• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    理想與還原Fe2O3[001]表面上汞吸附協(xié)同催化CO分解作用

    2016-12-29 05:42:46李繼紅林常楓肖顯斌
    物理化學(xué)學(xué)報(bào) 2016年11期
    關(guān)鍵詞:載氧體華北電力大學(xué)積碳

    李繼紅 林常楓 覃 吳,* 肖顯斌 魏 利

    (1華北電力大學(xué)可再生能源學(xué)院,生物質(zhì)發(fā)電成套設(shè)備國(guó)家工程實(shí)驗(yàn)室,北京102206;2哈爾濱工業(yè)大學(xué),城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,哈爾濱150090)

    理想與還原Fe2O3[001]表面上汞吸附協(xié)同催化CO分解作用

    李繼紅1林常楓1覃 吳1,*肖顯斌1魏 利2,*

    (1華北電力大學(xué)可再生能源學(xué)院,生物質(zhì)發(fā)電成套設(shè)備國(guó)家工程實(shí)驗(yàn)室,北京102206;2哈爾濱工業(yè)大學(xué),城市水資源與水環(huán)境國(guó)家重點(diǎn)實(shí)驗(yàn)室,哈爾濱150090)

    煤化學(xué)鏈燃燒必然釋放汞,汞與載氧體表面相互作用,影響表界面的氧化還原反應(yīng)。本文采用密度泛函理論計(jì)算,研究汞(Hg0)在理想表面(Fe2O3[001])和一系列被還原表面(Fe2O2.75、Fe2O2.5、Fe2O2.25、Fe2O1.625、Fe2O0.875、Fe2O0.375和Fe)的吸附,以及Hg0對(duì)Fe2O1.625、Fe2O0.875、Fe2O0.375和Fe等表面催化CO分解反應(yīng)的協(xié)同作用機(jī)理。Hg0物理吸附在理想Fe2O3[001]表面。隨著Fe2O3[001]表面不斷被還原,Hg0發(fā)生化學(xué)吸附。Hg0吸附降低了CO與Fe2O3、Fe2O2.75、Fe2O2.5和Fe2O2.25等表面之間的相互作用,抑制O傳遞氧化CO為CO2的反應(yīng);載氧體進(jìn)一步還原過(guò)程中,Hg0吸附促進(jìn)了CO與Fe2O1.625、Fe2O0.875、Fe2O0.375及Fe等表面之間的相互作用,進(jìn)而促進(jìn)了表面對(duì)CO的催化分解反應(yīng),加速了載氧體表面的積碳,降低了化學(xué)鏈燃燒效率。因此,合理控制載氧體的還原程度既可以減弱Hg0的吸附,也可以抑制積碳的形成,這對(duì)化學(xué)鏈燃燒的操作優(yōu)化至關(guān)重要。

    化學(xué)鏈燃燒;載氧體;汞;CO2捕集;密度泛函理論

    Key Words:Chemical looping combustion;Oxygen carrier;Mercury;CO2capture;Density functional theory

    1 Introduction

    In comparison with conventional combustion techniques and carbon dioxide removal techniques,chemical looping combustion (CLC)has received great attention because of its distinctive merit of efficient use of energy with in-situ CO2capture1-3.CLC produces heat and energy using oxygen carriers(OCs),usually the oxides of Fe,Ni,Co,Cu,Mn,and Cd,to supply oxygen instead of air for the combustion of fuel.CLC of fuel results in generation of CO2and H2O that is not diluted with N2or flue gas,and reduces NOxemissions4-10.These properties render CLC highly desirable as possible candidate for low-cost coal combustion and carbon capture11-13.Fe2O3is the most promising OC used in CLC process due to its low cost and environmental compatibility14,15.Fig.1 depicts the schematic process of coal CLC using Fe2O3as OC, where Fe2O3is transferred from the air reactor(AR)to the fuel reactor(FR)to realize the full conversion of coal into CO2and steam.After condensation,the pure CO2can be obtained without extra energy consumption.The reduced Fe2O3-xis transported back to the AR and regenerated therein for initiation of the next coal combustion cycle.

    Nevertheless,coal CLC researches are at their very beginning, many problems and challenges lie ahead before their commercial adoption.For example,it is known that mercury exists in coal at the range of 0.02 to 1.0 mg·kg-116,which usually assumes three forms in flue gas:elemental mercury(Hg0),oxidized mercury (Hg2+),and particulate mercury(Hgp).Mercury is released into fuel gas as Hg0during coal combustion17,emitted into the atmosphere, and then bioaccumulated through the food chain,which affects human health and generates long-lasting effects18.Mendiara detected the mercury released from CLC of coal and then quantitatively tested the emissions from the fuel reactor and air reactor19. However,whether there are certain interactions happening between mercury and OC during CLC processes,and if they have certain interactions,and how these interactions affect the related reactions of CLC process,remain unknown.Usually,OC could be generally reduced into lower oxidation state during deep CLC processes,and interfacial interactions would happen to these reduced OCsurfaces. Therefore,it is necessary to detect the adsorption of mercury on the perfect and reduced OC surface at different reduction states,and the effect of mercury adsorption on the further reactions between fuel molecule and the reduced OC surface,which are fundamental understandings of the coal CLC system.

    Considering that mercury firstly releases into fuel gas as Hg0during coal combustion17,and Fe2O3[001]is one of the dominant growth faces of the natural α-Fe2O318,we herein elucidated the detailed Hg0adsorption on the gradually reduced Fe2O3[001] surface and its effect on carbon deposition during CLC by using density functional theory(DFT)calculations.Results will provide insights into the mechanism of mercury adsorption and its effect on catalytic decomposition of CO during deep reduction of Fe2O3. The correlation between adsorption,decomposition,and reduction degree provides fundamental understanding to such complex CLC combustion processes.This study can serve as a reference for CLC optimization.

    Fig.1 Schematic diagram for CLC of coal using Fe2O3as OC

    2 Computational models and method

    2.1Theoretical models

    The pure Fe2O3[001]-p(2×2)surface with 32 Fe atoms and 48 O atoms was modeled.To eliminate the spurious interaction between periodic images in the z direction,the vacuum space is set no less than 1.5 nm,and dipole correction is used as well.Aseries of reduced Fe2O3[001]-p(2×2)surfaces was obtained by gradually removing the O atoms on the outer surface layer to do annealing under constant pressure and temperature(NPT)until their equilibrium states were reached,where the initial temperature was 300 K and the mid-cycle temperature was 1073 K(the temperature for real CLC).Further geometric optimizations were performed using DFT calculations.After geometric optimization,the stable configurations of Fe2O3,Fe2O2.75,Fe2O2.5,Fe2O2.25,Fe2O1.625,Fe2O0.875, Fe2O0.375,and Fe are shown in Fig.2.Then the Hg0adsorption,CO adsorption,and catalytic decomposition of CO on these surfaces were investigated.

    2.2Parameters setting

    We used the CASTEP program package for all calculations performed with a plane-wave pseudo potential method based on dispersion-corrected DFT19,which was combined with the generalized gradient approximation(GGA)parameterized by Perdew, Burke,and Ernzerhof(PBE)20,21.Ultrasoft vanderbilt pseudopotentials22were used to describe core orbitals.To correct the strong correlation between 3d-electrons of Fe atom,a Hubbard U was adopted to provide an on-site Coulomb repulsion to the DFT Hamiltonian.Previous investigations suggested that DFT+U method with U=5 eV could accurately reproduce the experimental value of bandgap(2.2 eV)and band structure of hematite23-27.We have therefore adopted U=5 eV to conduct our calculations in this work.Previous studies have confirmed the cut-off energy of 350 eV and k meshes of 4×4×1 in α-Fe2O3surface reaction field can obtain satisfied results28.Therefore,a cutoff of 350 eV was employed with smearing width of 0.1 eV,while the Brillouin zone integration of the surfaces was calculated using4×4×1 Monkhorst-Pack k-point meshes.The magnetic configuration(+--+)was set for Fe atoms in the rhombohedral unit cell of Fe2O3,which makes the optimized cell at the lowest total energy29-32,+and-designated up-spin and down-spin directions with respect to the z-axis.The convergence criteria for the structure optimization and energy calculation were set to(a)an energy tolerance of 2.0×10-5eV·atom-1,(b)a SCF tolerance of 2.0×10-6eV·atom-1,(c)a maximum force tolerance of 0.5 eV· atom-1,and(d)a maximum displacement tolerance of 0.0002 nm. A linear synchronous transit or quadratic synchronous transit approach(LST/QST)33is used to get closer to the quadratic region of the transition state and then quasi-newton or eigenvector following methods are used to complete the optimization to ensure one and only one imaginary vibrational frequency.

    Fig.2 Top and side views of the perfect four-layer Fe2O3[001]-p(2×2)surface model(a)and the reduced surfaces: (b)Fe2O2.636,(c)Fe2O2,(d)Fe2O1.364,(e)Fe2O0.909,(f)Fe2O0.182,and(g)Fe

    The adsorption energy for the studied systems was calculated by using the following equation:

    where Ecompound,Eslab,and Exare the total energy for the substrate with adsorbate,the substrate,and the adsorbate,respectively. More negative adsorption energy represents stronger interaction.

    3 Results and discussion

    3.1Hg0adsorption on perfect and reduced Fe2O3[001] surfaces

    Since Fe2O3[001]will be gradually reduced in the fuel reactor during CLC,the adsorptions of Hg0on the perfect and the reduced Fe2O3[001]surfaces were investigated.Previous work showed that Hg atom is more inclined to bind to Fe atom than O atom on oxide surface34.We approached Hg0to different Fe atomic sites of these surfaces.Fig.3 illustrated the most stable configurations for the Hg0-Fe2O3,Hg0-Fe2O2.75,Hg0-Fe2O2.5,Hg0-Fe2O2.25,Hg0-Fe2O1.625,Hg0-Fe2O0.875,Hg0-Fe2O0.375,and Hg0-Fe adsorption systems,respectively.

    The corresponding calculated adsorption energies are presented in Fig.4.For Hg0-Fe2O3adsorption system,Hg0is physically adsorbed on Fe-top site of Fe2O3[001]surface with the minimum distance(Lmin)of 0.3012 nm and Eadsof-0.36 eV close to the reported value of-0.39 eV34.Then,the interaction between Hg0and reduced surface becomes stronger.For example,in the Hg0-Fe2O2.75system,weak chemisorption happens between Hg0and Fe atom of Fe2O2.75,with the Hg0―Fe bond length of 0.2846 nm and Eadsof-0.65 eV,while the Hg0-Fe2O2.5with the bond length of 0.283 nm and Eadsof-0.76 eV.Further reduction of Fe2O2.5into Fe2O2.25,Fe2O1.625,Fe2O0.875,Fe2O0.375,and Fe promotes the adsorption of Hg0on these surfaces,resulting in forming multi-coordinated Hg―Fe bonds on these surfaces.In the Hg0-Fe2O2.25configuration, the Eadsis-1.04 eV and two Hg―Fe bonds(0.275 and 0.286 nm) formed on the surface,giving the average valueLˉ2fof 0.280 nm.In the Hg0-Fe2O1.625configuration,the Eadsis-1.44 eV and five Hg―Fe bonds(0.269,0.304,0.315,0.274,and 0.287 nm)formed on the surface,giving the average valueLˉ5fof 0.290 nm.The Hg0-Fe2O0.875,Hg0-Fe2O0.375,and Hg0-Fe configurations show the average bond lengthsLˉ6fof 0.289 nm,Lˉ6fof 0.279 nm,Lˉ5fof 0.283 nm, respectively,which result in the corresponding Eadsof-1.72,-2.20,and-2.02 eV.After Fe2O3was reduced into the oxidation state that lower than Fe2O2(such as Fe2O1.625,Fe2O0.875,Fe2O0.375,and Fe),stable chemisorption appears,where Hg0binds firmly to the Fe-accumulated area on the reduced surface.

    Fig.3 Stable configurations for Hg0on(a)Fe2O3[001],(b)Fe2O2.75,(c)Fe2O2.5,(d)Fe2O2.25,(e)Fe2O1.625,(f)Fe2O0.875,(g)Fe2O0.375,and(h)Fe

    Fig.4 Eadsfor Hg0adsorption on the perfect and the reduced Fe2O3[001]surfaces

    To further understand the interaction between Hg0and the surfaces,we analyzed the partial density of state(PDOS)of the adsorbedHg0,whichisplottedinFig.5.AsobservedinFig.5,4s-DOS curve for the Hg0adsorbed on Fe2O3[001]overlaps to that for the pureHg035,while4s-DOSforFe2O2.75andFe2O2.5splitsaroundFermi level(Ef=0eV)suggestingobvious electronic interactionbetween Hg0and surface.Therefore,Hg0-Fe2O2.75and Hg0-Fe2O2.5can be assigned to chemisorption.With further reduction of Fe2O3into Fe2O1.625,Fe2O0.875,Fe2O0.375,andFe,4s-DOSofHg0splitintobonding orbital and anti-bonding orbital,implying that stronger interaction happens between Hg0and surface.These results further verify that the interactions between Hg0and the deeply reduced surfaces (Fe2O1.625,Fe2O0.875,Fe2O0.375,andFe)arestronger thanthosebetween Hg0and the surfaces at relatively higher oxidation state(Fe2O3, Fe2O2.75,Fe2O2.5,andFe2O2.25).Ourresultsfirstrevealtherelationship betweentheadsorptionofHg0andtheironoxidesurfaceatdifferent reduction degrees.While iron oxide is used as oxygen carrier for coal combustion,deeper reduction of iron oxide into lowoxidation statecanresultinhigheradsorptionquantityofHg0.

    Fig.5 4s-DOS for the adsorbed Hg0on the perfect and the reduced Fe2O3[001]surfaces

    Stable Hg0adsorption alters the electronic property of the surfaces,which can hence affect the adsorption and decomposition processes of CO.In our simulations,the stable CO chemisorption occurs through hybrid between C atom and Fe atom of surface, corresponding to that CO prefers to bind to transition metal site of the surface36,37.Fig.6 compares the adsorption energies for the stable configurations of CO adsorption on Fe2O3,Fe2O2.75,Fe2O2.5, Fe2O2.25,Fe2O1.625,Fe2O0.875,Fe2O0.375,and Fe with and without the adsorption of Hg0,respectively.It can be observed that Eadsshows an interesting trend for CO adsorption on Fe2O3[001],Fe2O2.75, Fe2O2.5,Fe2O2.25,Fe2O1.625,Fe2O0.875,Fe2O0.375,and Fe,as the trend for Hg0adsorption on these surfaces shown in Fig.4.

    According to Fig.6,the reduced surfaces favor the adsorption of CO while compared to the perfect surface.With reduction of Fe2O3into Fe,Eads(-1.58 eV)for CO adsorption on Fe is close to the reported value of-1.56 eV for CO adsorption on Fe[110]38, but lower than the value(-2.54 eV)for CO adsorption on Fe[100]39.

    However,the adsorption of Hg0decreases the interaction between CO and Fe2O3[Fe2O2.75,Fe2O2.5,and Fe2O2.25],while promotes the interaction between CO and Fe2O1.625[Fe2O0.875,Fe2O0.375,and Fe].The distinct effect of Hg0on CO adsorption can be attributed to the relativistic effect of Hg0.The band structure of the reduced surfaces shows that the band near and closed to the Fermi level between the M and K points in the brillouin zone is almost completely flat,indicating extremely high electron effective mass. While Hg0chemically bound to Fe atoms of these reduced surfaces at relatively higher oxidation state,the bands near and closed to the Fermi level become less dispersive(for example,the band structures for Fe2O2.5and Hg0-Fe2O2.5in Fig.1Sa(Supporting Information)),which depress electron and hole transport through the interface,hence decreasing the interaction between CO and the surface.During the first reduction stage(from Fe2O3to Fe2O1.625), Hg0acts as electron donor decreasing the oxidizability of thesurfaces before Fe2O1.625.Then during the last reduction state(from Fe2O1.625to Fe),Hg0chemically bound to Fe on the surfaces,the bands near and closed to the Fermi level become more dispersive (for example,the band structures for Fe2O0.375andHg0-Fe2O0.375in Fig.1Sb(in Supporting Information)),promoting electron and hole transport through the interface,where Hg0acts as electron accepter increasing the oxidizability of the reduced surfaces favoring the hybridization between C and Fe,hence promoting the interaction between CO and the reduced surface.

    Fig.6 Eadsfor CO adsorption on the perfect and reduced Fe2O3surfaces,and the perfect and reduced Hg0-Fe2O3surfaces

    Fig.7 describes the relationship between the reduction degree, charge population(on C atom and O atom of the adsorbed CO molecule,and the total population on the adsorbed CO molecule), and bond length(of the adsorbed CO molecule and the new formed Fe―C bond).Generally,it is accepted that strong interaction corresponds to high value of Eads,lengthening of the C―O bond,and obvious charge transport cross the interface.According to Fig.7a,little charge transfer happens on the perfect Fe2O3and the Hg0-Fe2O3surfaces,corresponding to small Eadsvalue above, which verified the physisorption.Then charge transfer becomes more obvious with the reduction of the surface.The representative interaction district appears after Fe2O2.25,where the Eads,charge density transfers from surface to the adsorbed CO molecule,and the lengthening of C―O bond is more obvious than the cases before Fe2O2.25.The strong interaction and activation of CO will favor the catalytic decomposition of CO and result in carbon deposit on surfaces of the reduced OC,corresponding to an obvious weight increase according to the thermogravimetric analysis of CO-Fe2O328.According to Fig.7b,interaction between CO and the reduced Hg0-doped surface also lengthens the CO bond after Hg0-Fe2O2.25with obvious charge transfer across the interface and charge repopulation during this reduction period,which hence activates the CO bond for further decomposition.

    3.2Effect of mercury on catalytic CO decomposition

    It is generally agreed that,with the reduction of iron oxide,CO decomposes on the reduced surface and acts as the key step for carbon deposit during CLC40,41.Therefore,we considered the following reaction mechanism on the reduced Fe2O3[001]surface

    Fig.7 Charge population(Q)for the C atom,O atom,and CO molecule,and the lengths of C―Fe bond and C―O bond

    CO+*?CO*

    CO*+*?C*+O*

    where*denotes a free step site.Catalytic decomposition of CO may result in a wide range of products.We have neglected the further interaction between C*,O*,and CO that forms CO2or carbonate species on the reduced surface.

    Since carbon deposit hardly generates on the iron oxide at high oxidation state28,and stable Hg0adsorption happens on the reduced surfaces Fe2O1.625,Fe2O0.875,Fe2O0.375,and Fe(seen in Fig.3),we discussed the catalytic decomposition of CO on these reduced surfaces.The reaction initiates from the most stable CO adsorption models,and the product corresponds to the decomposition of CO* into C*and O*at the most stable state.Then transition state(TS) search calculations were performed to detect the energy profiles for the CO*decomposition reaction on these reduced surfaces with and without the adsorption of Hg0.The barrier energy(Ea) and reaction enthalpy(Er)for the two reaction cases related to catalytic decomposition of CO on Hg0-doped surfaces and the undoped surfaces are listed in Fig.8.It is clear that the adsorption of Hg0decreases the Eafor catalytic decomposition of CO on Fe2O1.625,Fe2O0.875,Fe2O0.375,and Fe.For example,Eafor catalytic CO decomposition on Fe2O1.625,Fe2O0.875,Fe2O0.375,and Fe are 3.01, 2.76,1.43,and 1.51 eV,while the Eafor Hg0-Fe2O1.625,Hg0-Fe2O0.875, Hg0-Fe2O0.375,and Hg0-Fe are 2.60,2.39,1.07,and 1.23 eV,respectively.Eafor CO decomposition on Fe is higher than that for CO dissociation on Fe(100)(1.14 eV reported by,381.07 eV reported by Sorescu et al.42,and 1.14 eV reported by Moon et al.43). The general decrease of Eaon the Hg0-doped reduce surfaces could be attributed to the obvious charge transfer and charge repopulation on the adsorbed CO that activates the C―O bond for easier decomposition(as shown above in Fig.7b).Except for CO decomposition on Fe surface,the reaction energy is in proportion to the barrier energy for CO decomposition on the reduced iron oxide surfaces.CO decompositions on Fe2O1.625and Fe2O0.875are endothermic processes,which need high temperature acting as driving force for the reactions.However,the adsorption of Hg0reduces the barrier energy for CO decomposition making the reaction exo-thermic.Both kinetics and energetics analysis imply that carbon deposit is more energetically realized on the Hg0-doped reduced iron oxide surface.

    Fig.8 Eaand Erfor CO adsorption on(a)the perfect and reduced Fe2O3surfaces,and(b)the perfect and reduced Hg0-Fe2O3surfaces

    Because of the low Ea,obvious carbon deposit will happen after the reduction period around Fe2O1.625,which corresponds to the conversion rate(χ)around 46%(calculated by100%,according to our previous works28,44,45).Hg0promotes catalytic decomposition of CO for carbon deposit on the surfaces and depresses the efficiency of CLC.

    To address the trends in CO*decomposition more accurately, a kinetic model is required in order to treat the different time scales associated with the reduction of Fe2O3at different degrees during CLC.We applied a simple phenomenological model to bring out the trends.The net reaction rates for reactions(R1 and R2)are written as whereki(i=1,2)are forward rate constants for Reaction-1 and Reaction-2 whilek-i(i=1,2)are the rate constants for the backward reactions.p and θ denote the pressure and surface coverage, respectively.Specially,θ*denotes the ratio of exposed active site.

    The rate constants may be written as

    whereEiis the activation free energy of reaction step i.h is the Planck constant(6.63×10-34J·s),kBis Boltzmann constant (1.38×10-23J·K-1).The degree of freedom for the reaction component j in each reaction step is given by

    fj=ft·fr·fv

    whereft,fr,and fvare the translational,rotational,and vibrational degree of freedom,respectively.

    For the CO desorption step(the backward reaction of step(1)), we use a rate constant given by

    where ECOis the CO binding energy and ν=1013s-1is set as a typical pre-exponential factor for CO desorption.

    With the above approximations,Reaction-2 is the rate-determining step for CO evolution.Since chemical looping combustion experiments were usually performed around 1073 K in our previous works28,45,the reaction rate is calculated according to the barrier energy for the decomposition of CO(ΔECO≠)under 1073 K and the given condition θCO=0.5,θO=0.25,θC=0.25,and PCO= 1.01×105Pa.The results are shown in Fig.9.For the catalytic decomposition of CO on the reduced Fe2O3surfaces(the red curve),high decomposition reaction rate can be realized during the period round Fe2O0.375and closed to the complete reduction stage into iron.This red curve model describes the thermogravimetric trends observed experimentally well,where obvious weight increase due to carbon deposit occurred around and after Fe2O1.62528. However,Hg0promotes the CO decomposition on these reduced surfaces(the black line).The adsorption of Hg0promotes the catalyticdecompositionofCO,andrevealstherelationshipbetween catalyticCOdecompositionreactionrateandreductiondegreeof ironoxide.ThequalitativeandquantitativeresultsofHg0adsorption and its effect on CO adsorption and decomposition will provide fundamentalunderstandingforoptimizingtheCLCprocesses.

    Fig.9 Reaction rate for CO decomposition on the reduced Fe2O3[001]at θCO=0.5,θO=0.25,and θC=0.25 for the Reaction-2 under 1073 K

    4 Conclusions

    We investigated the adsorption of elemental mercury(Hg0)on the perfect and reduced Fe2O3[001]surfaces,and probed into the synergetic effect of the adsorbed Hg0on the catalytic decomposition of CO on the reduced Fe2O3[001]surfaces during chemical looping combustion.Interaction between Hg0and surface increases with reduction of Fe2O3[001]into lower oxidation state. Stable Hg0adsorption promotes the interaction between CO and the reduced surfaces,favoring charge transport from surface to the adsorbed CO,which activates the C―O bond for its decomposition.Hg0together with carbon will hence be carried into air reactor,depressing the efficiency of CLC.Reasonable control of reduction degree not only hinders Hg0binding to the surface of oxygen carrier but also decreases generation of carbon deposit. Results of the current DFT work provide fundamental understanding of interaction between Hg0and the perfect and reduced Fe2O3surfaces,and synergetic effect of Hg0on the interaction between CO and these surfaces.For future studies,it is necessary to investigate the synergy of multiple elements included in coal such as K,Na,and Ca on mercury adsorption and its influence on the process of CLC.

    Supporting Information:Band structures for Fe2O2.5,Hg0-Fe2O2.5,Fe2O0.375,andHg0-Fe2O0.375,as well as geometric structures of initial state,transition state,and final state for CO decomposition on the reduced surfaces(Fe2O1.625,Hg0-Fe2O1.625,Fe2O0.875,Hg0-Fe2O0.875,Fe2O0.375,Hg0-Fe2O0.375,Fe,and Hg0-Fe)have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Horst,J.R.;Karl,F.K.Am.Chem.Soc.1983,7,71.

    (2) Ishida,M.;Jin,H.G.Ind.Eng.Chem.Res.1996,7,2469.doi:10.1021/ie950680s

    (3) Fan,L.S.;Zeng,L.;Wang,W.;Luo,S.W.Energy Environ.Sci. 2012,5,7254.doi:10.1039/C2EE03198A

    (4) Adanez,J.;Abad,A.;Garcia-Labiano,F.;Gayán,P.;de Diego, L.F.Prog.Energy Combust.Sci.2012,38,215.doi:10.1016/j. pecs.2011.09.001

    (5) Zhang,Y.;Doroodchi,E.;Moghtaderi,B.Energy Fuels 2012, 26,287.doi:10.1021/ef201156x

    (6) He,F.;Li,H.B.;Zhao,Z.L.Int.J.Chem.Eng.2009,2009,1. doi:10.1155/2009/710515

    (7) Lyngfelt,A.;Leckner,B.;Mattisson,T.Chem.Eng.Sci.2001, 56,3101.doi:10.1016/S0009-2509(01)00007-0

    (8) Fan,L.S.;Zeng,L.;Luo,S.W.AIChE J.2015,61,2. doi:10.1002/aic.14695

    (9) Tian,M.;Wang,X.D.;Liu,X.;Wang,A.Q.;Zhang,T.AIChE J.2016,62,792.doi:10.1002/aic.15135

    (10) Cho,P.;Mattisson,T.;Lyngfelt,A.Fuel 2004,83,1215. doi:10.1016/j.fuel.2003.11.013

    (11) Abad,A.;Adánez,J.;García-Labiano,F.;de Diego,L.F.; Gayán,P.;Celaya,J.Chem.Eng.Sci.2007,62,533. doi:10.1016/j.ces.2006.09.019

    (12) Cao,Y.;Pan,W.P.Energy Fuels 2006,20,1836.doi:10.1021/ ef050228d

    (13) Abad,A.;Cuadrat,A.;Mendiara,T.;García-Labiano,F.;Gayán, P.;de Diego,L.F.;Adánez,J.Ind.Eng.Chem.Res.2012,51, 16230.doi:10.1021/ie302158q

    (14) Zhang,S.;Xiao,R.;Zheng,W.G.Appl.Energy 2014,130,181. doi:10.1016/j.apenergy.2014.05.049

    (15) Xiao,R.;Song,Q.L.;Song,M.;Lu,Z.J.;Zhang,S.;Shen,L. H.Combust Flame 2010,157,1140.doi:10.1016/j. combustflame.2010.01.007

    (16) Yudovich,Y.E.;Ketris,M.P.Int.J.Coal Geol.2005,62,107. doi:10.1016/j.coal.2004.11.002

    (17) Frandsen,F.;Dam-Johansen,K.;Rasmussen,P.Prog.Energy Combust.Sci.1994,20,115.doi:10.1016/0360-1285(94)90007-8

    (18) Thevuthasan,S.;Kim,Y.J.;Yi,S.I.;Chambers,S.A.;Morais, J.;Denecke,R.;Fadley,C.S.;Liu,P.;Kendelewicz,T.;Brown, G.E,Jr.Surf.Sci.1999,425,276.doi:10.1016/S0039-6028(99) 00200-9

    (19) Segall,M.D.;Lindan,P.J.D.;Probert,M.J.;Pickard,C.J.; Hasnip,P.J.;Clark,S.J.;Payne,M.C.J.Phys.:Condens. Matter 2002,14,2717.doi:10.1088/0953-8984/14/11/301

    (20) White,J.;Bird,D.Phys.Rev.B.1994,50,4954.doi:10.1103/ PhysRevB.50.4954

    (21) Perdew,J.P.;Chevary,J.A.;Vosko,S.H.;Jackson,K.A.; Pederson,M.R.;Singh,D.J.;Fiolhais,C.Phys.Rev.B: Condens.Matter Mater.Phys.1992,46,6671.doi:10.1103/ PhysRevB.46.6671

    (22) Vanderbilt,D.Phys.Rev.B 1990,41,7892.doi:10.1103/ PhysRevB.41.7892

    (23) Guo,H.;Barnard,A.S.Phys.Rev.B 2011,83,094112. doi:10.1103/PhysRevB.83.094112

    (24) Bandyopadhyay,A.;Velev,J.;Butler,W.H.;Sarker,S.K.; Bengone,O.Phys.Rev.B 2004,69,174429.doi:10.1103/ PhysRevB.69.174429

    (25) Huda,M.N.;Walsh,A.;Yan,Y.J.Appl.Phys.2010,107, 123712.doi:10.1063/1.3432736

    (26) Dzade,N.Y.;Roldan,A.;de Leeuw,N.H.Minerals 2014,4,89. doi:10.3390/min4010089

    (27) Rohrbach,A.;Hafner,J.;Kresse,G.Phys.Rev.B 2004,70, 125426.doi:10.1103/PhysRevB.70.125426

    (28) Qin,W.;Wang,Y.;Lin,C.F.;Hu,X.Q.;Dong,C.Q.Energy Fuels 2015,29,1210.doi:10.1021/ef5024934

    (29) Song,J.J.;Niu,X.Q.;Ling,L.X.;Wang,B.J.Fuel Process Technol.2013,115,26.doi:10.1016/j.fuproc.2013.04.003

    (30) Wong,K.;Zeng,Q.H.;Yu,A.B.J.Phys.Chem.C 2011,115, 4656.doi:10.1021/jp1108043

    (31) Martin,G.J.;Cutting,R.S.;VauGhan,D.J.;Warren,M.C.Am. Mineral.2009,94,1341.doi:10.2138/am.2009.3029

    (32) Sandratskii,L.M.;Uhl,M.;Kübler,J.J.Phys.:Condens. Matter 1996,8,983.doi:10.1088/0953-8984/8/8/009

    (33) Govind,N.;Petersen,M.;Fitzgerald,G.;King-Smith,D.; Andzelm,J.Comput.Mater.Sci.2003,28,250.doi:10.1016/ S0927-0256(03)00111-3

    (34) Guo,P.;Guo,X.;Zheng,C.G.Fuel 2011,90,1840. doi:10.1016/j.fuel.2010.11.007

    (35) Ji,W.C.;Shen,Z.M.;Fan,M.H.;Su,P.R.;Tang,Q.L.;Zou, C.Y.Chem.Eng.J.2016,283,58.doi:10.1016/j. cej.2015.06.033

    (36) He,F.;Wang,H.;Dai,Y.N.J.Nat.Gas.Chem.2007,16,155. doi:10.1016/S1003-9953(07)60041-3

    (37) Dong,C.Q.;Sheng,S.H.;Qin,W.;Lu,Q.;Zhao,Y.;Wang,X. Q.;Zhang,J.J.Appl.Surf.Sci.2011,257,8647.doi:10.1016/j. apsusc.2011.05.042

    (38) Stibor,A.;Kresse,G.;Eichler,A.;Hafner,J.Surf.Sci.2002, 507,99.doi:10.1016/S0039-6028(02)01182-2

    (39) Bromfield,T.C.;Ferré,D.C.;Niemantsverdriet,J.W. ChemPhysChem 2005,6,254.doi:10.1002/cphc.200400452

    (40) Claridge,J.B.;Green,M.L.H.;Tsang,S.C.;York,A.P.E.; Ashcroft,A.T.;Battle,P.D.Catal.Lett.1993,22,299. doi:10.1007/BF00807237

    (41) Wang,B.W.;Yan,R.;Lee,D.H.;Liang,D.T.;Zheng,Y.;Zhao, H.B.;Zheng,C.G.Energy Fuels 2008,22,1012.doi:10.1021/ ef7005673

    (42) Sorescu,D.C.;Thompson,D.L.;Hurley,M.M.;Chabalowski, C.F.Phys.Rev.B 2002,66,035416.doi:10.1103/ PhysRevB.66.035416

    (43) Moon,D.W.;Bernasek,S.L.;Lu,J.P.;Gland,J.L.;Dwyer,D. J.Surf.Sci.1987,184,90.doi:10.1016/S0039-6028(87)80274-1

    (44) Qin,W.;Lin,C.F.;Long,D.T.;Xiao,X.B.;Dong,C.Q.Acta Phys.-Chim.Sin.2015,31,667.[覃 吳,林常楓,龍東騰,肖顯斌,董長(zhǎng)青.物理化學(xué)學(xué)報(bào),2015,31,667.]doi:10.3866/PKU. WHXB201502061

    (45) Dong,C.Q.;Liu,X.L.;Qin,W.;Lu,Q.;Wang,X.Q.;Shi,S. M.;Yang,Y.P.Appl.Surf.Sci.2012,258,2562.doi:10.1016/j. apsusc.2011.10.092

    Synergetic Effect of Mercury Adsorption on the Catalytic Decomposition of CO over Perfect and Reduced Fe2O3[001]Surface

    LIJi-Hong1LIN Chang-Feng1QIN Wu1,*XIAO Xian-Bin1WEILi2,*
    (1National Engineering Laboratory for Biomass Power Generation Equipment,School of Renewable Energy Engineering, North China Electric Power University,Beijing 102206,P.R.China;2State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150090,P.R.China)

    Mercury emission from coal during chemical-looping combustion(CLC)is an inevitable process, which can lead to adverse interactions with the surface of the oxygen carrier,thereby affecting the interfacial redox reactions.Density functional theory calculations were performed to investigate the mechanism of elemental mercury(Hg0)adsorption and the synergetic effect of Hg0on the catalytic decomposition of CO over a perfect surface(Fe2O3[001]),as well as a series of reduced surfaces(Fe2O2.75,Fe2O2.5,Fe2O2.25,Fe2O1.625, Fe2O0.875,Fe2O0.375and Fe)during a deep CLC process.In this study,Hg0was physically adsorbed on to a perfect Fe2O3surface,and then chemically adsorbed on to a series of reduced surfaces.The adsorption of Hg0 inhibited the formation of meaningful interactions between CO and Fe2O3[Fe2O2.75,Fe2O2.5and Fe2O2.25]and hindered the efficient transport of oxygen to oxidize CO into CO2.In contrast,this process promoted the interactions between CO and Fe2O1.625[Fe2O0.875,Fe2O0.375,and Fe],favoring the catalytic decomposition of CO on these surfaces,which accelerated the carbon deposit reducing CLC efficiency.Rationally controlling the reduction degree of the oxygen carrier could therefore be used to either decrease the adsorption of Hg0or depress the deposition of carbon, which are both crucial for the optimization of CLC processes.

    O647

    10.3866/PKU.WHXB201607271

    Received:May 3,2016;Revised:July 27,2016;Published online:July 27,2016.

    *Corresponding authors.QIN Wu,Email:qinwugx@126.com;Tel:+86-10-61772457.WEI Li,Email:weilihit@126.com;Fax:+86-451-86283805. The project was supported by the National Natural Science Foundation of China(51346001,51106051)and Fundamental Research Funds for the

    Central Universities,China(2016YQ07,2014ZD14).

    國(guó)家自然科學(xué)基金(51346001,51106051)和中央高?;究蒲袑m?xiàng)資金(2016YQ07,2014ZD14)資助項(xiàng)目

    猜你喜歡
    載氧體華北電力大學(xué)積碳
    基于銅、錳基的CaSO4復(fù)合載氧體反應(yīng)活性改善的實(shí)驗(yàn)研究
    鈣鈦礦型BaFeO3-δ載氧體的制備與氣化性能
    NiFeAlO4載氧體制備及煤化學(xué)鏈燃燒反應(yīng)特性
    清除汽車積碳再升級(jí)
    汽車觀察(2018年10期)2018-11-06 07:05:34
    積碳
    ——會(huì)偷偷侵蝕你的發(fā)動(dòng)機(jī)!
    人民交通(2016年8期)2017-01-05 07:46:51
    On Hegel's Interpretation of the Conflict in Antigone
    On Hegel’s Interpretation of the Conflict in Antigone
    負(fù)鈦銅基載氧體在煤化學(xué)鏈燃燒中多環(huán)芳烴的生成
    《華北電力大學(xué)學(xué)報(bào)》( 社會(huì)科學(xué)版)2016 年總目錄
    柴油機(jī)氣門及EGR管路積碳問題的分析與解決
    久久久久久久午夜电影| 久久久国产成人精品二区| 国产高清三级在线| 夫妻性生交免费视频一级片| 又粗又爽又猛毛片免费看| 丰满人妻一区二区三区视频av| 99久久无色码亚洲精品果冻| 国产一级毛片在线| 日韩在线高清观看一区二区三区| 免费看a级黄色片| 国产亚洲午夜精品一区二区久久 | 久久久久久国产a免费观看| 亚洲综合精品二区| av线在线观看网站| 九九在线视频观看精品| av免费在线看不卡| 日本一二三区视频观看| 国产日韩欧美在线精品| 日本-黄色视频高清免费观看| 精品久久久久久电影网 | 亚洲中文字幕日韩| 免费av毛片视频| 99国产精品一区二区蜜桃av| 成年av动漫网址| 欧美激情国产日韩精品一区| 哪个播放器可以免费观看大片| av在线天堂中文字幕| 欧美xxxx性猛交bbbb| 成人综合一区亚洲| 亚洲电影在线观看av| 久久久成人免费电影| 欧美zozozo另类| 女人被狂操c到高潮| 免费av观看视频| 国产精品久久久久久av不卡| 亚洲精品乱码久久久v下载方式| 日本熟妇午夜| 久久亚洲精品不卡| 性色avwww在线观看| 欧美另类亚洲清纯唯美| 国产精品一区二区在线观看99 | 免费电影在线观看免费观看| 久久久色成人| 成人综合一区亚洲| 寂寞人妻少妇视频99o| 免费电影在线观看免费观看| av女优亚洲男人天堂| 国产成人精品一,二区| 全区人妻精品视频| АⅤ资源中文在线天堂| 在线免费观看不下载黄p国产| 欧美一级a爱片免费观看看| 中文亚洲av片在线观看爽| 精品一区二区免费观看| 成人无遮挡网站| 久久精品国产亚洲av天美| 欧美一级a爱片免费观看看| 成人高潮视频无遮挡免费网站| 欧美三级亚洲精品| 色噜噜av男人的天堂激情| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 一个人看的www免费观看视频| 国产不卡一卡二| av视频在线观看入口| 蜜桃亚洲精品一区二区三区| 伦理电影大哥的女人| 男人舔女人下体高潮全视频| videossex国产| 成人亚洲精品av一区二区| www.av在线官网国产| 国产不卡一卡二| 性插视频无遮挡在线免费观看| 精品99又大又爽又粗少妇毛片| 久久久久国产网址| 亚洲av男天堂| 久99久视频精品免费| 秋霞伦理黄片| 久久国产乱子免费精品| 午夜福利在线观看吧| 精品人妻一区二区三区麻豆| 国产熟女欧美一区二区| 麻豆国产97在线/欧美| 国产麻豆成人av免费视频| 欧美一级a爱片免费观看看| 午夜福利网站1000一区二区三区| 偷拍熟女少妇极品色| 干丝袜人妻中文字幕| 高清午夜精品一区二区三区| 国产成人免费观看mmmm| 熟女人妻精品中文字幕| 少妇的逼水好多| 欧美又色又爽又黄视频| 亚洲国产精品成人综合色| 高清毛片免费看| 免费av不卡在线播放| 久久久久久久久大av| 午夜免费激情av| 国产成人a区在线观看| 我的老师免费观看完整版| 床上黄色一级片| 乱系列少妇在线播放| 赤兔流量卡办理| 国产亚洲5aaaaa淫片| 一级毛片久久久久久久久女| 精品久久久久久久久久久久久| 国产av码专区亚洲av| 亚洲精品色激情综合| 1024手机看黄色片| 91狼人影院| 美女大奶头视频| 69av精品久久久久久| av线在线观看网站| 日本黄色视频三级网站网址| 最近视频中文字幕2019在线8| 欧美丝袜亚洲另类| .国产精品久久| 久久久久久久久久黄片| 桃色一区二区三区在线观看| 欧美激情久久久久久爽电影| 亚洲国产欧洲综合997久久,| 欧美丝袜亚洲另类| 中文亚洲av片在线观看爽| 国产国拍精品亚洲av在线观看| 亚洲欧美一区二区三区国产| 岛国毛片在线播放| 国产av不卡久久| 最近的中文字幕免费完整| 麻豆成人av视频| 亚洲欧美成人综合另类久久久 | 亚洲激情五月婷婷啪啪| 男女视频在线观看网站免费| 成人一区二区视频在线观看| 欧美日韩精品成人综合77777| 欧美成人一区二区免费高清观看| 国产伦精品一区二区三区四那| 日产精品乱码卡一卡2卡三| 久久99热这里只频精品6学生 | av播播在线观看一区| 女人十人毛片免费观看3o分钟| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区三区| 免费看日本二区| 看十八女毛片水多多多| 精品久久国产蜜桃| 欧美高清性xxxxhd video| 国产一级毛片七仙女欲春2| 亚洲精品国产成人久久av| 成人鲁丝片一二三区免费| 人人妻人人澡人人爽人人夜夜 | av在线天堂中文字幕| 精品久久久久久成人av| 亚洲精品自拍成人| 国语对白做爰xxxⅹ性视频网站| av专区在线播放| 亚洲自拍偷在线| 18禁在线无遮挡免费观看视频| 国产免费又黄又爽又色| 97人妻精品一区二区三区麻豆| 久久韩国三级中文字幕| 国产探花在线观看一区二区| 男女下面进入的视频免费午夜| 亚洲最大成人手机在线| 搞女人的毛片| 国产一区二区在线av高清观看| 久久精品国产99精品国产亚洲性色| 国产黄片美女视频| 国产亚洲精品久久久com| 欧美97在线视频| 2021天堂中文幕一二区在线观| 亚洲高清免费不卡视频| 天堂av国产一区二区熟女人妻| 欧美日韩在线观看h| 欧美成人一区二区免费高清观看| 可以在线观看毛片的网站| 中文欧美无线码| 亚洲婷婷狠狠爱综合网| 18+在线观看网站| 最新中文字幕久久久久| 久久精品国产亚洲网站| 国产成人一区二区在线| 国产三级在线视频| 尾随美女入室| 国产老妇女一区| 国产不卡一卡二| www.色视频.com| 久久6这里有精品| 免费看日本二区| 内射极品少妇av片p| av播播在线观看一区| 狂野欧美激情性xxxx在线观看| 老司机影院成人| 成人欧美大片| 在线观看av片永久免费下载| 少妇的逼好多水| 欧美激情在线99| 国产精品一二三区在线看| 日韩一区二区视频免费看| 大话2 男鬼变身卡| 男女下面进入的视频免费午夜| 搡老妇女老女人老熟妇| 亚洲av不卡在线观看| 亚洲国产精品合色在线| 日产精品乱码卡一卡2卡三| av视频在线观看入口| 蜜桃久久精品国产亚洲av| 国产白丝娇喘喷水9色精品| 精华霜和精华液先用哪个| 九色成人免费人妻av| 日本一二三区视频观看| 精品久久久久久久久久久久久| 黄色日韩在线| 国产精品久久久久久精品电影| 六月丁香七月| 99久国产av精品| 秋霞伦理黄片| 日本黄色视频三级网站网址| 少妇的逼好多水| 国产美女午夜福利| 一卡2卡三卡四卡精品乱码亚洲| 99热这里只有是精品50| 高清视频免费观看一区二区 | 日本熟妇午夜| 日本-黄色视频高清免费观看| 丰满乱子伦码专区| av卡一久久| 色视频www国产| 午夜视频国产福利| 成人亚洲欧美一区二区av| 美女国产视频在线观看| 亚洲国产精品成人综合色| 亚洲不卡免费看| 美女脱内裤让男人舔精品视频| 色吧在线观看| 国产成人aa在线观看| 日韩欧美在线乱码| 男女啪啪激烈高潮av片| a级毛片免费高清观看在线播放| 在线免费十八禁| 国产在线男女| 久久久久久九九精品二区国产| 亚洲欧美日韩无卡精品| 男女视频在线观看网站免费| 日韩欧美国产在线观看| 国产精品一区二区性色av| 国产精品三级大全| 亚洲国产色片| 国产色婷婷99| 精品人妻偷拍中文字幕| 亚洲熟妇中文字幕五十中出| 日韩av在线大香蕉| 尤物成人国产欧美一区二区三区| 99视频精品全部免费 在线| 99热网站在线观看| 18禁在线无遮挡免费观看视频| a级毛色黄片| 国语自产精品视频在线第100页| 日日啪夜夜撸| 亚洲熟妇中文字幕五十中出| 97热精品久久久久久| 青春草视频在线免费观看| 午夜福利高清视频| 噜噜噜噜噜久久久久久91| 在线免费观看不下载黄p国产| 久久这里有精品视频免费| av.在线天堂| 免费播放大片免费观看视频在线观看 | 精品国产一区二区三区久久久樱花 | 国产伦在线观看视频一区| 国产av在哪里看| 99国产精品一区二区蜜桃av| 日韩一区二区三区影片| 国产欧美日韩精品一区二区| 看十八女毛片水多多多| 国产成人精品婷婷| 一二三四中文在线观看免费高清| 亚洲人成网站在线播| 国产一级毛片七仙女欲春2| 免费不卡的大黄色大毛片视频在线观看 | 欧美又色又爽又黄视频| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 国产色爽女视频免费观看| 日日啪夜夜撸| 亚洲婷婷狠狠爱综合网| 内地一区二区视频在线| 波野结衣二区三区在线| 免费av毛片视频| 毛片女人毛片| 日本一本二区三区精品| 精华霜和精华液先用哪个| 一本久久精品| 最近最新中文字幕大全电影3| 亚洲第一区二区三区不卡| 亚洲怡红院男人天堂| 99久久无色码亚洲精品果冻| 老师上课跳d突然被开到最大视频| 中文亚洲av片在线观看爽| 国产成年人精品一区二区| 国产淫片久久久久久久久| 亚洲人成网站高清观看| 亚洲经典国产精华液单| 黄片无遮挡物在线观看| 免费大片18禁| 免费黄网站久久成人精品| 在线观看66精品国产| 日日撸夜夜添| 久久久久网色| 大又大粗又爽又黄少妇毛片口| 亚洲欧美精品自产自拍| 综合色av麻豆| 中文字幕精品亚洲无线码一区| 在线播放无遮挡| 国产精品福利在线免费观看| 高清日韩中文字幕在线| 亚洲va在线va天堂va国产| 女的被弄到高潮叫床怎么办| 国产午夜精品论理片| 小蜜桃在线观看免费完整版高清| 两个人的视频大全免费| 欧美精品国产亚洲| 热99re8久久精品国产| 欧美人与善性xxx| 国产爱豆传媒在线观看| 免费观看人在逋| 久久久精品大字幕| 欧美日韩一区二区视频在线观看视频在线 | 精品国产一区二区三区久久久樱花 | 国产亚洲精品久久久com| 国产免费又黄又爽又色| 国产精品综合久久久久久久免费| 男女边吃奶边做爰视频| 一级av片app| 精品不卡国产一区二区三区| 欧美精品国产亚洲| 极品教师在线视频| 精品人妻偷拍中文字幕| 久久6这里有精品| 精品人妻一区二区三区麻豆| 麻豆久久精品国产亚洲av| a级毛片免费高清观看在线播放| 最近2019中文字幕mv第一页| 啦啦啦观看免费观看视频高清| 边亲边吃奶的免费视频| 国产成人福利小说| a级毛色黄片| 女人久久www免费人成看片 | 69av精品久久久久久| 直男gayav资源| 日韩av不卡免费在线播放| 性插视频无遮挡在线免费观看| 成人综合一区亚洲| 日韩欧美精品v在线| 国产成人a∨麻豆精品| 日韩欧美在线乱码| 热99在线观看视频| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| 国产精品三级大全| 乱码一卡2卡4卡精品| 精华霜和精华液先用哪个| 麻豆成人午夜福利视频| 伦理电影大哥的女人| 狂野欧美激情性xxxx在线观看| 老师上课跳d突然被开到最大视频| 免费看a级黄色片| 天天躁日日操中文字幕| 欧美潮喷喷水| 久久99精品国语久久久| 成人无遮挡网站| 亚洲成av人片在线播放无| 国产 一区精品| 69av精品久久久久久| 欧美潮喷喷水| 97超视频在线观看视频| 韩国av在线不卡| 插逼视频在线观看| 国国产精品蜜臀av免费| 蜜桃亚洲精品一区二区三区| 久久精品人妻少妇| 美女内射精品一级片tv| 啦啦啦韩国在线观看视频| 欧美日本亚洲视频在线播放| 亚洲欧美清纯卡通| 尾随美女入室| 村上凉子中文字幕在线| 最后的刺客免费高清国语| 91狼人影院| 美女黄网站色视频| 亚洲不卡免费看| 国产不卡一卡二| 建设人人有责人人尽责人人享有的 | 久久精品国产亚洲av天美| 日韩av不卡免费在线播放| 97热精品久久久久久| 中国美白少妇内射xxxbb| 日日撸夜夜添| 亚洲欧美一区二区三区国产| 亚洲成人av在线免费| 中国国产av一级| 99热这里只有是精品50| 亚洲成人精品中文字幕电影| 99久国产av精品国产电影| av在线亚洲专区| 国产不卡一卡二| 国产人妻一区二区三区在| 亚洲最大成人中文| 精品久久久久久久久av| 99久久成人亚洲精品观看| 免费看a级黄色片| 午夜激情福利司机影院| 亚洲中文字幕日韩| 日韩成人av中文字幕在线观看| 国产成人精品一,二区| 亚洲精品日韩av片在线观看| 免费黄色在线免费观看| 亚洲国产精品合色在线| 亚洲国产欧美人成| 真实男女啪啪啪动态图| 国产亚洲5aaaaa淫片| 禁无遮挡网站| 久久精品国产亚洲av涩爱| 又粗又硬又长又爽又黄的视频| 直男gayav资源| 亚洲国产精品sss在线观看| 一区二区三区免费毛片| 国产伦精品一区二区三区四那| av免费在线看不卡| 国产午夜精品一二区理论片| 美女黄网站色视频| 女的被弄到高潮叫床怎么办| 日韩av在线免费看完整版不卡| 午夜老司机福利剧场| 黄色一级大片看看| 免费看美女性在线毛片视频| 免费av观看视频| 国国产精品蜜臀av免费| 十八禁国产超污无遮挡网站| 美女国产视频在线观看| 99久久人妻综合| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 欧美又色又爽又黄视频| 麻豆乱淫一区二区| 国产女主播在线喷水免费视频网站 | 美女国产视频在线观看| 中文字幕制服av| 国产精品福利在线免费观看| 简卡轻食公司| 纵有疾风起免费观看全集完整版 | 中国国产av一级| 久久久久久久久中文| 淫秽高清视频在线观看| 一级爰片在线观看| 久久99热这里只有精品18| 91精品国产九色| 中文字幕av成人在线电影| 久久久久九九精品影院| 大香蕉久久网| 18禁在线播放成人免费| 欧美日本视频| 有码 亚洲区| 国产探花在线观看一区二区| 国产亚洲91精品色在线| 成人亚洲精品av一区二区| 日韩av在线免费看完整版不卡| 国产片特级美女逼逼视频| 99久国产av精品国产电影| 亚洲精华国产精华液的使用体验| 高清av免费在线| 国产在视频线在精品| www日本黄色视频网| 99热6这里只有精品| 纵有疾风起免费观看全集完整版 | 国产亚洲午夜精品一区二区久久 | 99久久无色码亚洲精品果冻| 日韩在线高清观看一区二区三区| 日韩三级伦理在线观看| 亚洲精品一区蜜桃| 最新中文字幕久久久久| 嘟嘟电影网在线观看| 黄片wwwwww| 亚洲国产成人一精品久久久| 少妇人妻一区二区三区视频| 99热全是精品| 黄片无遮挡物在线观看| 非洲黑人性xxxx精品又粗又长| 麻豆久久精品国产亚洲av| 亚洲欧美日韩高清专用| 欧美一区二区精品小视频在线| 熟女人妻精品中文字幕| 欧美精品一区二区大全| 日本欧美国产在线视频| 亚洲成人av在线免费| 综合色丁香网| 亚洲无线观看免费| 少妇的逼好多水| 男女那种视频在线观看| eeuss影院久久| 男人狂女人下面高潮的视频| 国产精品福利在线免费观看| 国产精品一二三区在线看| 村上凉子中文字幕在线| 欧美xxxx性猛交bbbb| 国产免费一级a男人的天堂| 最后的刺客免费高清国语| 免费av不卡在线播放| 18禁在线无遮挡免费观看视频| 一级黄色大片毛片| 亚洲精品影视一区二区三区av| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片| 亚洲成人av在线免费| 国产在视频线精品| 美女脱内裤让男人舔精品视频| 欧美成人a在线观看| 三级经典国产精品| 六月丁香七月| 白带黄色成豆腐渣| 性插视频无遮挡在线免费观看| 夜夜看夜夜爽夜夜摸| 人妻少妇偷人精品九色| 午夜日本视频在线| a级毛色黄片| 村上凉子中文字幕在线| 麻豆av噜噜一区二区三区| 日韩欧美精品v在线| 亚洲精品乱码久久久v下载方式| 亚洲伊人久久精品综合 | 中文字幕av在线有码专区| 一级毛片电影观看 | 亚洲精品日韩在线中文字幕| 三级国产精品片| 日本午夜av视频| 亚洲av电影不卡..在线观看| 99久久精品热视频| 最近最新中文字幕大全电影3| 国产黄a三级三级三级人| 久久久久久久久中文| 视频中文字幕在线观看| 少妇熟女aⅴ在线视频| av在线播放精品| 国产精品1区2区在线观看.| 午夜老司机福利剧场| 欧美一区二区精品小视频在线| 非洲黑人性xxxx精品又粗又长| 久久99蜜桃精品久久| 免费看av在线观看网站| 2022亚洲国产成人精品| 色视频www国产| 成人国产麻豆网| 亚洲成av人片在线播放无| 少妇的逼好多水| 亚洲在线观看片| 亚洲自偷自拍三级| 欧美一级a爱片免费观看看| 国产男人的电影天堂91| videos熟女内射| 爱豆传媒免费全集在线观看| 一级爰片在线观看| 九色成人免费人妻av| 国产午夜精品论理片| 日本爱情动作片www.在线观看| h日本视频在线播放| 欧美成人一区二区免费高清观看| .国产精品久久| 毛片女人毛片| 久久久久久九九精品二区国产| 精品人妻熟女av久视频| 欧美又色又爽又黄视频| 欧美丝袜亚洲另类| 91aial.com中文字幕在线观看| 亚洲国产精品久久男人天堂| 草草在线视频免费看| 丝袜喷水一区| 国产精品日韩av在线免费观看| 日韩成人伦理影院| 岛国在线免费视频观看| www.av在线官网国产| 久久久久九九精品影院| 国产女主播在线喷水免费视频网站 | 搡女人真爽免费视频火全软件| 欧美极品一区二区三区四区| 久久久成人免费电影| 亚洲人成网站高清观看| 日本猛色少妇xxxxx猛交久久| 久久久久久久久中文| 国产免费视频播放在线视频 | 有码 亚洲区| 在线播放无遮挡| 亚洲国产精品成人综合色| 久久精品91蜜桃| 午夜激情欧美在线| av国产免费在线观看| 久久久a久久爽久久v久久| 久久久精品94久久精品| 国产伦一二天堂av在线观看| 午夜福利在线观看吧| av在线蜜桃| 亚洲精品456在线播放app| 97超视频在线观看视频| 亚洲性久久影院| 亚洲国产精品成人综合色| 亚洲欧美精品自产自拍| 精品无人区乱码1区二区| 午夜a级毛片| 美女被艹到高潮喷水动态| 免费观看性生交大片5| 一个人看的www免费观看视频| 国产精品嫩草影院av在线观看| 国产精品一区二区性色av| 女人被狂操c到高潮| 搡女人真爽免费视频火全软件| 一级爰片在线观看|