• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantifying the attribution of model bias in simulating summer hot days in China with IAP AGCM 4.1

    2016-11-23 05:56:59LINZhoHuiYUZhengZHANGHendWUChengLi
    關(guān)鍵詞:模擬出概率分布日數(shù)

    LIN Zho-Hui, YU Zheng, ZHANG Hend WU Cheng-Li

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing,China;bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China;cCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China

    Quantifying the attribution of model bias in simulating summer hot days in China with IAP AGCM 4.1

    LIN Zhao-Huia,b, YU Zhenga,c, ZHANG Hea,band WU Cheng-Laia

    aInternational Center for Climate and Environment Sciences (ICCES), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing,China;bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing, China;cCollege of Earth Science, University of Chinese Academy of Sciences, Beijing, China

    Using IAP AGCM simulation results for the period 1961—2005, summer hot days in China were calculated and then compared with observations. Generally, the spatial pattern of hot days is reasonably reproduced, with more hot days found in northern China, the Yangtze and Huaihe River basin, the Chuan-Yu region, and southern Xinjiang. However, the model tends to overestimate the number of hot days in the above-mentioned regions, particularly in the Yangtze and Huaihe River basin where the simulated summer-mean hot days is 13 days more than observed when averaged over the whole region, and the maximum overestimation of hot days can reach 23 days in the region. Analysis of the probability distribution of daily maximum temperature (Tmax) suggests that the warm bias in the model-simulated Tmaxcontributes largely to the overestimation of hot days in the model. Furthermore, the discrepancy in the simulated variance of the Tmaxdistribution also plays a nonnegligible role in the overestimation of hot days. Indeed, the latter can even account for 22% of the total bias of simulated hot days in August in the Yangtze and Huaihe River basin. The quantifcation of model bias from the mean value and variability can provide more information for further model improvement.

    ARTICLE HISTORY

    Revised 8 May 2016

    Accepted 9 May 2016

    Hot days; variance in probability distribution;bias attribution; model evaluation; IAP AGCM

    本文利用IAP大氣環(huán)流模式1961—2005年的模擬結(jié)果,分析發(fā)現(xiàn)模式雖然可較好模擬出中國大陸夏季高溫日數(shù)的空間分布特征,但對(duì)高溫日數(shù)的模擬則普遍高估。通過分析觀測和模式模擬的日最高溫度的概率分布特征,定量評(píng)估了日最高溫的均值和方差的模擬偏差對(duì)模式高估極端高溫日數(shù)的相對(duì)貢獻(xiàn),指出日最高溫度均值的模擬偏高是模式高估高溫日數(shù)的主要原因,但日最高溫方差的模擬偏差對(duì)高溫日數(shù)的高估也有重要影響,以江淮地區(qū)8月份為例,其貢獻(xiàn)可達(dá)22%。進(jìn)一步分析表明,IAP模式未能模擬出江淮流域1980s年代前后極端高溫日數(shù)的年代際減少,主要?dú)w因于模式未能模擬出1980s前后日最高氣溫均值的年代際減小,而模式未能模擬出日最高溫方差的年代際減弱也起很大作用。

    1. Introduction

    It is known that the frequency and intensity of extreme high temperature (EHT) events increased significantly in the middle and late parts of the last century (IPCC 2007), and record-breaking EHT events have been found in different parts of the world during recent decades(Fink et al. 2004; Trenberth and Fasullo 2012; Sun et al. 2014). Due to its adverse societal impacts (e.g. Conti et al. 2005), EHT events, like other extreme events, have been identified as one of the grand challenges for the World Climate Research Program, and simulating and predicting these climate extremes have become cutting-edge issues for climate science research (e.g. Sillmann and Roeckner 2008; Becker, Van Den Dool, and Pe?a 2013; WCRP 2015).

    Using the simulated results from CMIP, several studies have shown that the current generation of climate models can to some extent reproduce the observed trend and interdecadal variation characteristics of temperature extremes (e.g. Alexander and Arblaster 2009; Nakano,Matsueda, and Sugi 2013; Yao et al. 2013). However, significant bias in the simulation of extreme events can also befound; for instance, in high latitude regions, CMIP5 models simulate warmer daily maximum temperature and colder daily minimum temperature when compared to observation (e.g. Sillmann et al. 2013).

    Extreme high temperature events in China have also been widely investigated, with more attention being paid to the characteristics and mechanisms of extreme hot events (e.g. Sun, Wang, and Yuan 2011; Wang et al. 2013; Lu and Chen 2016). Recently, modeling efforts have also been made to simulate high temperature events and their variability (Dong et al. 2012; Li et al. 2013); however, few studies have been conducted to analyze the model bias in simulating the number of extreme high temperature days (i.e. frequency of hot days), especially the statistical characteristics related to the bias. As suggested by Katz and Brown (1992), the changes in the frequency of extreme events depend both on changes in the variability and mean of the climate. The inference is that the model bias in simulating extreme high temperature days (hereafter referred as ‘hot days') could be attributed to the model biases both in simulating the mean and variability of the daily maximum temperature (Tmax).

    In this paper, the summer hot days in China simulated by IAP AGCM are compared with observations. In doing so, the model bias is frst analyzed, and then the probability distribution of Tmaxis compared between the simulation and observation. The model biases in simulating the mean and variance of Tmaxare illustrated, and their relative contributions to the bias of hot days given by the model are further quantifed. This attribution method is further applied to interpret the model discrepancy in simulating the decadal changes of hot days in China.

    2. Data and model experiment

    The observed daily Tmaxdata in China used in this study are from the CN05.1 data-set, which was originally developed by Wu and Gao (2013) and has a horizontal resolution of 0.25° × 0.25°, covering the period 1961—2015. The model used for the simulation is version 4.1 of the IAP's AGCM (IAP AGCM 4.1), which has a horizontal resolution of approximately 1.4° × 1.4° (Zhang, Lin,and Zeng 2009). The model is integrated from 1900 to 2005 with SST taken from HadISST (Hurrell et al. 2008). The greenhouse gas (GHG) concentrations and anthropogenic aerosol and precursor gas emissions are from CMIP5 recommendations for twentieth century simulation (http://cmip-pcmidi.llnl.gov/cimp5/forcing). The original simulated data are bilinearly interpolated from 1.4° × 1.4° to 0.25° × 0.25° for comparison during 1961—2005. The term ‘hot day' refers to days on which Tmaxreaches or exceeds 35 °C (Liu et al. 2008).

    3. Results

    3.1. Simulation of summer hot days by IAP AGCM 4.1 Figure 1 shows the observed and simulated (by IAP AGCM 4.1) spatial distribution of the number of hot days over China averaged from 1961 to 2005, along with the differences between observation and the simulation. Based on observation (Figure 1(a)—(c)), the regions with a large number of hot days can be found in the southern part of North China (SNC), the Yangtze and Huaihe River basin (YHB), Chuanyu Region (CYR),and the southern part of Xinjiang area (SXJ), with the maximum number of summer hot days reaching 22 in YHB and 78 in Xinjiang. Large areas with the number of hot days exceeding 20 for the summer season can be clearly found in SXJ, with prominent regions in YHB too(15—25 days). In SNC, the number of hot days is generally around 10 days for summer, and 2—7 days for July. In August, more hot days can still be found in YHB and SXJ, but few hot days can be found in SNC.

    From Figure 1(d)—(f), it is found that IAP AGCM4.1 can capture the observed spatial patterns of hot days well,with all four of the above-mentioned regions of higher frequency in hot days reasonably reproduced. However,there is a large diference in the number of hot days, in which the model generally overestimates the number of hot days, particularly in eastern China, Northwest China,Chuanyu region and Xinjiang (Figure 1(g)—(i)). For instance,the maximum diference in YHB can reach 23 days in summer, with an overestimation of 13 days when averaged over the whole region (30—36°N, 110—120°E). As for July and August, the patterns of model bias are consistent with that for the whole summer. In YHB, the region-averaged overestimation is seven days for July and fve days for August; the sum of bias in July and August can account for more than 90% of the total bias in summer. Due to the small portion (<10%) of the contribution from the model bias in June, we only present the model bias for July and August in Figure 1 for further analysis.

    3.2. Attribution analysis for the model bias in the

    simulated number of hot days

    Figure 1.Spatial distribution of the average of number of hot days over the period 1961—2005 in (a, d, g) JJA, (b, e, h) July, and (c, f, i)August, based on (a—c) observations and (d—f) the simulation.

    In order to reveal the possible cause of the overestimation of hot-day numbers simulated by IAP AGCM, the differences in 45-yr averaged Tmaxbetween the model and observation during the summer season (i.e. June—July—August, JJA) and summer months (i.e. July and August) are given in Figure 2. Compared with observation, a large overestimation in the simulated Tmaxis persistently seen in YHB,SXJ, CYR, western Inner Mongolia and Northeast China,with a greater than 4 °C diference in terms of magnitude in July and August. It can also be seen that the regions with a larger simulated bias in hot days (Figure 1(g)—(i)) agree well with the regions with warm bias of Tmaxin the simulation(Figure 2), except in Northeast China. This suggest that the warm bias of Tmaxmight have a signifcant infuence on the bias of simulated hot days, since the criteria used here to defne extreme hot days is based on a certain degree of maximum temperature (35 °C). In Northeast China, as the daily maximum temperature can barely reach 35 °C both in observation and model simulation, we could not fnd prominent bias in the number of hot days, despite there being a signifcant warm bias of Tmaxin the model.

    Statistical theory for extremes suggests that changes in the frequency of extreme events (i.e. hot days in this study) depend not only on changes in the mean, but also on changes in variability. Katz and Brown (1992) demonstrated that change in climate extremes is relatively more dependent on any changes in the variability than in the mean. Model bias in simulating the number of hot days can certainly be regarded as a kind of change in frequency of extreme events (i.e. hot days) from the model climatology to observed climatology, which raises the question: how important are the changes in variability (i.e. the diference in the variability of Tmaxbetween the simulation and observation) to the model bias in the simulation of the number of hot days?

    To quantify the relative contribution from bias in the mean and variability between simulation and observation,we frstly assume P(E) as the cumulative probability of hot days (E), with C representing the threshold temperature(i.e. taken as 35 °C here). Under a normal distribution assumption, the total variation in hot days (ΔP) caused by changes in the mean value (μ) and variance (σ) can be approximately represented as follows: From the above formula, the contribution made by the mean value and the variance to the diference in hot days between the simulation and observation can be calculated by the frst and second term of the right-hand side,respectively.

    Figure 2.Spatial distribution of the diferences between the 45-year (1961—2005) average of observed and simulated Tmaxover China: (a) JJA; (b) July; (c) August.

    The data over YHB during 1961—2005 are utilized as an example to quantify the relative contribution, as shown in Figure 3. Using the Kolmogorov—Smirnov Test (Lilliefors 1967), we fnd that the probability distribution of Tmax,which is derived from the original observed and simulated data for 45 years in YHB, can be regarded as a normal distribution with a signifcance level of 0.01 (or 99%). To quantify the relative contribution from bias in the mean value and variance, here we use the normal distribution to ft the observed and simulated Tmaxfor further calculation. Then,the mean value of summer Tmaxcan be calculated from the probability distribution function curves as 30.21 °C for observation and 32.16 °C for simulation, and the difference in the two mean values is 1.95 °C. Meanwhile,the observed and simulated variance of the summer Tmaxdistribution is 3.73 °C and 3.94 °C respectively, and the diference between them is 0.21 °C. The observed number of hot days over YHR is about 8 d (yr)-1during 1961—2005;the simulated number of hot days is 21 d (yr)-1, and the diference is 13 d (yr)-1.

    Following Katz and Brown (1992), the contribution made by the diference in the mean value and variance between the simulation and observation to the overestimation of the number of hot days by the model is then calculated. For the summer season, it is found that around 87.85% of the total bias can be attributed to the mean value bias, and 12.15% of the contribution is from the model bias in variance, i.e. 11 out of 13 days for the overestimation of hot days is caused by the model's warm bias in the mean daily Tmax, and 2 days' diference is from the larger variance of the simulation.

    Similarly, in July, the contribution made by the diference in the mean value (variance) between the simulation and observation to the simulated bias of hot days is about 84.41% (15.59%). The simulated number of hot days over YHB in the 45-year period is 7 d (yr)-1more than observed,of which that caused by the mean value (variance) bias is 6 days (1 day).

    The situation is the same as that in August; the mean value and variance bias between the simulated and observed results accounts for 77.59% and 22.41% of the contribution of the simulated bias of hot days, respectively. However, the relative importance of bias in the variance difers among July, August, and the summer season, with a non-negligible contribution of 22% in August.

    Figure 4(a) shows the time series of the regional average of the number of hot days in August in YHB from 1961 to 2000. A remarkable decadal diference in the number of hot days between 1961—1980 and 1981—2000 can be found in the observation, with the regionally averaged number of hot days being 3.2 d (yr)-1during 1961—80,and decreasing to 1.4 d (yr)-1during 1981—2000; and the diference in the number of hot days can be 1.8 d (yr)-1between the two time periods. However, the increasing trend in the model-simulated number of hot days can be found in the time series, which is completely diferent to the observation.

    The probability distribution of Tmaxover YHB in August for both the observation and simulation is shown in Figure 4(b). It can be calculated that the mean value of the observed Tmaxduring 1961—1980 is 30.67 °C, and 30.09 °C during 1981—2000, with the Tmaxvariance being 3.53 °C during 1961—80 and 3.26 °C during 1981—2000. Apparently,with the decrease in both the mean value and variance of the Tmaxdistribution, the 20-year averaged number of hot days decreases from 3.2 d (yr)-1in 1961—80 to 1.4 d (yr)-1in 1981—2000.

    Figure 3.Probability distribution functions (PDFs) of observed(blue line) and simulated (red line) Tmaxfor YHB from 1961 to 2005:(a) JJA; (b) July; (c) August.

    However, the changes in the mean value and variance between the above two periods for the model simulation is opposite to those in the observation. We can see from Figure 4(b) that the mean value of the Tmaxdistribution increases from 31.95 °C during 1961—1980 to 32.76 °C during 1981—2000, with the variance increasing from 3.56 °C to 3.66 °C. All these results lead to the increase in the number of hot days from 5.7 d (yr)-1to 8.1 d (yr)-1, with an increasing magnitude of 2.4 d (yr)-1. It is suggested that the biases in both the mean and variance are responsible for the opposite sign of the interdecadal diference in the number of hot days between 1961—1980 and 1981—2000.

    Figure 4.(a) Time series of the regional average of the number of hot days over Yangtze and Huaihe River basin in the month of August from 1961 to 2000. The red line indicates the simulated regional average of the number of hot days and the blue line indicates the observed regional average of the number of hot days. The black line is the mean of the regional average of the number of hot days. (b) PDFs of Tmaxover YHB in August. The red line indicates the simulated PDF distribution, the blue line indicates the observed PDF distribution, and the black line shows the temperature threshold estimated as 35 °C.

    The relative contribution from the decadal diference in the mean and variance to the decadal changes in the number of hot days is also investigated. Based on observations,the contribution made by the mean value is -63.65%, corresponding to a 1.1 d (yr)-1decrease from 1961—1980 to 1981—2000. Meanwhile, the contribution from the variance change is also very remarkable, being able to account for -36.35% of the total changes. However, in the model simulation, the 90.43% increase in the number of hot days can be ascribed to the increase in mean Tmax, while the contribution from the variance change is quite small, which only accounts for 9.57% of the total increase in hot-day numbers between the two periods. It can be concluded that the relative contribution of interdecadal change in the variance is not properly reproduced by the model.

    4. Conclusions

    Based on 45-year simulation results by IAP AGCM 4.1, the model performance in simulating the number of hot days in China was evaluated. It was found that the spatial patterns of hot days can be reproduced well by the model,with higher occurrence of hot spells in northern China,the YHB, Chuan-Yu region, and southern part of Xinjiang. However, large bias between the simulation and observation can be found in terms of the number of hot days, with an overestimation of more than 15 d (yr)-1easily found in YHB, SXJ, and CYR, where a remarkable warmer bias of daily Tmaxcan also be found.

    The probability distribution of daily Tmaxfor the simulation and observation was further analyzed and compared,revealing that the bias of the model in simulating the mean value of Tmaxcontributes signifcantly to the bias of the model in simulating the number of hot days. Furthermore,the contribution of bias in the variance of daily Tmaxto the bias in simulating the number of hot days was also quantifed, demonstrating that this contribution can account for 10% to 22% of the total bias, depending on the month. The methodology was also successfully applied to interpret the model bias in simulating the interdecadal changes in the number of hot days in YHB before and after 1980.

    It is well-known that model biases in mean values and variability can be ascribed to diferent sources, including the diferent physical parameterization schemes of models,and uncertainties in the external forcing and concentrations of atmospheric constituents, such as GHGs. The separate quantifcation of the simulated bias from the mean value and variability can certainly provide more information that can be applied in model improvements, and it is suggested that the method be applied further in model evaluations,especially regarding the simulation of extreme events.

    Disclosure statement

    No potential confict of interest was reported by the authors.

    Funding

    This research was jointly supported by the Special Scientifc Research Fund of the Meteorological Public Welfare Profession of China [grant number GYHY01406021]; National Key Research and Development Program [grant number 2016YFC0402702];the National Natural Science Foundation of China [grant numbers 41575095, 41175073].

    ORCiD

    LIN Zhao-Hui http://orcid.org/0000-0003-1376-3106

    References

    Alexander, L. V., and J. M. Arblaster. 2009. “Assessing Trends in Observed and Modelled Climate Extremes over Australia in Relation to Future Projections.” International Journal of Climatology 29 (3): 417—435. doi:10.1002/joc.1730.

    Becker, E. J., H. Van Den Dool, and M. Pe?a. 2013. “Short-term Climate Extremes: Prediction Skill and Predictability.” Journal of Climate 26 (2): 512—531. doi:10.1175/JCLI-D-12-00177.1.

    Conti, S., P. Meli, G. Minelli, R. Solimini, V. Toccaceli, M. Vichi,C. Beltrano, and L. Perini. 2005. “Epidemiologic Study of Mortality during the Summer 2003 Heat Wave in Italy.”Environmental Research 98 (3): 390—399. doi:10.1016/j. envres.2004.10.009.

    Dong, M., T. Wu, Z. Wang, Y. Cheng, and F. Zhang. 2012. “A Simulation Study on the Extreme Temperature Events of the 20th Century by Using the BCC_AGCM.” Acta Meteorologica Sinica 26: 489—507. doi:10.1007/s13351-012-0408-5.

    Fink, A. H., T. Brücher, A. Krüger, G. C. Leckebusch, J. G. Pinto, and U. Ulbrich. 2004. “The 2003 European Summer Heatwaves and Drought—Synoptic Diagnosis and Impacts.” Weather 59(8): 209—216. doi:10.1256/wea.73.04.

    Hurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski. 2008. “A New Sea Surface Temperature and Sea Ice Boundary Dataset for the Community Atmosphere Model.” Journal of Climate 21 (19): 5145—5153. doi:10.1175/2008JCLI2292.1.

    IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 996 pp. Cambridge: Cambridge University Press.

    Katz, R. W., and B. G. Brown. 1992. “Extreme Events in a Changing Climate: Variability is More Important than Averages.” Climatic Change 21 (3): 289—302. doi:10.1007/BF00139728.

    Li, J., Q. Zhang, Y. D. Chen, and V. P. Singh. 2013. “GCMs-Based Spatiotemporal Evolution of Climate Extremes during the 21st Century in China.” Journal of Geophysical Research: Atmospheres 118 (19): 11017—11035. doi:10.1002/jgrd.50851.

    Lilliefors, H. W. 1967. “On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown.” Journal of the American Statistical Association 62 (318): 399—402. doi:10.108 0/01621459.1967.10482916.

    Liu, L. L., L. H. Sun, Y. M. Liao, Y. F. Zhu, X. K. Zou, Y. M. Wang,and J. H. Yan. 2008. “Development and Application of National Prediction System for Extreme High Temperature.”Meteorological Monthly 34: 102—107. doi:10.7519/j.issn.1000-0526.2008.10.014.

    Lu, R. Y., and R. D. Chen. 2016. “A Review of Recent Studies on Extreme Heat in China.” Atmospheric and Oceanic Science Letters 9 (2): 114—121. doi:10.1080/16742834.2016.1133071.

    Nakano, M., M. Matsueda, and M. Sugi. 2013. “Future Projections of Heat Waves around Japan Simulated by CMIP3 and High-Resolution Meteorological Research Institute Atmospheric Climate Models.” Journal of Geophysical Research: Atmospheres 118 (8): 3097—3109. doi:10.1002/jgrd.50260.

    Sillmann, J., and E. Roeckner. 2008. “Indices for Extreme Events in Projections of Anthropogenic Climate Change.” Climatic Change 86 (1—2): 83—104. doi:10.1007/s10584-007-9308-6

    Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh. 2013. “Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate.”Journal of Geophysical Research: Atmospheres 118 (4): 1716—1733. doi:10.1002/jgrd.50203.

    Sun, J. Q., H. J. Wang, and W. Yuan. 2011. “Decadal Variability of the Extreme Hot Event in China and Its Association with Atmospheric Circulations.” Climatic and Environmental Research 16 (2): 199—208. doi:10.3878/j.issn.1006-9585.2011.02.09.

    Sun, Y., X. Zhang, F. W. Zwiers, L. Song, H. Wan, T. Hu, H. Yin, and G. Ren. 2014. “Rapid Increase in the Risk of Extreme Summer Heat in Eastern China.” Nature Climate Change 4 (12): 1082—1085. doi:10.1038/nclimate2410.

    Trenberth, K. E., and J. T. Fasullo. 2012. “Climate Extremes and Climate Change: The Russian Heat Wave and Other Climate Extremes of 2010.” Journal of Geophysical Research: Atmospheres 117 (D17): D17103. doi:10.1029/2012JD018020.

    Wang, W., W. Zhou, X. Wang, S. K. Fong, and K. C. Leong. 2013.“Summer High Temperature Extremes in Southeast China Associated with the East Asian Jet Stream and Circumglobal Teleconnection.” Journal of Geophysical Research: Atmospheres 118 (15): 8306—8319. doi:10.1002/jgrd.50633.

    WCRP. 2015. “Implementation Plan for the WCRP Grand Challenge on Understanding and Predicting Weather and Climate Extremes.” http://www.wcrp-climate.org/index.php/ gc-extreme-events.

    Wu, J., and X. J. Gao. 2013. “A Gridded Daily Observation Dataset over China Region and Comparison with the Other Datasets.” Chinese J. Geophys 56 (4): 1102—1111. doi:10.6038/ cjg20130406 (in Chinese).

    Yao, Y., Y. Luo, J. Huang, and Z. Zhao. 2013. “Comparison of Monthly Temperature Extremes Simulated by CMIP3 and CMIP5 Models.” Journal of Climate 26 (19): 7692—7707. doi:10.1175/JCLI-D-12-00560.1.

    Zhang, H., Z. H. Lin, and Q. C. Zeng. 2009. “The Computational Scheme and the Test for Dynamical Framework of IAP AGCM-4.” Chinese Journal of Atmospheric Sciences 33 (6): 1267—1285. doi:10.3878/j.issn.1006-9895.2009.06.13.

    高溫日數(shù); 概率分布方差;誤差歸因; 模式評(píng)估; IAP大氣環(huán)流模式

    29 April 2016

    CONTACT LIN Zhao-Hui lzh@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    模擬出概率分布日數(shù)
    漢江上游漢中區(qū)域不同等級(jí)降水日數(shù)的氣候變化特征分析
    綠色科技(2022年16期)2022-09-15 03:04:46
    離散型概率分布的ORB圖像特征點(diǎn)誤匹配剔除算法
    天津市濱海新區(qū)塘沽地域雷暴日數(shù)變化規(guī)律及特征分析
    天津科技(2020年2期)2020-03-03 05:09:48
    春 夜
    關(guān)于概率分布函數(shù)定義的辨析
    科技視界(2016年19期)2017-05-18 10:18:46
    基于概率分布的PPP項(xiàng)目風(fēng)險(xiǎn)承擔(dān)支出測算
    放射夕陽之光
    中華手工(2016年4期)2016-04-20 03:10:35
    海南省雷暴日數(shù)年代際變化特征
    ESSENTIAL NORMS OF PRODUCTS OF WEIGHTED COMPOSITION OPERATORS AND DIFFERENTIATION OPERATORS BETWEEN BANACH SPACES OF ANALYTIC FUNCTIONS?
    聲音從哪里來
    欧美不卡视频在线免费观看| 三级男女做爰猛烈吃奶摸视频| 久久草成人影院| 最近最新免费中文字幕在线| 黄频高清免费视频| 69av精品久久久久久| 成人无遮挡网站| 国产精品久久视频播放| 一个人观看的视频www高清免费观看 | 99热这里只有是精品50| 国产综合懂色| 国产综合懂色| 怎么达到女性高潮| 99久久成人亚洲精品观看| 日韩欧美在线二视频| 在线播放国产精品三级| 色av中文字幕| 久久午夜综合久久蜜桃| 免费一级毛片在线播放高清视频| 日日夜夜操网爽| 国产亚洲精品综合一区在线观看| 不卡av一区二区三区| h日本视频在线播放| 手机成人av网站| 在线观看免费视频日本深夜| av在线蜜桃| 国产高潮美女av| 精品人妻1区二区| 国产成人系列免费观看| 亚洲国产精品sss在线观看| 色在线成人网| 日本 av在线| 亚洲精品色激情综合| 97超视频在线观看视频| 亚洲中文av在线| 亚洲无线在线观看| 噜噜噜噜噜久久久久久91| 免费看美女性在线毛片视频| 18禁美女被吸乳视频| 免费搜索国产男女视频| 十八禁人妻一区二区| tocl精华| 狂野欧美白嫩少妇大欣赏| 性欧美人与动物交配| 久久伊人香网站| 国产成人av激情在线播放| 国产激情欧美一区二区| 中文字幕av在线有码专区| 在线国产一区二区在线| 一级毛片女人18水好多| 真实男女啪啪啪动态图| 国产高清三级在线| 99久久精品一区二区三区| 亚洲av片天天在线观看| 搞女人的毛片| 黄色日韩在线| 精品不卡国产一区二区三区| 日本黄大片高清| 国产乱人视频| www.自偷自拍.com| 无遮挡黄片免费观看| 中文字幕人成人乱码亚洲影| 精品国产三级普通话版| 十八禁网站免费在线| 九九热线精品视视频播放| 淫秽高清视频在线观看| 欧美性猛交╳xxx乱大交人| 欧美在线一区亚洲| 十八禁人妻一区二区| 国产成人av教育| 人妻久久中文字幕网| 91老司机精品| 中文字幕av在线有码专区| 亚洲午夜精品一区,二区,三区| 熟女电影av网| 大型黄色视频在线免费观看| 久久久国产欧美日韩av| 日韩欧美一区二区三区在线观看| 麻豆国产97在线/欧美| 日韩欧美免费精品| 色播亚洲综合网| 香蕉国产在线看| 免费在线观看亚洲国产| 中出人妻视频一区二区| 校园春色视频在线观看| 国产久久久一区二区三区| 欧美一级a爱片免费观看看| 夜夜躁狠狠躁天天躁| 在线国产一区二区在线| 又黄又爽又免费观看的视频| 亚洲成人免费电影在线观看| 午夜视频精品福利| 欧美av亚洲av综合av国产av| 1024香蕉在线观看| 国产精品九九99| 色播亚洲综合网| 欧美日韩一级在线毛片| 夜夜夜夜夜久久久久| 国产 一区 欧美 日韩| 国内精品久久久久精免费| 久久精品国产综合久久久| 亚洲欧美日韩东京热| 国产一级毛片七仙女欲春2| 亚洲自拍偷在线| 久久中文看片网| or卡值多少钱| 一边摸一边抽搐一进一小说| 亚洲色图 男人天堂 中文字幕| 99久国产av精品| 高潮久久久久久久久久久不卡| 岛国在线观看网站| 欧美三级亚洲精品| 无遮挡黄片免费观看| 亚洲av美国av| 国产黄色小视频在线观看| 国产成人影院久久av| 亚洲人成伊人成综合网2020| svipshipincom国产片| 国产av麻豆久久久久久久| 亚洲欧洲精品一区二区精品久久久| 日本一本二区三区精品| 久久久久国产一级毛片高清牌| 黄色丝袜av网址大全| 欧美高清成人免费视频www| 白带黄色成豆腐渣| 久久久久久人人人人人| 日韩成人在线观看一区二区三区| 他把我摸到了高潮在线观看| 色综合站精品国产| 国产亚洲精品综合一区在线观看| 久久久久免费精品人妻一区二区| 国产精品99久久99久久久不卡| 手机成人av网站| ponron亚洲| 亚洲片人在线观看| 女生性感内裤真人,穿戴方法视频| 久久久久久久久久黄片| 欧美性猛交╳xxx乱大交人| 十八禁人妻一区二区| 国产精品亚洲av一区麻豆| 九色国产91popny在线| 久久久久免费精品人妻一区二区| 亚洲 欧美 日韩 在线 免费| 婷婷精品国产亚洲av在线| 黄片小视频在线播放| 男女之事视频高清在线观看| 麻豆国产av国片精品| 婷婷丁香在线五月| 麻豆一二三区av精品| 国产亚洲精品久久久久久毛片| 国产成人系列免费观看| 19禁男女啪啪无遮挡网站| 色精品久久人妻99蜜桃| 美女 人体艺术 gogo| 色尼玛亚洲综合影院| 久久精品国产综合久久久| 亚洲精品在线美女| 国产高清激情床上av| 国产高清视频在线观看网站| 舔av片在线| www.www免费av| 色av中文字幕| 99久久99久久久精品蜜桃| av在线蜜桃| 久久久成人免费电影| 99国产精品一区二区蜜桃av| 国产成人aa在线观看| 国产精品一区二区免费欧美| 午夜两性在线视频| 国产欧美日韩一区二区三| 亚洲黑人精品在线| 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 成人特级黄色片久久久久久久| 神马国产精品三级电影在线观看| 色综合亚洲欧美另类图片| 在线观看美女被高潮喷水网站 | 一进一出抽搐动态| xxx96com| h日本视频在线播放| 男女午夜视频在线观看| 久久久水蜜桃国产精品网| a在线观看视频网站| 久久久久国产一级毛片高清牌| 日日摸夜夜添夜夜添小说| 亚洲色图av天堂| 亚洲国产精品999在线| 国产成人福利小说| 久久久久九九精品影院| 国产激情久久老熟女| 亚洲国产日韩欧美精品在线观看 | 精品国产亚洲在线| 亚洲美女黄片视频| 国产精品一区二区三区四区久久| 亚洲av熟女| 欧美色欧美亚洲另类二区| 国产综合懂色| 免费无遮挡裸体视频| 人人妻,人人澡人人爽秒播| 久久中文看片网| 亚洲五月天丁香| 亚洲欧美精品综合久久99| 国产激情偷乱视频一区二区| 动漫黄色视频在线观看| 九九久久精品国产亚洲av麻豆 | 性欧美人与动物交配| 小蜜桃在线观看免费完整版高清| 免费在线观看影片大全网站| 88av欧美| 久久九九热精品免费| 久久人妻av系列| 欧美日韩瑟瑟在线播放| 欧美av亚洲av综合av国产av| 国产精品精品国产色婷婷| 一级作爱视频免费观看| 精品国内亚洲2022精品成人| 国产精品久久久久久久电影 | 九九久久精品国产亚洲av麻豆 | 99热这里只有精品一区 | 午夜福利在线在线| 波多野结衣高清作品| a在线观看视频网站| 级片在线观看| 老司机在亚洲福利影院| 99re在线观看精品视频| 午夜亚洲福利在线播放| 亚洲成a人片在线一区二区| 99国产精品99久久久久| 三级国产精品欧美在线观看 | 高清在线国产一区| 不卡av一区二区三区| 国产野战对白在线观看| 国产精品自产拍在线观看55亚洲| 午夜精品在线福利| 成人三级做爰电影| 成人亚洲精品av一区二区| 老司机深夜福利视频在线观看| 日韩人妻高清精品专区| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久人人做人人爽| 久久中文字幕一级| 色av中文字幕| 久久久久精品国产欧美久久久| 熟妇人妻久久中文字幕3abv| 亚洲 国产 在线| 丰满人妻一区二区三区视频av | 久久精品夜夜夜夜夜久久蜜豆| а√天堂www在线а√下载| 人妻久久中文字幕网| 国产黄片美女视频| 久久久成人免费电影| 欧美xxxx黑人xx丫x性爽| 法律面前人人平等表现在哪些方面| 老熟妇乱子伦视频在线观看| 日韩欧美一区二区三区在线观看| 国产精品精品国产色婷婷| 欧美色欧美亚洲另类二区| 小蜜桃在线观看免费完整版高清| 日韩欧美国产一区二区入口| 视频区欧美日本亚洲| 别揉我奶头~嗯~啊~动态视频| 高清在线国产一区| 99视频精品全部免费 在线 | 老司机午夜十八禁免费视频| 亚洲国产欧美网| 午夜影院日韩av| 岛国在线免费视频观看| 亚洲av电影不卡..在线观看| 不卡av一区二区三区| 巨乳人妻的诱惑在线观看| 黄频高清免费视频| 免费看日本二区| 亚洲国产日韩欧美精品在线观看 | 成人特级黄色片久久久久久久| av国产免费在线观看| 叶爱在线成人免费视频播放| 日本撒尿小便嘘嘘汇集6| 无限看片的www在线观看| 搡老岳熟女国产| 国产精品久久视频播放| 黄色丝袜av网址大全| 女同久久另类99精品国产91| 久久精品国产清高在天天线| 丝袜人妻中文字幕| 99久久成人亚洲精品观看| 小说图片视频综合网站| 国产精品久久久久久精品电影| 男人的好看免费观看在线视频| 男女那种视频在线观看| 国产极品精品免费视频能看的| 国产欧美日韩精品亚洲av| 18禁黄网站禁片午夜丰满| 亚洲午夜理论影院| 天天躁狠狠躁夜夜躁狠狠躁| 一夜夜www| 美女高潮的动态| 成人高潮视频无遮挡免费网站| 久久久成人免费电影| 男人的好看免费观看在线视频| 精品一区二区三区av网在线观看| 国内精品美女久久久久久| 国产三级黄色录像| 中文字幕精品亚洲无线码一区| 亚洲av片天天在线观看| 美女大奶头视频| 精品久久久久久久末码| 国产人伦9x9x在线观看| 悠悠久久av| 舔av片在线| 精品久久久久久成人av| 一区二区三区激情视频| 日韩欧美三级三区| 一进一出抽搐动态| 亚洲无线观看免费| 国产又色又爽无遮挡免费看| 在线观看午夜福利视频| 欧美最黄视频在线播放免费| av天堂在线播放| 91久久精品国产一区二区成人 | 欧美乱妇无乱码| 国产欧美日韩精品一区二区| 亚洲真实伦在线观看| 免费人成视频x8x8入口观看| 午夜成年电影在线免费观看| 亚洲成人久久性| 在线观看美女被高潮喷水网站 | 国产av在哪里看| 免费搜索国产男女视频| 91老司机精品| 村上凉子中文字幕在线| 精品免费久久久久久久清纯| 国产精品 欧美亚洲| 国产99白浆流出| 日韩欧美三级三区| 亚洲欧美日韩高清专用| 91在线观看av| 亚洲片人在线观看| 精品欧美国产一区二区三| 国产亚洲精品综合一区在线观看| 中文字幕人成人乱码亚洲影| 亚洲五月婷婷丁香| 天堂网av新在线| 亚洲真实伦在线观看| 久久中文字幕人妻熟女| 精品午夜福利视频在线观看一区| 久久香蕉精品热| 亚洲av电影在线进入| 成人三级做爰电影| 亚洲成人免费电影在线观看| 视频区欧美日本亚洲| 成人三级做爰电影| 一级黄色大片毛片| 99热只有精品国产| 亚洲成a人片在线一区二区| 老司机在亚洲福利影院| 99热只有精品国产| 两人在一起打扑克的视频| 色老头精品视频在线观看| 亚洲国产看品久久| 香蕉国产在线看| 91在线观看av| 午夜福利欧美成人| 老鸭窝网址在线观看| 美女高潮的动态| 在线观看免费视频日本深夜| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 国产极品精品免费视频能看的| 琪琪午夜伦伦电影理论片6080| 老司机午夜福利在线观看视频| 在线观看免费视频日本深夜| 国产精品九九99| 日韩有码中文字幕| 久久热在线av| 久久人人精品亚洲av| 一个人免费在线观看的高清视频| 国产人伦9x9x在线观看| 日韩精品青青久久久久久| 亚洲五月天丁香| 久久精品国产综合久久久| 午夜免费观看网址| 亚洲人成伊人成综合网2020| 黄色成人免费大全| 99国产综合亚洲精品| 中文字幕最新亚洲高清| 91字幕亚洲| 免费搜索国产男女视频| 可以在线观看毛片的网站| 亚洲国产精品999在线| 日本一二三区视频观看| 级片在线观看| 亚洲真实伦在线观看| 久久性视频一级片| 国产亚洲精品综合一区在线观看| 午夜免费观看网址| 国产亚洲欧美98| 成人av一区二区三区在线看| 91在线精品国自产拍蜜月 | 啦啦啦观看免费观看视频高清| 国产一区在线观看成人免费| 久9热在线精品视频| 激情在线观看视频在线高清| 亚洲av日韩精品久久久久久密| 日本三级黄在线观看| 亚洲成人久久性| 久久精品91无色码中文字幕| 中文字幕高清在线视频| 欧美午夜高清在线| 国产v大片淫在线免费观看| 日本免费一区二区三区高清不卡| 岛国在线免费视频观看| 99精品在免费线老司机午夜| 国产一区二区在线观看日韩 | 午夜福利高清视频| 18禁美女被吸乳视频| 高潮久久久久久久久久久不卡| 婷婷六月久久综合丁香| 成年免费大片在线观看| 两个人的视频大全免费| 欧美xxxx黑人xx丫x性爽| 91在线观看av| 19禁男女啪啪无遮挡网站| 午夜久久久久精精品| 在线视频色国产色| 女警被强在线播放| av天堂中文字幕网| 在线观看美女被高潮喷水网站 | 日本 av在线| 精品一区二区三区四区五区乱码| 亚洲成av人片在线播放无| av中文乱码字幕在线| 国产精品,欧美在线| 亚洲欧美日韩卡通动漫| 国产精品美女特级片免费视频播放器 | 国产99白浆流出| 国产精品香港三级国产av潘金莲| 琪琪午夜伦伦电影理论片6080| 久久久色成人| 欧美一级毛片孕妇| 日韩国内少妇激情av| 九九久久精品国产亚洲av麻豆 | 岛国在线免费视频观看| 看黄色毛片网站| 亚洲国产欧洲综合997久久,| 高清在线国产一区| www日本黄色视频网| 国产97色在线日韩免费| 好男人电影高清在线观看| 成年人黄色毛片网站| 天天一区二区日本电影三级| 噜噜噜噜噜久久久久久91| 久久久精品大字幕| 国产精品久久久人人做人人爽| 国产v大片淫在线免费观看| 好男人电影高清在线观看| 男人和女人高潮做爰伦理| 精品一区二区三区四区五区乱码| 午夜亚洲福利在线播放| 午夜日韩欧美国产| 久久精品影院6| 高清在线国产一区| avwww免费| 国产69精品久久久久777片 | 久久性视频一级片| 亚洲精品一卡2卡三卡4卡5卡| 偷拍熟女少妇极品色| 99精品在免费线老司机午夜| 一进一出好大好爽视频| 色综合欧美亚洲国产小说| 久久欧美精品欧美久久欧美| 亚洲成av人片免费观看| 一二三四在线观看免费中文在| 少妇裸体淫交视频免费看高清| 国产熟女xx| 国产一区二区三区在线臀色熟女| 久久久久久久久免费视频了| 国产精品av视频在线免费观看| 色av中文字幕| 亚洲国产精品sss在线观看| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 毛片女人毛片| 国产精品久久久久久久电影 | 一级作爱视频免费观看| 精品一区二区三区视频在线观看免费| 国产精品 国内视频| 亚洲欧美日韩东京热| 国内毛片毛片毛片毛片毛片| 99国产精品99久久久久| 一二三四社区在线视频社区8| 两个人看的免费小视频| 国产伦精品一区二区三区视频9 | 又大又爽又粗| 亚洲午夜精品一区,二区,三区| 午夜亚洲福利在线播放| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 少妇的逼水好多| 国产亚洲欧美在线一区二区| 亚洲美女黄片视频| 很黄的视频免费| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| 欧美日韩黄片免| 美女cb高潮喷水在线观看 | 国产成人影院久久av| 国产精品一区二区精品视频观看| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 一夜夜www| 少妇熟女aⅴ在线视频| 日本免费a在线| 99国产精品一区二区三区| 舔av片在线| 久久精品国产综合久久久| 国内毛片毛片毛片毛片毛片| 欧美乱码精品一区二区三区| 嫩草影院精品99| 亚洲av片天天在线观看| 九九热线精品视视频播放| 一级毛片高清免费大全| 一二三四社区在线视频社区8| 午夜精品一区二区三区免费看| 亚洲av免费在线观看| 黑人欧美特级aaaaaa片| 亚洲激情在线av| 制服人妻中文乱码| 18禁国产床啪视频网站| 久久人妻av系列| 波多野结衣高清作品| 看免费av毛片| 亚洲精品粉嫩美女一区| 日日夜夜操网爽| 亚洲国产欧美人成| 在线国产一区二区在线| 国产一区二区激情短视频| 少妇的逼水好多| 黄色视频,在线免费观看| 一本综合久久免费| 性色av乱码一区二区三区2| 搞女人的毛片| av视频在线观看入口| 手机成人av网站| 最近最新免费中文字幕在线| 欧美日韩综合久久久久久 | 久久久水蜜桃国产精品网| 精品日产1卡2卡| 一区福利在线观看| 色尼玛亚洲综合影院| 免费av毛片视频| 两个人看的免费小视频| 中文字幕人妻丝袜一区二区| 丁香六月欧美| 亚洲精品粉嫩美女一区| 亚洲av片天天在线观看| 精品国产乱码久久久久久男人| 99国产精品一区二区三区| 欧美激情在线99| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 欧美日韩精品网址| 这个男人来自地球电影免费观看| 精品一区二区三区视频在线观看免费| 国产真实乱freesex| 亚洲激情五月婷婷啪啪| 久久人人爽人人片av| 国产精品国产三级专区第一集| 欧美3d第一页| 成人国产麻豆网| 国产色爽女视频免费观看| 国产成人福利小说| 尾随美女入室| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 丝袜美腿在线中文| 国产熟女欧美一区二区| 日韩亚洲欧美综合| 2022亚洲国产成人精品| 91精品国产九色| 久久亚洲精品不卡| 国产亚洲av片在线观看秒播厂 | 日本与韩国留学比较| 99久国产av精品| 国产成人91sexporn| 久久久久久久亚洲中文字幕| 色哟哟·www| av在线亚洲专区| 69av精品久久久久久| 99视频精品全部免费 在线| 日本欧美国产在线视频| 国产三级中文精品| 国产69精品久久久久777片| 26uuu在线亚洲综合色| 国产在视频线在精品| 精品久久国产蜜桃| 搞女人的毛片| 成人无遮挡网站| 国产高潮美女av| 麻豆av噜噜一区二区三区| 男人舔女人下体高潮全视频| 老师上课跳d突然被开到最大视频| 一边亲一边摸免费视频| 高清视频免费观看一区二区 | 日韩高清综合在线| 纵有疾风起免费观看全集完整版 | 国产成人a∨麻豆精品| 国产av码专区亚洲av| 精品人妻熟女av久视频| 国产精品福利在线免费观看| 九九爱精品视频在线观看| 亚洲自偷自拍三级| 日韩欧美在线乱码| 日日摸夜夜添夜夜爱| 日本黄大片高清| 久久久久性生活片|