国产66热| 久久久久久久久免费视频了| 他把我摸到了高潮在线观看| 免费高清视频大片| 一夜夜www| 男人操女人黄网站| 性欧美人与动物交配| 久久 成人 亚洲| 老汉色∧v一级毛片| 国产高清激情床上av| 国产亚洲欧美在线一区二区| 老鸭窝网址在线观看| 亚洲精品国产一区二区精华液| 午夜日韩欧美国产| 久久婷婷成人综合色麻豆| 日本黄色日本黄色录像| 69精品国产乱码久久久| 免费一级毛片在线播放高清视频 | 精品国产国语对白av| 成人国语在线视频| 中出人妻视频一区二区| 欧美国产精品va在线观看不卡| 久久欧美精品欧美久久欧美| a级片在线免费高清观看视频| 午夜福利在线观看吧| 日日摸夜夜添夜夜添小说| 在线视频色国产色| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| 日韩免费av在线播放| 18禁美女被吸乳视频| 成人三级做爰电影| 老司机亚洲免费影院| 男女午夜视频在线观看| 亚洲一码二码三码区别大吗| 丰满迷人的少妇在线观看| 韩国精品一区二区三区| 国产有黄有色有爽视频| 美女 人体艺术 gogo| 99久久99久久久精品蜜桃| 亚洲成人免费电影在线观看| 日韩成人在线观看一区二区三区| 国产精品二区激情视频| 高清在线国产一区| av欧美777| 日韩一卡2卡3卡4卡2021年| 亚洲五月色婷婷综合| 欧美日韩乱码在线| svipshipincom国产片| 97人妻天天添夜夜摸| 免费少妇av软件| 超碰97精品在线观看| 成人免费观看视频高清| 老司机午夜福利在线观看视频| 国产精品98久久久久久宅男小说| 久久天堂一区二区三区四区| 免费看十八禁软件| 国产精品久久久av美女十八| 亚洲中文av在线| tocl精华| 美国免费a级毛片| 国产av一区二区精品久久| 久久人妻熟女aⅴ| 最新在线观看一区二区三区| 在线观看免费高清a一片| 身体一侧抽搐| 宅男免费午夜| 91国产中文字幕| 精品国产乱子伦一区二区三区| 丰满饥渴人妻一区二区三| 十八禁网站免费在线| 久久久国产成人免费| 在线观看免费高清a一片| 又黄又粗又硬又大视频| 精品福利观看| 国产主播在线观看一区二区| 午夜精品在线福利| 午夜日韩欧美国产| 一本综合久久免费| 国产高清国产精品国产三级| 天堂俺去俺来也www色官网| 久久久久久久午夜电影 | 老司机在亚洲福利影院| 美女高潮喷水抽搐中文字幕| 很黄的视频免费| 国产伦一二天堂av在线观看| 大型黄色视频在线免费观看| 黄片小视频在线播放| 中文欧美无线码| 精品一区二区三区av网在线观看| 伊人久久大香线蕉亚洲五| 亚洲欧美激情在线| 人人妻,人人澡人人爽秒播| 高潮久久久久久久久久久不卡| 国产精品98久久久久久宅男小说| 一二三四社区在线视频社区8| 精品久久蜜臀av无| 亚洲一区二区三区色噜噜 | 男女下面插进去视频免费观看| 久久久国产成人精品二区 | 亚洲人成77777在线视频| 久久久久久亚洲精品国产蜜桃av| 熟女少妇亚洲综合色aaa.| 一级片免费观看大全| 老司机福利观看| 亚洲欧美激情在线| 国产欧美日韩一区二区三| 久久九九热精品免费| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 中文字幕人妻丝袜制服| av网站在线播放免费| 97人妻天天添夜夜摸| 19禁男女啪啪无遮挡网站| 欧美日韩一级在线毛片| 国产1区2区3区精品| 村上凉子中文字幕在线| 又大又爽又粗| 咕卡用的链子| 免费少妇av软件| 母亲3免费完整高清在线观看| 国产日韩一区二区三区精品不卡| 夜夜躁狠狠躁天天躁| 日韩成人在线观看一区二区三区| 成年人免费黄色播放视频| 人人妻人人澡人人看| 一级毛片高清免费大全| 91成人精品电影| 最近最新免费中文字幕在线| 夜夜躁狠狠躁天天躁| 嫩草影视91久久| 国产精品 国内视频| 丰满迷人的少妇在线观看| 午夜成年电影在线免费观看| 激情视频va一区二区三区| 丝袜美腿诱惑在线| 国产人伦9x9x在线观看| 成人特级黄色片久久久久久久| 黄色视频,在线免费观看| 搡老乐熟女国产| 91字幕亚洲| 精品福利永久在线观看| 亚洲在线自拍视频| 日本五十路高清| 国产精品久久视频播放| 一级毛片女人18水好多| 男人舔女人下体高潮全视频| 一夜夜www| 亚洲情色 制服丝袜| 日韩免费av在线播放| 一个人观看的视频www高清免费观看 | 亚洲精品久久成人aⅴ小说| av超薄肉色丝袜交足视频| 成人影院久久| 亚洲成人免费av在线播放| 国产欧美日韩一区二区精品| 欧美 亚洲 国产 日韩一| 黄色女人牲交| 日韩三级视频一区二区三区| 国产高清激情床上av| 超色免费av| 岛国在线观看网站| 国产有黄有色有爽视频| 黄色毛片三级朝国网站| 免费av毛片视频| 日韩欧美在线二视频| av中文乱码字幕在线| 女警被强在线播放| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| 亚洲精品久久午夜乱码| 久热这里只有精品99| 亚洲人成电影免费在线| 97人妻天天添夜夜摸| 亚洲精品美女久久久久99蜜臀| 在线av久久热| 久久精品国产综合久久久| av片东京热男人的天堂| 又黄又爽又免费观看的视频| 亚洲av成人av| 中出人妻视频一区二区| 亚洲精品中文字幕在线视频| 亚洲av第一区精品v没综合| 黄色怎么调成土黄色| 无遮挡黄片免费观看| 视频在线观看一区二区三区| 欧美乱色亚洲激情| 国产一区二区三区在线臀色熟女 | 涩涩av久久男人的天堂| 99久久国产精品久久久| 成人特级黄色片久久久久久久| 一级,二级,三级黄色视频| 久久精品亚洲熟妇少妇任你| 久久久水蜜桃国产精品网| 精品久久久久久久久久免费视频 | 亚洲欧美一区二区三区黑人| 国产日韩一区二区三区精品不卡| 亚洲少妇的诱惑av| 一级,二级,三级黄色视频| av片东京热男人的天堂| 久久久久久久精品吃奶| 久久久久久久精品吃奶| 久久国产精品人妻蜜桃| 亚洲国产毛片av蜜桃av| 日韩大码丰满熟妇| 国产成人免费无遮挡视频| 黄色女人牲交| 精品欧美一区二区三区在线| 日韩欧美国产一区二区入口| 欧美日韩视频精品一区| 亚洲 欧美 日韩 在线 免费| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合一区二区三区| 精品国产乱子伦一区二区三区| 午夜免费成人在线视频| 69精品国产乱码久久久| 久久久久久免费高清国产稀缺| 最近最新中文字幕大全免费视频| 免费在线观看视频国产中文字幕亚洲| 国产精品爽爽va在线观看网站 | 女同久久另类99精品国产91| 国产亚洲精品久久久久5区| 国产97色在线日韩免费| bbb黄色大片| 亚洲午夜精品一区,二区,三区| 国产精品九九99| 久久午夜综合久久蜜桃| 一区福利在线观看| 免费在线观看黄色视频的| 天堂俺去俺来也www色官网| 亚洲一码二码三码区别大吗| 一级毛片女人18水好多| 搡老岳熟女国产| 欧美成人免费av一区二区三区| 成人国产一区最新在线观看| 久久久久九九精品影院| 国产精品免费视频内射| 免费人成视频x8x8入口观看| 手机成人av网站| 电影成人av| 九色亚洲精品在线播放| 欧美在线一区亚洲| 老熟妇乱子伦视频在线观看| 一边摸一边做爽爽视频免费| 十分钟在线观看高清视频www| 不卡一级毛片| 在线看a的网站| 亚洲午夜理论影院| 成人免费观看视频高清| 日韩大尺度精品在线看网址 | 亚洲成人免费电影在线观看| 免费搜索国产男女视频| 免费在线观看视频国产中文字幕亚洲| 女性生殖器流出的白浆| 夜夜躁狠狠躁天天躁| 久久精品aⅴ一区二区三区四区| 最新在线观看一区二区三区| 自线自在国产av| 国产一区二区三区在线臀色熟女 | 国产成人欧美在线观看| 国产一区二区三区视频了| 国产伦人伦偷精品视频| 精品久久久久久久久久免费视频 | 国产黄色免费在线视频| 亚洲五月色婷婷综合| 亚洲一区二区三区欧美精品| 欧美精品亚洲一区二区| 男女下面插进去视频免费观看| 亚洲欧美一区二区三区久久| 久久精品人人爽人人爽视色| 热re99久久国产66热| 色综合站精品国产| 真人做人爱边吃奶动态| 一个人免费在线观看的高清视频| 99国产精品99久久久久| 搡老岳熟女国产| 婷婷丁香在线五月| 日韩成人在线观看一区二区三区| 操美女的视频在线观看| 亚洲欧美精品综合一区二区三区| 亚洲国产欧美网| 日本欧美视频一区| 热99re8久久精品国产| 亚洲国产欧美日韩在线播放| 超色免费av| 亚洲五月色婷婷综合| 欧美成人性av电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 99精国产麻豆久久婷婷| 99久久99久久久精品蜜桃| 女生性感内裤真人,穿戴方法视频| 欧美大码av| 亚洲,欧美精品.| 国产高清国产精品国产三级| 国产欧美日韩一区二区三| 色尼玛亚洲综合影院| 日韩精品免费视频一区二区三区| 欧美人与性动交α欧美精品济南到| 国产成人影院久久av| 午夜福利影视在线免费观看| www.999成人在线观看| 91麻豆av在线| 一级a爱片免费观看的视频| 午夜老司机福利片| 三上悠亚av全集在线观看| 国产av又大| 在线观看www视频免费| 一级,二级,三级黄色视频| 变态另类成人亚洲欧美熟女 | 久久人妻av系列| 久久久国产欧美日韩av| e午夜精品久久久久久久| 免费少妇av软件| 黑人猛操日本美女一级片| 亚洲视频免费观看视频| 高潮久久久久久久久久久不卡| 99在线人妻在线中文字幕| 国产激情欧美一区二区| 大陆偷拍与自拍| 99久久99久久久精品蜜桃| 日韩欧美免费精品| 国产精品乱码一区二三区的特点 | 丝袜美腿诱惑在线| 久久精品亚洲精品国产色婷小说| 一二三四社区在线视频社区8| 人人妻人人爽人人添夜夜欢视频| 桃色一区二区三区在线观看| 日韩精品青青久久久久久| 性少妇av在线| 国产又色又爽无遮挡免费看| 久久草成人影院| 波多野结衣av一区二区av| 首页视频小说图片口味搜索| 无遮挡黄片免费观看| av网站在线播放免费| 国产精品国产av在线观看| 日韩大尺度精品在线看网址 | 新久久久久国产一级毛片| 国产97色在线日韩免费| 亚洲片人在线观看| 黑人欧美特级aaaaaa片| 女性生殖器流出的白浆| 午夜91福利影院| 一a级毛片在线观看| 亚洲男人的天堂狠狠| av视频免费观看在线观看| 久久久久精品国产欧美久久久| 一区二区日韩欧美中文字幕| 久久草成人影院| 国产主播在线观看一区二区| 成人18禁高潮啪啪吃奶动态图| 亚洲第一青青草原| 久久青草综合色| 午夜福利免费观看在线| 丝袜美足系列| 久久人妻福利社区极品人妻图片| 亚洲一区二区三区不卡视频| 性色av乱码一区二区三区2| 9热在线视频观看99| 99国产精品一区二区蜜桃av| 夜夜躁狠狠躁天天躁| 午夜福利影视在线免费观看| 日韩视频一区二区在线观看| 99国产精品一区二区三区| 中国美女看黄片| 12—13女人毛片做爰片一| x7x7x7水蜜桃| 91成人精品电影| 可以免费在线观看a视频的电影网站| 精品人妻在线不人妻| 日韩大尺度精品在线看网址 | 国产精品一区二区三区四区久久 | 国产精品久久久人人做人人爽| 黄色丝袜av网址大全| 岛国视频午夜一区免费看| 脱女人内裤的视频| 久久精品人人爽人人爽视色| 一本综合久久免费| 久久精品91无色码中文字幕| 亚洲成人久久性| 亚洲成国产人片在线观看| 亚洲精品一二三| 精品国产国语对白av| 一级片免费观看大全| 黄色 视频免费看| 国产麻豆69| 国产xxxxx性猛交| 国内久久婷婷六月综合欲色啪| 久久天堂一区二区三区四区| 黄片大片在线免费观看| 欧美中文综合在线视频| 日本 av在线| 黄色怎么调成土黄色| av有码第一页| 757午夜福利合集在线观看| 18禁裸乳无遮挡免费网站照片| 永久网站在线| 精品人妻熟女av久视频| av天堂在线播放| 国产精品亚洲av一区麻豆| 久久精品国产亚洲av香蕉五月| av在线老鸭窝|