• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    埃洛石納米管穩(wěn)定的Pickering高內(nèi)相乳液模板制備大孔聚合泡沫吸附分離三氟氯氰菊酯

    2016-12-29 05:43:08潘建明閆永勝
    物理化學(xué)學(xué)報(bào) 2016年11期
    關(guān)鍵詞:納米管大孔菊酯

    陳 香 潘建明 閆永勝

    (江蘇大學(xué)化學(xué)化工學(xué)院,江蘇鎮(zhèn)江212013)

    埃洛石納米管穩(wěn)定的Pickering高內(nèi)相乳液模板制備大孔聚合泡沫吸附分離三氟氯氰菊酯

    陳 香 潘建明*閆永勝

    (江蘇大學(xué)化學(xué)化工學(xué)院,江蘇鎮(zhèn)江212013)

    利用天然粘土埃洛石納米管和少量非離子表面活性劑吐溫80為乳化劑構(gòu)建了水包油(O/W)型Pickering高內(nèi)相乳液(HIPEs),并以其為模板制備了大孔聚合泡沫(MPFs)。MPFs具有開口的大孔結(jié)構(gòu)、豐富的內(nèi)部交聯(lián)孔道和親水的表面,且在水中呈懸浮狀態(tài),這些特點(diǎn)均有利于吸附水體系中的菊酯類農(nóng)藥。結(jié)合靜態(tài)吸附實(shí)驗(yàn)研究了MPFs吸附三氟氯氰菊酯的平衡與動(dòng)力學(xué)行為。結(jié)果表明,準(zhǔn)一級動(dòng)力學(xué)方程與Langmuir等溫方程分別較好地?cái)M合了吸附動(dòng)力學(xué)與平衡數(shù)據(jù)(相關(guān)性系數(shù)(R2)>0.99),證明了吸附過程是一個(gè)單分子層的化學(xué)吸附過程。298 K時(shí)MPFs對三氟氯氰菊酯的吸附平衡時(shí)間和飽和吸附容量分別為240 min和23.98 μmol·g-1,且吸附容量隨著溫度與三氟氯氰菊酯初始濃度的升高而逐漸增大。研究證明了水中呈懸浮狀態(tài)的MPFs是理想和穩(wěn)定的吸附劑,可有效去除水溶液中疏水性有機(jī)污染物。

    吸附;大孔聚合泡沫;埃洛石納米管;動(dòng)力學(xué);Pickering高內(nèi)相乳液

    Key Words:Adsorption;Macroporous polymer foam;Halloysite nanotube;Kinetics;Pickering high internal phase emulsion

    1 Introduction

    In agricultural situations,pyrethroids are widely used for the control of a wide range of pests because of their insecticidal effectiveness and low mammalian toxicity1.For the most commonly used pyrethroids,most of them are used in open environment,so their residues have become one of the major carcinogenic pollution risks to the drinking water supplies2.Despite their extremely low water solubility,recent studies showed widespread occurrence of pyrethroids in downstream surface waters bodies via surface runoff3.Moreover,pesticides at high concentration are tending to inhibit the microbial biomass during the biological treatment process.Thus,it is necessary to reduce the pesticide concentration in the wastewater before transfering into biological treatment plants4.Adsorption processes using various of adsorbents have shown many ecological and technological advantages5,6.Previous studies have shown that hydrophobic organic pollutants have a low aqueous solubility and tend to be effectively adsorbed by suspended particles7.As a consequence,low-cost and suspended adsorbents have become promising for drinking water and wastewater treatment,especially regarding pyrethroids.

    Porous materials with highly permeable and connected pores are good candidates for adsorbents.For instance,Liu et al.8prepared highly porous chitosan by a unidirectional freeze-drying method,and evaluated their high-capacity adsorption for a range of metal ions.Dong′s group9synthesized porous carbon adsorbent by chemical modification of hydrothermally synthesized carbon nanosphere,and the as-prepared adsorbent was expected to possess excellent performance for the adsorption of bulky dyes from aqueous solution.A novel porous composite ofα-Fe2O3/Fe3O4/C was prepared via a calcining process at 600°C,and their highly efficient phosphate removal from water and wastewater was also reported10.

    Recently,high internal phase emulsion(HIPEs)has been considered as the effective approach to the synthesis of porous material.HIPEs,also called highly concentrated emulsions,are defined by possessing a volume fraction of the disperse phase that exceeds 0.74,which can be used as templates for the preparation of macroporous polymer foams(MPFs)via the polymerization of the external(continuous)emulsion phase11,12.However,conventional MPFs synthesized from surfactant stabilized water-in-oil (W/O)or oil-in-water(O/W)HIPEs have poor mechanical properties and low permeabilities13.Bismarck et al.14employed particle and small amounts of surfactant as template to stabilize W/O HIPEs(Pickering HIPEs),and the obtained porous materials after polymerization possessed well-defined open-cell structure and excellent mechanical properties.Then many work about the W/O Pickering HIPEs have been considered to prepare hydrophobic porous foams which tended to float on the surface of aqueous solutions15,16,whereas comparatively few reports on the O/W Pickering HIPEs and hydrophilic porous materials which dispersed or suspended in the aqueous solutions.This challenge could be addressed by employing the particles just with the right hydrophilicity that can be used as stabilizers of O/W Pickering HIPEs.Zhang17and Ngai18et al.applied commercial titania(TiO2) and poly(nisopropylacrylamide)-co-(methacrylic acid)microgel as stabilizer to get O/W HIPEs,respectively,and then obtained the corresponding hydrophilic macroporous polymers.

    Halloysite nanotubes(HNTs)are two-layered aluminosilicate clay mineral,and possess hollow nanotubular structure and hydrophilic surface.Furthermore,HNTs are more widely available and much cheaper than other nanoparticles such as carbon nanotubes and titanate nanotubes19.Lehle et al.20demonstrated that non-spherical colloids at free interfaces capillary interactions appear to be dominant,and non-spherical particles were benefit to form a stable emulsion.Herein,HNTs and small amounts of nonionic surfactant were adopted as O/W Pickering stabilizers of HIPEs,and the stabilizing behavior of the HIPEs was further clarified.Then λ-cyhalothrin21,as one of the typical pyrethroids compounds,was used to investigate the adsorption properties of the prepared MPFs.

    2 Experimental

    2.1Materials

    HNTs were collected from Zhengzhou Jinyangguang Chinaware Co.Ltd.(Henan,China).Prior to use,raw HNTs were milled and sieved followed by being oven-dried at 373 K for 24 h.Then the HNTs were purified in the mixture of concentrated sulfuric and nitric acids(1:3 by volume)at 80°C with constant stirring for 6.0 h.Afterwards,the samples were washed with distilled water and rinsed for several times in order to reach neutral pH.Finally,the HNTs were dried in vacuum at 60°C for further use.Ammonium persulphate(APS),paraffin liquid,and acetone were supplied by Sinopharm Chemical Reagent Co.,Ltd. (Shanghai,China).Acrylamide(AM),N,N′-methylene bisacrylamide(MBAM)and Tween 85 were purchased from Aladdin reagent CO.,Ltd(Shanghai,China).λ-cyhalothrin was supplied by Jiangsu Huangma Agrochemicals Co.,Ltd.(Jiangsu,China). APS,AM,MBAM,and λ-cyhalothrin used in the experiment are all analytically pure,and the paraffin liquid,Tween 85 are chemically pure.Water was freshly deionized.

    2.2Instruments

    Infrared spectra(4000-400 cm-1)were recorded on a Nicolet NEXUS-470 FTIR apparatus(USA).The morphology of MPFs was observed by scanning electron microscopy(SEM,S-4800). The image of the HNTs was obtained by transmission electron microscope(TEM,JEOL IEM-200CX).The optical micrographs of Pickering HIPEs were collected by a DMM-330C optical microscope equipped with a high performance digital camera (CAIKON,China).Thermo gravimetric analyzer(TGA)and differential scanning calorimetry(DSC)of samples were per-formed for powder samples(about 10 mg)using a Diamond thermo gravimetric/differential thermal analysis(TG/DTA)instruments(Perkin-Elmer,USA)under a nitrogen atmosphere up to 800°C with a heating rate of 5.0°C·min-1.The static water contact angle was measured by using a KSV CM200 contact angle instrument(Finland).

    2.3Synthesis of MPFs

    0.08 g of activated HNTs and 0.04 g of surfactant Tween 85 were initially dispersed into 4.0 mL of deionized water under the condition of ultrasound bath for 30 min.Then 1.420 g of the monomer AM,0.309 g of the crosslinker MBAM and 0.02 g of initiator APS were also dissolved in the above HNTs dispersion, the mixture was stirred for 1.0 h.Then 16 mLof oil phase paraffin liquid was added into the above mixture drop by drop under rapid stirring.After 3.0 h,a stable Pickering HIPEs was then transferred to a 25 mL thick-walled glass tube,and polymerized in a 50°C oven for 24 h.The obtained materials were removed from the tube, dried in a vacuum at 50°C for 24 h,and extracted in Soxhlet apparatus with acetone to remove any impurities.Finally,the resulting products MPFs 1 were dried to constant weight in a vacuum at 50°C.In order to study the effect of Tween 85,MPFs 2 were prepared according to the above process except using 0.04 g Tween 85.

    2.4Batch mode binding experiments

    All adsorption isotherm and kinetics tests were conducted by a batch equilibrium procedure.In the isotherm test,10 mg of MPFs were added into 10 mL of λ-cyhalothrin solution in ethanol and deionized water(5:5,V/V)at different concentrations(10,30, 50,80,and 100 mg·L-1).The adsorption was carried out in thermostatically controlled water bath at 25 or 30°C which was shaken at a speed of 100 r·min-1.After incubating for 12 h,MPFs were collected by centrifugation and the solutions were immediately filtered through a millipore cellulose nitrate membrane (pore size was 0.45 mm)to remove suspended particles.The amount of λ-cyhalothrin in the filtrate was determined by a UV-Vis spectrophotometer at 278 nm(UV-2450,Shimadzu,Japan).

    In the kinetic test,10 mL of λ-cyhalothrin solution in ethanol and deionized water(5:5,V/V)at a concentration of 100 mg·L-1was considered as testing solution,and then the precess followed a similar procedure at 25°C except that samples were taken in a different time such as 0.5,1.0,2.0,4.0,and 6.0 h.

    All tests were conducted in triple and an average value was used.The λ-cyhalothrin adsorption on the MPFs at given time was calculated according to Eq.(1).

    where Qtis the captured λ-cyhalothrin at time t(mg·g-1).C0is the initial λ-cyhalothrin in water(mg·L-1),and Ctis the λ-cyhalothrin in filtrate at time t(mg·L-1).V is the solution volume(L),and W is the adsorbent weight(g).The equilibrium adsorption amount (Qe)and equilibrium concentration of λ-cyhalothrin in the isotherm tests were calculated with the same method.

    3 Results and discussion

    3.1Design of O/W Pickering HIPEs and MPFs

    As part of our continuous efforts to produce different types of adsorbents by Pickering Emulsion,our aim was to design a macroporous and dispersed material to effectively remove λ-cyhalothrin.Fabrication of a stable Pickering HIPEs was the key to obtain MPFs,then non-ionic surfactant Tween 85 and HNTs were employed as the excellent dispersing agent and emulsifier for Pickering HIPEs with the internal phase volume fraction of 80%. In our work,the illustrations for preparing Pickering O/W HIPEs were shown in Fig.1(a,b).According to our previous study,HNTs had tube-like shape and hydrophilic surface due to the presence of a great deal of hydroxyl groups,which are proper to prepare W/ O Pickering HIPEs without adjusting the wettability22.Moreover, the introduction of HNTs could increase the mechanical property of composites resulted from Pickering HIPEs template23.Lehle et al.20suggested that for non-spherical colloids at free interfaces capillary interaction appear to be dominant,W/O Pickering HIPEs stablized by HNTs are super-stable due to the nearly irreversible adsorption of the non-spherical particles at the oil/water interface because of their high energy of attachment.As shown in Fig.1a, when external water phase was incorporated with the internal oil phase without rapid stirring,only the phase-separated system was formed,and most of the hydrophilic HNTs exhibited weakly flocculated states and accumulated at the bottom of testing tube. After rapid stirring,pink Pickering HIPEs due to the existence of HNTs nanoparticles was formed,which was very stable and hadno obvious change in 1.0 month(Fig.1b).In order to estimate the mean droplet sizes,a drop of the resulting Pickering HIPEs was placed on a microscope slide and viewed using an optical microscope.As shown in Fig.1c,it could be observed Pickering HIPEs were spherical and polydisperse,and the mean sizes of the emulsions was μm.Fig.2 showed the digital photographs of a drop of Pickering HIPEs dispersing in toluene(a)and water(b).This method was used to test type of the emulsions.The drops of Pickering HIPEs collapsed immediately in water,whereas the drops floated on the surface of toluene.These facts indicated that the formed Pickering HIPEs were the O/W emulsions.

    Fig.1 Digital photos of the Pickering HIPEs before(a)and after(b)rapid stirring,and optical microscope images of the resulting Pickering HIPEs(c)

    Based on the dissolving of the water-dispersed monomer AM and crosslinker MBAM,the radical solution polymerization at 50°C for 24 h was initiated byAPS in the water phase.Atypical photograph of the MPFs 1 prepared from Pickering HIPEs was shown in Fig.3.As a result,macroporous polymers with no significant shrinkage were obtained after drying.Moreover,the resulting foam structure of MPFs 1 was seen to be irregular containing many large pores,which could be the result of emulsion destabilization during the polymerization process24.

    3.2Characterization of MPFs

    The main functional groups of the predicted structure of MPFs were further observed with corresponding infrared absorption peaks(Fig.4).All the FT-IR spectra show the similar characteristic signature for MPFs 1 and MPFs 2.As shown in Fig.4,the presence of bands at 1105 cm-1(stretching mode of apical Si―O),1021 cm-1(stretching vibrations of Si―O―Si)and 554 cm-1(deformation vibration of Al―O―Si),indicated that stabilized HNTs were indeed located in the MPFs25.The appearance of absorption bands at 3427,3201,1667,and 1454 cm-1assigned to free―NH2, associated―NH2,―C=O,and deformation vibration of―CH2―, respectively,also demonstrate evidence for the action ofAM26.

    Fig.2 Digital photographs of a drop of Pickering HIPEs dispersing in toluene(a)and water(b)

    Fig.3 Digital photograph of MPFs 1

    Fig.4 FT-IR spectra of MPFs 1 and MPFs 2

    Fig.5 SEM images of MPFs 1(a),MPFs 2(b)and enlarged images of external surfaces of the MPFs 1(c),MPFs 2(d)

    The SEM images of MPFs 1(a),MPFs 2(b)and enlarged images of external surfaces of the MPFs 1(c),MPFs 2(d)were shown in Fig.5,which displayed their monolithic morphology.As shown in Fig.5a,MPFs 1 possess an open cell structure with interconnected pores,with the void size and pore size are 5.0 to 35 μm and 1.0 to 3.0 μm,respectively.The possible formation mechanism of porous structure is that films separating the emulsion droplets are thin in the presence of surfactant Tween 85, which provides the more chance to break droplets in the emulsion templates and form pore throats.The large void size of the interconnected porous materials is a useful structure for many applications,such as adsorption process and scaffold for tissueengineering.With the absence of surfactant Tween 85,MPFs 2 possess a closed-cell structure,and a thin polymer film covered their void region,which make it difficult to be used in practical applications.The closed-cell structure of MPFs 2 may be due to the HNTs particles surrounding the oil droplets thickly that hindered the nearness of the adjacent HIPEs drops during curing process,which is not benefit for the drainage of the continuous phase liquid and formation of interconnected pores27.By comparison the enlarged image of external surface of the MPFs 1 (Fig.5c)with MPFs 2(Fig.5d),it could be observed that MPFs 2 had more rough external surface,strongly indicating that more stabilized HNTs are concentrated on the surfaces of void walls. Moreover,randomly distributed HNTs are deposited on the exterior surface of polymer shell rather than being embedded within it,indicating that the surface of the HNTs is sufficiently wettable by the dispersed oil phase without further modification.

    Fig.6 shows the TGA(a)and DTG(b)curves of the MPFs 1 and MPFs 2.As shown in Fig.6a,MPFs 1 and MPFs 2 showed obvious weight loss at 50-150°C(about 10.44%and 13.06%for MPFs 1 and MPFs 2,recpectively),assigned to the desorption of water. This phenomenon indicates the slight adsorption content of water on MPFs 1 and MPFs 2,which might be due to their hydrophilic nature28.The pronounced weight loss(about 15.74%and 13.12% for MPFs 1 and MPFs 2,recpectively)in the temperature range of 220 to 310°C is caused by the thermal degradation of the crosslinker MBAM.Between the 310 to 500°C,about 56.47%and 57.04%of weight losses resulted fromAM polymers content were tested for MPFs 1 and MPFs 2,respectively.With the temperature increased to 800°C,the significant weight losses of MPFs 1 and MPFs 2 could be seen,and about 18.31%and 21.74%of the material remaining at 800°C for the MPFs 1 and MPFs 2 was stablized HNTs particles.The TGA curves of MIPFs and NIPFs have the same trend,indicating they possessed of similar morphological structure and size distribution29.The TGAanalysis also reveals that the prepared MPFs included both inorganic and organic composites30.In Fig.6b,the endothermic peaks for as-prepared MPFs(around 60.5,274.9,and 406.2°C)are also observed, which could be assigned to the desorption of water and decomposition of poly-MBAM,poly-AM,respectively.

    Fig.6 TGA(a)and DTG(b)curves of the MPFs 1 and MPFs 2

    In order to know about the surface wettability of as-prepared MPFs,the static water contact angle of MPFs 1 was measured.As shown in Fig.7a,the water contact angle of MPFs 1 is only 18.97°, which is strongly hydrophilic.Moreover,photograph showing the water and suspended MPFs 1 is listed in Fig.7b.From the comparative photograph of the water and suspended MPFs 1,it could be concluded that MPFs 1 possess high dispersion stability in water.

    3.3Kinetics study

    The kinetic of adsorption for λ-cyhalothrin by MPFs adsorbent was evaluated at an initial λ-cyhalothrin concentration of 100 mg· L-1,adsorbent dosage of 1 g·L-1and a contact time of 720 min. The kinetics study is useful to predict the adsorption rate which is very important in modeling and designing of the adsorption process31.The pseudo-first and pseudo-second order kinetics models,as the most widely used models,were used to evaluate the mechanism of adsorption process.The pseudo-first-order equation can be expressed as linear and nonlinear forms by Eqs.(2)and(3), respectively.

    The pseudo-second-order can be expressed as linear and nonlinear forms by Eqs.(4)and(5),respectively.

    Fig.7 Profile of a water drop on film of the MPFs(a),and photograph showing the water and suspended MPFs 1(b)

    where Qt(mg·L-1)and Qe(mg·L-1)are the amount of λ-cyha-lothrin adsorbed at time t and at equilibrium,respectively.k1(L· min-1)and k2(g·mg-1·min-1)are the rate constants of the pseudofirst and pseudo-second models,which can be calculated from the plots of ln(Qe-Qt)versus t and t/Qtversus t,respectively.

    Table 1 Kinetic model parameters obtained in adsorption of λ-cyhalothrin onto MPFs 1 and MPFs 2

    The kinetic parameters and correlation coefficients(R2)of the pseudo-first-order and pseudo-second-order models were shown in Table 1.Compared with the correlation coefficient of the pseudo-first-order model(R2=0.968),that of the pseudo-secondorder model(R2=0.992)is obviously higher for λ-cyhalothrin onto macroporous polymer foams,implicating that the pseudosecond-order model relatively fitted for the experimental kinetic data better.Simultaneously,the experimental Qe(Qe,exp)is more in agreement with the pseudo-second-order model.Generally,the kinetic of the adsorption process should fit to the pseudo-firstorder model if adsorption is controlled by diffusion through a boundary layer.However,the process of adsorption usually refers to various kinds of mechanisms such as chemical and electrostatic interactions between binding sites and adsorbate32.In Fig.8, considered that the kinetic process of the adsorption for λ-cyhalothrin fits to the pseudo-second-order model well,it is assumed that the determining race step may be chemisoption promoted by covalent forces through the electrons sharing between the adsorbent and adsorbate implying that the adsorption of λ-cyhalothrin on MPFs is mainly the chemical reactive adsorption33.

    3.4Adsorption mechanism

    Weber and Morris34had presented intraparticle diffusion model in 1962,since then intraparticle diffusion model has been applied in three different forms35,and one of them can be expressed as follows:

    where C(mg·g-1)is the intercept and Kdifis the intraparticle diffusion rate constant(mg·g-1·min-1/2),the values of intercept C (Table 1)provide information about the thickness of the boundary layer,the resistance to the external mass transfer increases as the intercept increases.Theoretically,such type of plots may present a multi-linearity implying that two or more steps occur36,37.

    Fig.8 Kinetic data for adsorption of λ-cyhalothrin onto MPFs 1 and MPFs 2

    The formation of hydrogen bonding between λ-cyhalothrin and amide group in the adsorbent may be the main function during the process of adsorption.Similar results are observed on the first stage of the intraparticle diffusion model(Fig.9).The first stage is the external surface sorption,which was driven by high initial λ-cyhalothrin concentration difference38.As can be seen in Fig.9, the first stage is rapidly completed within about 30 min,and the rate parameters in Table 1 show that the value of Kdifis extremely near which can be explained by the similar structure in the external surface.Furthermore,the second stage is the gradual sorption process where intrapaticle diffusion is rate-controlled.It is obvious that the slope of MPFs 1 sorption plot is greater than that of MPFs 2 plot implying a faster adsorption rate of MPFs 1(parameters of the stage are presented in Table 1),which is due to the open cell structure with interconnected pores of MPFs 1.Finally,the third stage is the equilibrium stage where intrapaticle diffusion starts to slow down due to the saturation of MPFs for λ-cyhalothrin.Simultaneously,the equilibrium adsorption capacity of MPFs 1 is greater than that of MPFs 2,which could also due to the interconnected pores.Through the interconnected pores,MPFs 1 provides more surface and binding sites than MPFs 2,resulted in the larger adsorption capacity of MPFs 1.Besides,the linear lines of the second and third stages do not pass through the origin, which shows that the intraparticle diffusion is not the only rate limiting mechanism in the adsorption process39.It may be concluded that surface adsorption and intrapaticle diffusion are concurrent operating during λ-cyhalothrin and MPFs interactions.

    3.5Equilibrium study

    Adsorption isotherms of MPFs 1 for λ-cyhalothrin at different temperature are shown in Fig.10.To evaluate the isotherm models, adsorbent dosage and contact time were set to 1 g·L-1and 12 h, respectively.The Langmuir,Freundlich adsorption isotherm models were used to describe the equilibrium between adsorbed λ-cyhalothrin and free λ-cyhalothrin in solution.The linear and nonlinear forms of the Langmuir isotherm model are as following equations,respectively.

    where Qe(mg·L-1)and Ce(mg·L-1)are the equilibrium adsorption capacity and the equilibrium concentration of adsorbate at equilibrium,respectively.Simultaneously,Qm(μmol·g-1)and KL(L· mg-1)are the maximum adsorption capacity of the adsorbent and the affinity of the binding sites(Langmuir constant),severally40,41.

    Fig.9 Intraparticle diffusion model plots for the adsorption of λ-cyhalothrin onto MPFs 1 and MPFs 2

    Fig.10 Adsorption isotherms of MPFs 1 for λ-cyhalothrin at different temperatures and MPFs 2 at 298 K

    Table 2 Adsorption of isotherm contants for λ-cyhalothrin

    The linear and nonlinear forms of Freundlich isotherm are expressed by the following equations,respectively:

    where KF(mg·L-1)is the Freundlich adsorption equilibrium constant,and 1/n is a measure of exchange intensity or surface heterogeneity,with a value of 1/n smaller than 1.0 describing favorable removal conditions42.

    It is obvious that the amount of λ-cyhalothrin adsorbed increased with the increasing initial λ-cyhalothrin concentration, indicating that increasing the initial concentration of λ-cyhalothrin is beneficial to improve the adsorption capacity.This fact can be explained by the saturation of the adsorbent.The adsorbate,λcyhalothrin,can be adsorbed continuously until the saturation of the adsorbent is reached when the concentration is large enough. It is assumed that the saturation is related to the binding sites of the adsorbent.In other words,there are no more binding sites for λ-cyhalothrin to recognize while the adsorption is saturated.In addition,the maximum adsorption capacity of λ-cyhalothrin onto MPFs 1 increased from 23.98 to 26.50μmol·g-1with the temperature varying from 298 to 318 K,which could be investigated from Table 2.According to Table 2,obviously,the values of the correlation coefficients imply that the Langmuir model best fit λcyhalothrin adsorption onto MPFs 1(R2=0.995)and the maximum adsorption value calculated by Langmuir model was also very close to experimental capacity,demonstrating that the experiment data is described by the monolayer Langmuir adsorption isotherm more accurately than the Freundlich model at different temperatures41.Langmuir isotherm supposed that uptake of λcyhalothrin occurs at specific homogeneous adsorption sites by monolayer adsorption without any interaction between the adsorbed molecules43.As represented in Table 2,the maximum adsorption capacity of MPFs 1 for adsorption of λ-cyhalothrin was 23.98μmol·g-1at 298 K.Moreover,the obtained MPFs are effective to capture λ-cyhalothrin in a low concentration according to the tendency of Langmuir fit curve.The maximum adsorption capacity of MPFs 2 prepared in the study for adsorption of λcyhalothrin is 21.26 μmol·g-1,which could also be observed in Fig.10.

    To predict the favorability of an adsorption system,the Langmuir equation can also be expressed in terms of a dimensionless separation factor(RL)which is defined as follows40:

    where Cm(mg·L-1)is the maximal initial concentration of the adsorbate.The values of RLparameters arranged as RL=0,0<RL<1,and RL>1 propose that adsorption is irreversible,favorable and unfavorable,respectively44.The values of RLdisplayed in Table 2 show that RLis between 0.406 and 0.581 indicating that the adsorption of λ-cyhalothrin onto MPFs 1 would be favorable.

    4 Conclusions

    In this study,the O/W HIPE stabilized by the natural mineral NHTs nanoparticles was obtained,and the resultant macroporous polymer foams were synthesized.The adsorption of λ-cyhalothrin by MPFs was observed.The results show that the time of reaching equilibrium for λ-cyhalothrin onto MPFs 1 is approximately 240 min.According to isotherm models,the Langmuir isotherm fits well to the experimental data,implying that the process of the adsorption was a monolayer adsorption.In addition,the value of RLis between 0.406 and 0.581 indicating that the adsorption of λ-cyhalothrin onto MPFs 1 would be favorable.Simultaneously,the pseudo-second-order model is more suitable than pseudo-firstorder model for λ-cyhalothrin onto the adsorbent,suggesting that it is a chemical reactive adsorption.In a word,the novel hydrophilic macroporous polymer foams prepared through Pickering HIPE technology can be a potential and reliable adsorbent for the removal of the hydrophobic organic pollutants from the aqueous phase.

    (1) Worrall,F.Environ.Sci.Technol.2001,35,2282.doi:10.1021/ es001593g

    (2) Pan,J.M.;Qu,Q.;Cao,J.;Yan,D.;Liu,J.X.;Dai,X.H.;Yan, Y.S.Chem.Eng.J.2014,253,138.doi:10.1016/j. cej.2014.05.031

    (3) Delgado-Moreno,L.;Wu,L.;Gan,J.Environ.Sci.Technol. 2010,44,8473.doi:10.1021/es102277h

    (4) Hamadi,N.K.;Swaminathan,S.;Chen,X.D.J.Hazard.Mater. 2004,112,133.doi:10.1016/j.jhazmat.2004.04.011

    (5) Al-Qodah,Z.;Shawaqfeh,A.T.;Lafi,W.K.Desalination 2007, 208,294.doi:10.1016/j.desal.2006.06.019

    (6) Gupta,V.K.;Ali,I.Water Res.2001,35,33.doi:10.1016/ S0043-1354(00)00232-3

    (7) Zhou,J.L.;Rowland,S.J.Water Res.1997,31,1708. doi:10.1016/S0043-1354(96)00323-5

    (8) Xu,F.Q.;Zhang,N.N.;Long,Y.;Si,Y.M.;Liu,Y.;Mi,X.; Wang,X.D.;Xing,F.B.;You,X.D.;Gao,J.P.J.Hazard. Mater.2011,188,148.doi:10.1016/j.jhazmat.2011.01.094

    (9) Chang,B.B.;Guan,D.X.;Tian,Y.L.;Yang,Z.C.;Dong,X.P. J.Hazard.Mater.2013,262,256.doi:10.1016/j. jhazmat.2013.08.054

    (10) Zhu,Z.Q.;Zeng,H.H.;Zhu,Y.N.;Yang,F.;Zhu,H.X.;Qin, H.;Wei,W.H.Sep.Purif.Technol.2013,117,124.doi:10.1016/ j.seppur.2013.05.048

    (11) Haibach,K.;Menner,A.;Powell,R.;Bismarck,A.Polymer 2006,47,4513.doi:10.1016/j.polymer.2006.03.114

    (12) Vílchez,A.;Rodríguez-Abreu,C.;Esquena,J.;Menner,A.; Bismarck,A.Langmuir 2011,27,13342.doi:10.1021/ la2032576

    (13) Manley,S.S.;Graeber,N.;Grof,Z.;Menner,A.;Hewitt,G.F.; Stepanek,F.;Bismarck,A.Soft Matter 2009,5,4780. doi:10.1039/B900426B

    (14) Ikem,V.O.;Menner,A.;Bismarck,A.Langmuir 2010,26, 8836.doi:10.1021/la9046066

    (15) Hermant,M.C.;Verhuls,M.;Kyrylyuk,A.V.;Klumperman,B.; Koning,C.E.Compos.Sci.Technol.2009,69,656. doi:10.1021/la9046066

    (16) Ikem,V.O.;Menner,A.;Horozov,T.S.;Bismarck,A.Adv. Mater.2010,22,3588.doi:10.1002/adma.201000729

    (17) Hua,Y.;Zhang,S.M.;Zhu,Y.;Chu,Y.Q.;Chen,J.D. J.Polym.Sci.Part A:Polym.Chem.2013,51,2181. doi:10.1002/adma.201000729

    (18) Li,Z.;Wei,X.;Ngai,T.Chem.Commun.2011,47,331. doi:10.1039/C0CC02106G

    (19) He,Q.;Yang,D.;Deng,X.L.;Wu,Q.;Li,R.;Zhai,Y.;Zhang, L.Water Res.2013,47,3976.doi:10.1039/C0CC02106G

    (20) Lehle,H.;Noruzifar,E.;Oettel,M.Eur.Phys.J.E.2008,26, 151.doi:10.1140/epje/i2007-10314-1

    (21) Li,H.B.;Li,Y.L.;Cheng,J.Chem.Mater.2010,22,2451. doi:10.1021/cm902856y

    (22) Koch,D.A.;Clark,K.;Tessier,D.M.J.Agric.Food.Chem. 2013,61,2330.doi:10.1021/jf3048912

    (23) Pan,J.M.;Yin,Y.J.;Gan,M.Y.;Meng,M.J.;Dai,X.H.;Wu, R.R.;Shi,W.D.;Yan,Y.S.Chem.Eng.J.2015,266,299. doi:10.1016/j.cej.2014.11.126

    (24) Oh,B.H.L.;Bismarck,A.;Chan-Park,M.B. Biomacromolecules 2014,15,1777.doi:10.1021/bm500172u

    (25) Pan,J.M.;Zhu,W.J.;Dai,X.H.;Yan,X.S.;Gan,M.Y.;Li,L. Z.;Hang,H.;Yan,Y.S.RSC Adv.2014,4,4435.doi:10.1039/ C3RA43178A

    (26) Liang,X.F.;Wang,H.J.;Tian,H.;Luo,H.;Chang,J.Acta Phys.-Chim.Sin.2008,24,223.[梁曉飛,王漢杰,田 惠,羅浩,常 津.物理化學(xué)學(xué)報(bào),2008,24,223.]doi:10.1016/ S1872-1508(08)60011-X

    (27) Menner,A.;Biamarck,A.Macromol.Symp.2006,242,19. doi:10.1002/masy.200651004

    (28) Pan,J.M.;Zeng,J.;Cao,Q.;Gao,H.P.;Gen,Y.C.;Peng,Y. X.;Dai,X.H.;Yan,Y.S.Chem.Eng.J.2016,284,1361. doi:10.1016/j.cej.2015.09.023

    (29) Zhang,Y.;Liu,R.J.;Hu,Y.L.;Li,G.K.Anal.Chem.2009,81, 967.doi:10.1021/ac8018262

    (30) Chen,H.Q.;Wang,W.;Li,G.L.;Li,C.;Zhang,Y.Synth.Met. 2011,161,1921.doi:10.1016/j.synthmet.2011.06.036

    (31) Khorramabadi,G.S.;Soltani,R.D.C.;Rezaee,A.;Khataee,A. R;Jafari,A.J.Can.J.Chem.Eng.2012,90,1539.doi:10.1002/ cjce.20661

    (32) Soltani,R.D.C.;Khorramabadi,G.S.;Khataee,A.R.;Jorfi,S. J.Taiwan.Inst.Chem.Eng.2014,45,973.doi:10.1016/j. jtice.2013.09.014

    (33) Sun,Y.B.;Yang,S.B.;Zhao,G.X.;Wang,Q.;Wang,X.K. Chem.Asian J.2013,8,2755.doi:10.1002/asia.201300496

    (34) Weber,W.;Morris,J.J.Sanit.Eng.Div.Am.Soc.Civ.Eng. 1963,89,31.

    (35) Wu,F.C.;Tseng,R.L.;Juang,R.S.Chem.Eng.J.2009,153, 1.doi:10.1016/j.cej.2009.04.042

    (36) Hameed,B.H.;Tan,I.A.W.;Ahmad,A.L.Chem.Eng.J.2008, 144,235.doi:10.1016/j.cej.2008.01.028

    (37) Juang,R.S.;Wu,F.C.;Tseng,R.L.J.Colloid Interface Sci. 2000,227,437.doi:10.1006/jcis.2000.6912

    (38) Zhou,J.B.;Wang,L.;Zhang,Z.;Yu,J.G.J.Colloid Interface Sci.2013,394,509.doi:10.1016/j.jcis.2012.11.050

    (39) Xue,G.H.;Gao,M.L.;Gu,Z.;Luo,Z.X.;Hu,Z.C.Chem.Eng.J.2013,218,223.doi:10.1016/j.cej.2012.12.045

    (40) Allen,S.J.;Mckay,G.;Porter,J.F.J.Colloid Interface Sci. 2004,280,322.doi:10.1016/j.jcis.2004.08.078

    (41) Wang,Y.;Qi,Y.X.;Li,Y.F.;Wu,J.J.;Ma,X.J.;Yu,C.;Ji,L. J.Hazard.Mater.2013,260,9.doi:10.1016/j. jhazmat.2013.05.001

    (42) Garbassi,F.;Balducci,L.;Chiurlo,P.;Deiana,L.Appl.Surf.Sci. 1995,84,145.doi:10.1016/0169-4332(94)00469-2

    (43) Heidari,A.;Younesi,H.;Mehraban,Z.Chem.Eng.J.2009, 153,70.doi:10.1016/j.cej.2009.06.016

    (44) Rahmani,A.;Mousav,H.Z.;Fazli,M.Desalination 2010,253, 94.doi:10.1016/j.desal.2009.11.027

    Adsorption of λ-Cyhalothrin onto Macroporous Polymer Foams Derived from Pickering High Internal Phase Emulsions Stabilized by Halloysite Nanotube Nanoparticles

    CHEN Xiang PAN Jian-Ming*YAN Yong-Sheng
    (School of Chemistry and Chemical Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu Province,P.R.China)

    Macroporous polymer foams(MPFs)were prepared through oil-in-water(O/W)Pickering high internal phase emulsions(HIPEs)stabilized by the natural clay halloysite nanotube(HNT)nanoparticles with the addition of small amounts of the nonionic surfactant Tween 85.The resulting MPFs were characterized,and the results showed an open cell structure with interconnected pores and a hydrophilic surface with a suspended state in aqueous solution.These features were beneficial for the adsorption of pyrethroids.Moreover,the adsorption of λ-cyhalothrin on MPFs was examined to determine the kinetic and equilibrium data of the adsorption process.The findings of the kinetic and equilibrium studies revealed that a pseudo-second-order kinetic model and the Langmuir isotherm were the best fitted models(R2>0.99),implying that the process of adsorption is a monolayer and chemically reactive.In addition,the maximum adsorption capacity and equilibrium time for λ-cyhalothrin on MPFs were estimated to be 23.98 μmol·g-1and 240 min at 298 K.Increasing the temperature led to an increase in adsorption capacity.Increasing the initial concentration of λ-cyhalothrin led to an increase in clear adsorption capacity.Finally,the suspended MPFs represent a promising and reliable adsorbent for the removal of hydrophobic organic pollutants from aqueous solutions.

    O647

    10.3866/PKU.WHXB201609073

    Received:August 2,2016;Revised:September 7,2016;Published online:September 7,2016.

    *Corresponding author.Email:pjm@ujs.edu.cn;Tel:+86-511-88791708.

    The project was supported by the National Natural Science Foundation of China(21574091,21576120)and National Postdoctoral Science Foundation,China(2013M540423).

    國家自然科學(xué)基金(21574091,21576120)和國家博士后基金(2013M540423)資助項(xiàng)目

    猜你喜歡
    納米管大孔菊酯
    最近鄰弱交換相互作用對spin-1納米管磁化強(qiáng)度的影響
    大孔ZIF-67及其超薄衍生物的光催化CO2還原研究
    5%氯氟醚菊酯·高效氟氯氰菊酯懸浮劑正相高效液相色譜分析
    歐盟擬修訂高效氯氟氰菊酯在芹菜、茴香和大米中的最大殘留限量
    大孔鏜刀的設(shè)計(jì)
    亞臨界流體萃取技術(shù)在茶葉降低菊酯類農(nóng)殘方面的應(yīng)用
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    大孔吸附樹脂富集酯型兒茶素
    載銀TiO2納米管的制備及其光催化降解硝基苯廢水
    国产一区二区三区视频了| 一级黄色大片毛片| 999精品在线视频| 亚洲欧美日韩无卡精品| 国产午夜精品久久久久久| 欧美xxxx黑人xx丫x性爽| 两人在一起打扑克的视频| 美女被艹到高潮喷水动态| 国产精品一区二区精品视频观看| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 三级毛片av免费| 天堂影院成人在线观看| 全区人妻精品视频| 一进一出好大好爽视频| 午夜福利视频1000在线观看| 黄色丝袜av网址大全| 日韩精品中文字幕看吧| 一级a爱片免费观看的视频| 国产一区二区三区在线臀色熟女| 亚洲人成伊人成综合网2020| 啦啦啦观看免费观看视频高清| 网址你懂的国产日韩在线| 97人妻精品一区二区三区麻豆| 久久久精品欧美日韩精品| 成人性生交大片免费视频hd| 可以在线观看毛片的网站| 亚洲熟女毛片儿| 在线永久观看黄色视频| 十八禁人妻一区二区| 国产久久久一区二区三区| 757午夜福利合集在线观看| 午夜福利18| 亚洲av日韩精品久久久久久密| 久久久国产成人免费| xxx96com| 欧美日韩黄片免| 欧美黄色片欧美黄色片| 国产淫片久久久久久久久 | 亚洲av成人不卡在线观看播放网| 天堂√8在线中文| 国产亚洲精品久久久com| 一本精品99久久精品77| 精品国产亚洲在线| 久久久水蜜桃国产精品网| 欧美乱妇无乱码| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 淫秽高清视频在线观看| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| 九九久久精品国产亚洲av麻豆 | 9191精品国产免费久久| 亚洲美女黄片视频| 男女视频在线观看网站免费| 日韩欧美在线二视频| 白带黄色成豆腐渣| 亚洲片人在线观看| 18禁裸乳无遮挡免费网站照片| 欧美中文综合在线视频| 欧美日本视频| 搞女人的毛片| 老司机在亚洲福利影院| 1000部很黄的大片| 巨乳人妻的诱惑在线观看| 免费av毛片视频| 亚洲精品美女久久av网站| 国产精品日韩av在线免费观看| a级毛片a级免费在线| 琪琪午夜伦伦电影理论片6080| 99国产综合亚洲精品| 欧美在线一区亚洲| 久久午夜亚洲精品久久| 首页视频小说图片口味搜索| 在线播放国产精品三级| 欧美最黄视频在线播放免费| 国产久久久一区二区三区| 黑人欧美特级aaaaaa片| 首页视频小说图片口味搜索| 欧美日韩亚洲国产一区二区在线观看| 丰满人妻熟妇乱又伦精品不卡| 9191精品国产免费久久| 亚洲精品在线观看二区| 69av精品久久久久久| 欧美极品一区二区三区四区| 免费av不卡在线播放| 国产免费av片在线观看野外av| 又大又爽又粗| 欧美最黄视频在线播放免费| 亚洲真实伦在线观看| 亚洲九九香蕉| 成人亚洲精品av一区二区| 黄色日韩在线| 国产私拍福利视频在线观看| 可以在线观看的亚洲视频| 看片在线看免费视频| 午夜免费成人在线视频| 国产成人精品无人区| www.精华液| 在线观看66精品国产| 国产91精品成人一区二区三区| 男插女下体视频免费在线播放| 黑人欧美特级aaaaaa片| 午夜免费成人在线视频| 老鸭窝网址在线观看| 久久久久精品国产欧美久久久| 99视频精品全部免费 在线 | 国产亚洲精品综合一区在线观看| 亚洲乱码一区二区免费版| 我要搜黄色片| 国产精品永久免费网站| 757午夜福利合集在线观看| 国产三级中文精品| 成人三级黄色视频| 久久这里只有精品中国| 日韩欧美三级三区| 国产精品av视频在线免费观看| 他把我摸到了高潮在线观看| 亚洲狠狠婷婷综合久久图片| 国产精华一区二区三区| 国产v大片淫在线免费观看| 亚洲第一电影网av| 免费看光身美女| 999久久久精品免费观看国产| 午夜a级毛片| 综合色av麻豆| 国产亚洲精品久久久com| 亚洲av电影不卡..在线观看| 国产成人av激情在线播放| 一个人看视频在线观看www免费 | 欧美在线黄色| 嫩草影院入口| 成人一区二区视频在线观看| 亚洲国产精品sss在线观看| cao死你这个sao货| 啦啦啦韩国在线观看视频| 老熟妇仑乱视频hdxx| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 99视频精品全部免费 在线 | 一个人看的www免费观看视频| 岛国视频午夜一区免费看| 在线观看日韩欧美| 激情在线观看视频在线高清| 国产黄a三级三级三级人| 国产亚洲欧美98| 激情在线观看视频在线高清| 亚洲国产欧美人成| 国产激情久久老熟女| 精品国产亚洲在线| 亚洲精品中文字幕一二三四区| 级片在线观看| 男人舔奶头视频| 岛国在线免费视频观看| 91老司机精品| 男女午夜视频在线观看| 国模一区二区三区四区视频 | 国产黄色小视频在线观看| 国产高清videossex| 老熟妇仑乱视频hdxx| 男女之事视频高清在线观看| 亚洲在线观看片| 日韩精品青青久久久久久| 最近最新中文字幕大全免费视频| 国产人伦9x9x在线观看| 嫩草影视91久久| 亚洲精品中文字幕一二三四区| 欧美大码av| 日韩欧美国产一区二区入口| 国模一区二区三区四区视频 | 99精品欧美一区二区三区四区| 亚洲成人久久爱视频| 天天一区二区日本电影三级| 中文字幕人妻丝袜一区二区| 久久久久国产一级毛片高清牌| 精品不卡国产一区二区三区| av在线天堂中文字幕| 法律面前人人平等表现在哪些方面| 精品国产超薄肉色丝袜足j| a级毛片a级免费在线| 人妻久久中文字幕网| 日本黄大片高清| 欧美性猛交╳xxx乱大交人| 亚洲精品乱码久久久v下载方式 | 欧美性猛交╳xxx乱大交人| 日本在线视频免费播放| 午夜福利高清视频| 国产成人影院久久av| 99国产精品99久久久久| 免费av毛片视频| 久久这里只有精品19| 又黄又爽又免费观看的视频| 亚洲无线在线观看| 两个人看的免费小视频| 国产一区二区在线观看日韩 | e午夜精品久久久久久久| 在线十欧美十亚洲十日本专区| 免费电影在线观看免费观看| 夜夜夜夜夜久久久久| 免费av不卡在线播放| 成年女人永久免费观看视频| 级片在线观看| 成人三级黄色视频| 国产成人av教育| 白带黄色成豆腐渣| 久久久久久久午夜电影| 级片在线观看| 村上凉子中文字幕在线| 操出白浆在线播放| 熟女电影av网| 男女之事视频高清在线观看| 成人精品一区二区免费| 精品乱码久久久久久99久播| 色综合欧美亚洲国产小说| 亚洲精品在线美女| a级毛片在线看网站| 啦啦啦韩国在线观看视频| 麻豆一二三区av精品| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 国产精品1区2区在线观看.| 成年女人永久免费观看视频| 国产又黄又爽又无遮挡在线| 亚洲片人在线观看| 亚洲一区高清亚洲精品| 999精品在线视频| 99国产精品一区二区蜜桃av| 一级毛片高清免费大全| 国产精品免费一区二区三区在线| 色av中文字幕| 午夜福利在线在线| tocl精华| 激情在线观看视频在线高清| 极品教师在线免费播放| 一级毛片精品| 国产91精品成人一区二区三区| 色视频www国产| 国产精品久久久久久久电影 | 国产成人欧美在线观看| 好男人电影高清在线观看| 天天躁日日操中文字幕| 亚洲专区字幕在线| 久久精品影院6| 欧美中文综合在线视频| 亚洲国产精品sss在线观看| 麻豆成人午夜福利视频| 在线观看免费视频日本深夜| 91久久精品国产一区二区成人 | 超碰成人久久| 美女高潮喷水抽搐中文字幕| 欧美国产日韩亚洲一区| 三级国产精品欧美在线观看 | 国产精品电影一区二区三区| 亚洲av成人一区二区三| 老汉色∧v一级毛片| 长腿黑丝高跟| 国产亚洲精品久久久com| 夜夜躁狠狠躁天天躁| 老汉色∧v一级毛片| 国产精品九九99| tocl精华| 成人一区二区视频在线观看| 日本五十路高清| 少妇裸体淫交视频免费看高清| 国产v大片淫在线免费观看| 婷婷亚洲欧美| 在线永久观看黄色视频| 黄片大片在线免费观看| 黑人欧美特级aaaaaa片| 我的老师免费观看完整版| 欧美午夜高清在线| 美女cb高潮喷水在线观看 | 亚洲av美国av| 桃色一区二区三区在线观看| 日韩精品青青久久久久久| 免费观看的影片在线观看| 亚洲午夜精品一区,二区,三区| 最近视频中文字幕2019在线8| 国产高清三级在线| 欧美在线黄色| 日本撒尿小便嘘嘘汇集6| av在线蜜桃| 99久久无色码亚洲精品果冻| 757午夜福利合集在线观看| 中文字幕熟女人妻在线| 美女被艹到高潮喷水动态| 久久精品国产清高在天天线| 在线播放国产精品三级| 久久精品国产亚洲av香蕉五月| 97超级碰碰碰精品色视频在线观看| 1000部很黄的大片| 桃红色精品国产亚洲av| 中文亚洲av片在线观看爽| 久久久久久久精品吃奶| 国产午夜精品论理片| 亚洲国产欧美人成| 国产伦精品一区二区三区四那| 他把我摸到了高潮在线观看| 欧美国产日韩亚洲一区| 巨乳人妻的诱惑在线观看| 免费在线观看亚洲国产| 午夜福利在线在线| 国产日本99.免费观看| 麻豆久久精品国产亚洲av| 天天躁日日操中文字幕| h日本视频在线播放| 黄频高清免费视频| 又黄又粗又硬又大视频| 午夜亚洲福利在线播放| 欧美乱色亚洲激情| 国产伦人伦偷精品视频| 日本熟妇午夜| 91在线精品国自产拍蜜月 | 亚洲美女黄片视频| 色视频www国产| 日韩欧美国产一区二区入口| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 后天国语完整版免费观看| 久久国产精品影院| 日韩高清综合在线| 成人特级黄色片久久久久久久| a级毛片在线看网站| 欧美日韩瑟瑟在线播放| 国产成人精品久久二区二区91| 国产精品亚洲美女久久久| 国产精品日韩av在线免费观看| 高潮久久久久久久久久久不卡| 他把我摸到了高潮在线观看| 午夜久久久久精精品| 久久精品国产亚洲av香蕉五月| 人妻久久中文字幕网| 亚洲成人精品中文字幕电影| 女人被狂操c到高潮| 免费看a级黄色片| 中文字幕精品亚洲无线码一区| 亚洲一区二区三区色噜噜| 亚洲五月婷婷丁香| 一区二区三区激情视频| tocl精华| 国产精品综合久久久久久久免费| 可以在线观看的亚洲视频| 成人av一区二区三区在线看| 熟女人妻精品中文字幕| 日韩精品青青久久久久久| 久99久视频精品免费| 身体一侧抽搐| 亚洲五月婷婷丁香| 身体一侧抽搐| 国产成人aa在线观看| 我的老师免费观看完整版| 欧美乱妇无乱码| 久久精品91蜜桃| 嫁个100分男人电影在线观看| 国产精品99久久99久久久不卡| 国产高清有码在线观看视频| 成年版毛片免费区| 亚洲精品久久国产高清桃花| 全区人妻精品视频| 桃红色精品国产亚洲av| 色哟哟哟哟哟哟| 青草久久国产| 国内精品美女久久久久久| 丝袜人妻中文字幕| 亚洲精品在线美女| 欧美日韩福利视频一区二区| 免费在线观看影片大全网站| 99久久国产精品久久久| 99国产极品粉嫩在线观看| 非洲黑人性xxxx精品又粗又长| www.自偷自拍.com| 国产亚洲欧美98| 色在线成人网| 亚洲欧美精品综合久久99| 美女午夜性视频免费| 特大巨黑吊av在线直播| 午夜a级毛片| 亚洲精品乱码久久久v下载方式 | 日本一二三区视频观看| 欧美日韩黄片免| 久9热在线精品视频| 老熟妇仑乱视频hdxx| 可以在线观看的亚洲视频| 亚洲专区中文字幕在线| 色视频www国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成人免费av一区二区三区| 搡老岳熟女国产| 中出人妻视频一区二区| 国产伦精品一区二区三区视频9 | 国产成人av教育| 91字幕亚洲| 久久这里只有精品19| 婷婷精品国产亚洲av在线| 亚洲成a人片在线一区二区| 国产av在哪里看| 国产精品亚洲av一区麻豆| 美女大奶头视频| 亚洲avbb在线观看| 精品国产美女av久久久久小说| 天堂影院成人在线观看| 久久精品影院6| 国产伦精品一区二区三区四那| 九九热线精品视视频播放| 日韩欧美在线乱码| 久久久水蜜桃国产精品网| 欧美国产日韩亚洲一区| 999久久久精品免费观看国产| 1024香蕉在线观看| 成人av在线播放网站| 国产精品国产高清国产av| 国产成人福利小说| 99热这里只有精品一区 | 欧美性猛交黑人性爽| 最新美女视频免费是黄的| 国产男靠女视频免费网站| 1024手机看黄色片| 久久国产精品影院| 91在线精品国自产拍蜜月 | 国产精品乱码一区二三区的特点| 亚洲精品粉嫩美女一区| 级片在线观看| 男人舔女人下体高潮全视频| 夜夜夜夜夜久久久久| 成人国产一区最新在线观看| 亚洲成av人片免费观看| 黄色成人免费大全| 免费观看人在逋| 人人妻人人看人人澡| 久久精品影院6| 国产av一区在线观看免费| 老司机午夜福利在线观看视频| 国产精品一区二区精品视频观看| 极品教师在线免费播放| 欧美最黄视频在线播放免费| 美女免费视频网站| 成人鲁丝片一二三区免费| 国产三级中文精品| 黄色片一级片一级黄色片| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91| 日日摸夜夜添夜夜添小说| 亚洲国产欧洲综合997久久,| 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 欧美日韩福利视频一区二区| 欧美三级亚洲精品| 极品教师在线免费播放| 99国产精品99久久久久| 免费av毛片视频| 婷婷丁香在线五月| 亚洲国产精品999在线| 99riav亚洲国产免费| 香蕉久久夜色| 精品国产美女av久久久久小说| 特大巨黑吊av在线直播| 成年女人看的毛片在线观看| 亚洲一区高清亚洲精品| 女人被狂操c到高潮| 精品国产超薄肉色丝袜足j| 国模一区二区三区四区视频 | 波多野结衣高清无吗| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 国产亚洲av嫩草精品影院| 亚洲成人免费电影在线观看| 国产亚洲av嫩草精品影院| 日本熟妇午夜| 欧美成人性av电影在线观看| 亚洲专区字幕在线| 亚洲七黄色美女视频| 欧美日韩瑟瑟在线播放| 最近最新中文字幕大全免费视频| 久久久久免费精品人妻一区二区| 久久久久久大精品| 啦啦啦韩国在线观看视频| 日本精品一区二区三区蜜桃| www.熟女人妻精品国产| 久久亚洲精品不卡| 亚洲avbb在线观看| av国产免费在线观看| 欧美3d第一页| 免费看a级黄色片| 97超级碰碰碰精品色视频在线观看| 男人舔奶头视频| 三级毛片av免费| 午夜福利高清视频| 精品熟女少妇八av免费久了| 每晚都被弄得嗷嗷叫到高潮| 国产欧美日韩一区二区精品| 国产毛片a区久久久久| 岛国在线免费视频观看| 超碰成人久久| 黄频高清免费视频| 特级一级黄色大片| 性色av乱码一区二区三区2| 国产免费男女视频| 在线观看美女被高潮喷水网站 | 成人特级av手机在线观看| 搡老熟女国产l中国老女人| 天天躁日日操中文字幕| 国产乱人视频| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三| 九色国产91popny在线| 亚洲av美国av| 99热这里只有是精品50| 日本精品一区二区三区蜜桃| 日本一本二区三区精品| 1024香蕉在线观看| 国产人伦9x9x在线观看| 午夜免费观看网址| 天堂影院成人在线观看| 他把我摸到了高潮在线观看| 中文在线观看免费www的网站| 国产精品久久久人人做人人爽| 国产成人啪精品午夜网站| 国产伦精品一区二区三区视频9 | 黄色片一级片一级黄色片| 日本免费一区二区三区高清不卡| av女优亚洲男人天堂 | 国产美女午夜福利| 天堂网av新在线| 国内揄拍国产精品人妻在线| 日本在线视频免费播放| 久久99热这里只有精品18| 日本三级黄在线观看| 欧美午夜高清在线| 两个人看的免费小视频| 我要搜黄色片| 国产一级毛片七仙女欲春2| 国产97色在线日韩免费| 88av欧美| 亚洲欧美日韩东京热| 最近在线观看免费完整版| 亚洲欧美精品综合久久99| www日本黄色视频网| 夜夜躁狠狠躁天天躁| 18禁美女被吸乳视频| 国产99白浆流出| 99久国产av精品| АⅤ资源中文在线天堂| 成人国产综合亚洲| 成人性生交大片免费视频hd| 久久精品夜夜夜夜夜久久蜜豆| 国产伦精品一区二区三区四那| 亚洲黑人精品在线| 老熟妇仑乱视频hdxx| 国产精品久久电影中文字幕| 男女床上黄色一级片免费看| 成人高潮视频无遮挡免费网站| 精品一区二区三区视频在线 | 一个人观看的视频www高清免费观看 | 伊人久久大香线蕉亚洲五| 国产v大片淫在线免费观看| www.999成人在线观看| 久久久久国产精品人妻aⅴ院| 99精品久久久久人妻精品| 亚洲国产看品久久| 看片在线看免费视频| 久久精品91无色码中文字幕| 人妻夜夜爽99麻豆av| 久久这里只有精品19| 美女免费视频网站| www.熟女人妻精品国产| 岛国视频午夜一区免费看| 人妻丰满熟妇av一区二区三区| 99在线人妻在线中文字幕| 亚洲中文日韩欧美视频| 亚洲性夜色夜夜综合| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女| 亚洲av成人一区二区三| 99在线人妻在线中文字幕| 亚洲av片天天在线观看| 国内毛片毛片毛片毛片毛片| 欧美绝顶高潮抽搐喷水| 男女视频在线观看网站免费| 九九在线视频观看精品| 成年人黄色毛片网站| 亚洲专区中文字幕在线| 亚洲一区高清亚洲精品| 日本 av在线| 久久久久久久久免费视频了| 国产黄a三级三级三级人| 亚洲一区二区三区不卡视频| 欧美黑人巨大hd| 亚洲中文字幕一区二区三区有码在线看 | 男女那种视频在线观看| 亚洲国产欧美人成| 国产精品99久久久久久久久| 中亚洲国语对白在线视频| 免费在线观看影片大全网站| 夜夜夜夜夜久久久久| 热99在线观看视频| 亚洲欧美日韩高清在线视频| 黄色视频,在线免费观看| 日韩精品中文字幕看吧| 亚洲五月婷婷丁香| av中文乱码字幕在线| 99热这里只有精品一区 | 午夜精品一区二区三区免费看| 亚洲aⅴ乱码一区二区在线播放| 日本免费一区二区三区高清不卡| 中文字幕最新亚洲高清| 两个人视频免费观看高清| 亚洲av成人不卡在线观看播放网| 国产精品一区二区免费欧美| 免费人成视频x8x8入口观看| 最好的美女福利视频网| 国产激情欧美一区二区| 日韩高清综合在线| 国产一区二区在线观看日韩 | 在线a可以看的网站| 亚洲一区高清亚洲精品|