• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculation of stratosphere-troposphere exchange in East Asia cut-off lows: cases from the Lagrangian perspective

    2016-11-23 01:12:55WUXueandDaRen
    關(guān)鍵詞:東亞地區(qū)個例平流層

    WU Xue and Lü Da-Ren

    Key Laboratory for Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Calculation of stratosphere-troposphere exchange in East Asia cut-off lows: cases from the Lagrangian perspective

    WU Xue and Lü Da-Ren

    Key Laboratory for Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    In this study, the authors focus on the cut-off low pressure systems (COLs) lingering over East Asia in late spring and early summer and quantify the two-way stratosphere-troposphere exchange(STE) by 3D trajectory integrations, achieved using a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code (Version 3). By selecting 10 typical COLs and calculating the cross-tropopause air mass fluxes, it is found that stratosphere-to-troposphere transport (STT) fluxes exist in the center of COLs; and in the periphery of the COL center, troposphereto-stratosphere transport (TST) fluxes and STT fluxes are distributed alternately. Net transport fluxes in COLs are from stratosphere to troposphere, and the magnitude is about 10-4kg m-2s-1. The ratio between the area-averaged STT and TST fluxes increases with increasing strength of the COLs. By adopting appropriate residence time, the spurious transports are effectively excluded. Finally, the authors compare the results with previous studies, and find that the cross-tropopause fluxes (CTFs)induced by COLs are about one to two orders of magnitude larger than global CTFs. COLs play a significant role in local, rapid air mass exchanges, although they may only be responsible for a fraction of the total STE.

    ARTICLE HISTORY

    Accepted 30 July 2015

    Stratosphere-troposphere exchange; cut-off low;

    trajectory model

    本文使用三維非絕熱朗格朗日軌跡模式OFFLINE3,對春末夏初東亞地區(qū)的切斷低壓所主導(dǎo)的雙向平流層-對流層交換(STE)進(jìn)行定量計算。通過對10個東亞地區(qū)切斷低壓的識別、計算、分析,發(fā)現(xiàn)切斷低壓附近發(fā)生平流層向?qū)α鲗淤|(zhì)量通量(STT)與對流層向平流層質(zhì)量通量(TST)量級相當(dāng),但是分布范圍不同:STT出現(xiàn)在低壓中心西南部,最大通量位置出現(xiàn)在低壓中心東南,TST最大值出現(xiàn)在槽前,并且從低壓中心向外STT與TST交替分布。從本文所取的切斷低壓個例而言,切斷低壓產(chǎn)生的STT質(zhì)量通量量級為10-4 kg m-2 s-1,促成的STE的凈輸送方向為從平流層向?qū)α鲗?,量級?0-4 kg m-2 s-1,比全球平均STE質(zhì)量通量大1-2個量級。

    Introduction

    Stratosphere-troposphere exchange (STE) is an important topic for understanding and quantifying the human impact on global climate change. The transport of anthropogenic emissions, e.g. CFCs and NO2, to the stratosphere accelerates ozone depletion, and the downward transport of stratospheric ozone into the troposphere aggravates photochemical pollution (Lü et al. 2008; Randel et al. 2010). Global STE is often described by the Brewer-Dobson circulation, which involves troposphere-to-stratosphere transport(TST) in the tropics, poleward drift in the stratosphere, and stratosphere-to-troposphere transport (STT) in polar regions. However, the Brewer-Dobson circulation fails to describe the synoptic- or mesoscale mass transports and the consequent redistribution of trace gases, e.g. ozone and water vapor.

    The cut-off low pressure systems (COLs) are one of the most representative synoptic-scale systems in the middle latitudes. They are usually closed circulations generated from a deep trough in the upper-troposphere westerly current. Air enclosed in the center of COLs often originates from high latitudes where potential vorticity (PV) is higher, meaning the tropopause at the center of COLs is lower than the tropopause in surrounding areas. Three mechanisms associated with STT,i.e. convective erosion of tropopauses, erosion of the tropopause by turbulence, and the tropopause folding around the flank of COLs, have been discussed by Price and Vaughan(1993), and other studies have shown that COLs could also transfer tropospheric air into the lower stratosphere (Ancellet,Beekmann, and Papayannis 1994; Ebel et al. 1991; Kentarchos,Davies, and Zerefos 1998; Kentarchos, Roelofs, and Lelieveld1999; Porcu et al. 2007; Sprenger, Wernli, and Bourqui 2007;Yang and Lü 2003).

    Figure 1.Schematic illustration of the two-way exchange for Lagrangian calculations.

    COLs are more frequent during the late spring and summer months, and there are three climatologically preferred regions for COL occurrence: the northern China-Siberia region, the eastern North Pacific, and southern Europe and the eastern Atlantic coast (Nieto et al. 2008). As a manifestation of Rossby wave breaking, COLs play a vital role in the irreversible mixing between the stratosphere and troposphere in these regions. In Northeast China, cold vortices, which are frequent synoptic systems in spring or summer, often derive from deeply developed COLs. Although precipitation and disastrous weather caused by northeast cold vortices have been widely investigated (Hu, Lu, and Wang 2011; Zhang and Li 2009), the quantification of STE generated by vortices or COLs in China or East Asia has, to date, been insufficiently studied.

    STE in the vicinity of COLs is usually calculated with Eulerian methods, which are based on Eulerian formulations of cross-tropopause fluxes and estimated from each term of the formulations (e.g. Chen, Lü, and Chen 2014; Wei 1987; Wirth 1995; Wirth and Egger 1999). Compared with the Eulerian methods, trajectory-based Lagrangian computation of the STE is able to identify the source regions, pathways, timescales, etc. of the air parcels involved in the STE procedure, and helps to distinguish the effective exchange(Bourqui 2004; Chen et al. 2010; Fueglistaler, Wernli, and Peter 2004; James et al. 2003; Meloen, Siegmund, and Sigmond 2001; Stohl 1998; Stohl et al. 2003a, 2003b; Vogel et al. 2011). This study focuses on the COLs in East Asia and aims to quantify the COL-related cross-tropopause exchange.

    Methodology

    Model and data

    In this study, 3D trajectory integrations are performed using the OFFLINE3 diabatic trajectory model, which is a modification of the third edition of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code (Methven 1997). Compared with the regional kinematic trajectory model, the main difference in the diabatic model is the vertical velocity scheme: vertical(cross-isentropic) velocity is expressed with the diabatic heating rate instead of being calculated with the horizontal wind through the continuity equation. By reducing errors in vertical velocity, the diabatic trajectory model can give better results, especially when relatively coarse primary analysis fields are used (Ploeger et al. 2010, 2011). A comprehensive review of the accuracy of trajectories is given in Methven (1997) and Stohl (1998).

    The OFFLINE3 diabatic trajectory model can be run both forwards and backwards. In this study, trajectories are driven by six-hourly ERA-Interim (European Center for Medium-Range Weather Forecasts Interim Reanalysis)data, and the spatial resolution is T255 (0.75° × 0.75°)(Simmons et al. 2006). Three-dimensional offline meteorological data, e.g. wind field and temperature, are interpolated to the trajectory locations. At each integration time,values of meteorological fields, including PV, temperature,potential temperature, pressure, and surface pressure are assigned as attributes for the particles moving along the trajectories.

    Trajectories are released every 12 h, which is proved sufficient to generate smooth and robust features and overall physical characteristics. The horizontal study domain size is 50° × 50°, moving with COL centers, and the vertical range extends from 700 hPa to 50 hPa, with a vertical resolution of 10 hPa. Each trajectory represents an air mass Δm: Δm = g-1·Δx·Δy·Δp = 6.53 × 1011kg, where the spacing of the air parcel is approximately Δx = Δy = 80 km in the horizontal and Δp = 10 hPa in the vertical. And if the particles cross the tropopause, then the air mass represented by the particles is considered to have crossed the tropopause. The choice of vertical resolution is reasonable in the subtropics but still needs to be verified in the upper troposphere of the tropics where vertical motion is slower.

    Definition of the dynamical tropopause

    In this study, the PV value of 3.5 PVU (1 PVU = 10-6m2s-1K kg-1)is defined to be the dynamical tropopause. Previous studies have shown that the calculated results of cross-tropopause mass exchange are not very sensitive to the value of PV chosen as the tropopause in the range of 2-5 PVU (Dethof, O'Neill,and Slingo 2000; Pan et al. 2000). Further study shows that the calculated transports (both upward and downward) decrease as the PV threshold increases from 1.5 to 3.5 PVU, and become relatively constant from 3.5 to 5.5 PVU (Yang and Lü 2003). In this study, the choice of the dynamical tropopause has been tested by computing the transport cross surface of constantPV values of 2, 2.5, 3, 3.5, and 4 PVU. The results verified the conclusions of Yang and Lü (2003), showing that 3.5 PVU as the dynamical tropopause may produce slightly weaker cross-tropopause mass fluxes than 2.5 and 3 PVU, but the transport will not increase when the PV values are higher. In the following analysis, 3.5 PVU is defined as the dynamical tropopause and air masses are considered to transmit from the stratosphere to troposphere if their PV value drops from > 3.5 PVU to < 3.5 PVU, and vice versa. Trajectories that cross the 3.5 PVU iso-surface are extended for three days both backwards and forwards. Meanwhile, we introduce residence time τ to eliminate spurious transport. The residence time is a criterion involving the trajectory residing for a period of time longer than a threshold τ on either side of the tropopause before and after having crossed it. And if the condition is not fulfilled, then the transport is considered spurious, as shown in Figure 1.

    Selection of COLs

    We focus on the COLs lingering over Northeast China in late spring and early summer between 2003 and 2012. First, the COL cases are selected objectively using a similar algorithm as applied in Porcu et al. (2007), based on the three main characteristics of the COL theoretical model (Nieto et al. 2005). The algorithm can be summarized as follows:

    (1) At 300 hPa, if a grid point is a minimum (within a 10 gpm threshold) in at least six of the eight surrounding grid points, it is identified as a geopotential minimum.

    (2) For all the grid points selected in step (1),only those having different wind directions with their adjacent grid points northwards are retained.

    (3) Finally, to define the weather system as a COL,the grid points eastward of a candidate COL point should have a thermal front parameter(TFP) higher than that at the COL point.

    The first step identifies systems with vortex characteristics and the second step makes sure the vortex is cut off from the westerlies. In the third step, the TFP, defined as in Equation (1), is the change of temperature (T; units: K)gradient in the direction of its gradient:

    TFP serves to verify the baroclinic instability of the system. Further details of the algorithm can be found in Porcu et al. (2007).

    Then, 10 of the candidate COLs with a lifetime longer than five days are chosen subjectively; one COL in each year from 2003 to 2012.

    Results and discussion

    Air mass fluxes and comparison

    Cross-tropopause fluxes (CTFs) for one COL case in April 2007 are shown as an example. The TST, STT and net fluxes for this case are demonstrated in Figure 2. The TST and STT fluxes were interpolated from the location where they happened to grids, and then the values on the grids were binned every 2° of longitude and latitude. The solid lines in Figure 2 show the 350 hPa geopotential height field at 1800 UTC 29 April 2007 (Figure 2a-c), 1800 UTC 30 April 2007 (Figure 2d-f), and 1800 UTC 1 May 2007 (Figure 2g-i).

    On 27 April 2007, the COL started to generate from a deep trough over East Siberia, and cut off on 28 April. Then, the COL intensified and reached maturity on 29 April. Its strength maintained until 1 May and weakened afterwards. As seen in Figure 2b, on 29 April, STT occupied the center, south, and southeast of the COL; this transport spread out to the southwest, south, and southeast on 30 April; and on 1 May, when the COL started to weaken, the STT fluxes curled to the north. TST was mainly in the south and in the east of the trough; and on 1 May, TST increased in the west of the center.

    Overall, STT dominated throughout the three days. STT fluxes existed in the center, and in the periphery of the center TST fluxes and STT fluxes were distributed alternately. Net transport in this COL was from the stratosphere to troposphere. For this case, domain-averaged STT and TST fluxes were -1.69 × 10-3and 1.21 × 10-3kg m-2s-1,respectively, the net flux was -0.48 × 10-3kg m-2s-1, and the ratio for TST/STT was 0.716.

    Next, we compare our results with previous studies, as listed in Table 1. Sources with asterisks represent studies on global CTFs, and sources without asterisks denote studies on CTFs related with synoptic- or mesoscale weather systems, e.g. extratropical cyclones and streamers. In all of the 10 cases, net CTFs are from the stratosphere to troposphere. The comparison shows that our results are of the same magnitude as results from similar studies on synoptic systems. The CTFs induced by COLs are about one to two orders of magnitude larger than global CTFs. Although STE related with COLs only takes up a fraction of the total STE (Price and Vaughan 1993), COLs play a significant role in local, rapid air mass exchange.

    The preliminary dependencies of the CTFs and total air mass exchange on the intensity of COLs, which is represented by the minimum pressure, are shown in Figure 3. As far as can be revealed by the COL cases used in our study, COLs with STT and TST fluxes (Figure 3a and 3b)generally increase in intensity when minimum pressure decreases, albeit with some exceptions. Similar to the fluxes, the exchanged STT and TST air masses also show a clear dependence on the minimum pressure. Comparedwith the TST fluxes and exchanged mass, the STT fluxes and exchanged mass change more steeply with minimum pressure. These phenomena have also been observed in other studies regarding STE in the vicinity of synoptic systems (Reutter et al. 2015).

    Figure 2.Air mass fluxes for TST (upper row), STT (middle row), and net transport fluxes (lower row) on (a-c) 29 April, (d-f) 30 April, and(g-i) 1 May 2007 (units: 10-4kg m-2s-1). Values on grids were binned every 2° of longitude and latitude. For the net transport, positive values show TST and negative values show STT. Only Absolute values larger than 3 × 10-4kg m-2s-1are shown in the figures.

    Table 1.Comparison of mass flux results from previous studies.

    Effectiveness of residence time

    Residence time is usually used in Lagrangian calculation of STE to eliminate spurious exchange. The results in this study were based on a residence time threshold of 24 h. In order to investigate the sensitivity to residence time, we conducted the above calculations based on residence times of 0, 6, 12,18, and 48 h, and compared the averaged STT and TST fluxes,as shown in Figure 4. The indication is that large numbers of CTFs are associated with time scales smaller than 24 h, and produced reversible exchange. In these cases, 24 h as the residence time threshold helped to exclude spurious exchange and generate reasonable and consistent fluxes. However, the choice of residence time is not unique and it may depend on data resolution, sizes of calculation domains, synoptic systems, etc. A longer residence time would help to focus on more significant exchange.

    Summary

    In this work, a Lagrangian method for calculating the two-way STE has been applied. COL cases in late spring and early summer over East Asia were selected and the cross-troposphere air mass fluxes in the vicinity of thesecases computed - the aim being to obtain a more accurate understanding of the role that COLs in East Asia play in STE. The diabatic trajectory model used was able to produce more reasonable results because the large-scale motion in large parts of the atmosphere is nearly adiabatic,and the isentropic coordinate system relates better to the physics than the kinematic coordinate system.

    Figure 3.Dependence of the (a, b) CTFs (units: 10-4kg m-2s-1) and (c, d) exchanged mass (units: 1014kg) on the minimum pressure of COLs.

    Figure 4.Ratio (results using different residence times/results using 24 h as the residence time) of (a) STT fluxes and (b) TST fluxes.

    The results showed that STT dominates the exchange processes in COLs and the net transport is from the stratosphere to troposphere with a magnitude of 10-4kg m-2s-1. The STT and TST fluxes (both with magnitude of 10-3kg m-2s-1) are one to two orders of magnitude larger than global CTFs, and both the STT/TST fluxes and total exchanged air mass during the life cycle of COLs are larger in more intense COLs. The choice of residence time influences the results and, in our study, 24 h was effective in excluding insignificant exchange. COLs contribute to local and efficient air exchange and may favor the rapid transmission of chemicals between the stratosphere and troposphere, although the total exchanged air masses may not be comparable to the total global STE.

    Acknowledgements

    We thank Dr Sue Yu LIU for providing the OFFLINE3_diab model, and for helpful suggestions. The ERA-interim data were obtained from the European Center for Medium-Range Weather Forecasts, via www.ecmwf.int.

    Funding

    This work was supported by the Special Fund for Strategic Pilot Technology, Chinese Academy of Sciences [grant number XDA05040300].

    References

    Ancellet, G., M. Beekmann, and A. Papayannis. 1994. “Impact of a Cutoff Low Development on Downward Transport of Ozone in the Troposphere.” Journal of Geophysical Research 99 (D2): 3451-3468. doi:10.1029/93jd02551.

    Bourqui, M. S. 2004. “Stratosphere-Troposphere Exchange from the Lagrangian Perspective: A Case Study and Method Sensitivities.” Atmospheric Chemistry and Physics 6: 2651-2670.

    Chen, B., X. Xu, J. Bian, X. H. Shi. 2010. “Sources, Pathways and Timescales for the Troposphere to Stratosphere Transport over Asian Monsoon Regions in Boreal Summer.” Chinese Journal of Atmospheric Sciences (in Chinese) 34 (3): 495-505. Chen, D., D. R. Lü, and Z. Y. Chen. 2014. “Simulation of the Stratosphere-Troposphere Exchange Process in a Typical Cold Vortex over Northeast China.” Science China Earth Sciences 57(7): 1452-1463. doi:10.1007/s11430-014-4864-x.

    Dethof, A., A. O'Neill, and J. Slingo. 2000. “Quantification of the Isentropic Mass Transport across the Dynamical Tropopause.”Journal of Geophysical Research 105: 12279-12294. doi:10.1029/2000jd900127.

    Ebel, A., H. Hass, H. J. Jakobs, M. Laube, M. Memmesheimer,A. Oberreuter, H. Geiss, and Y. H. Kuo. 1991. “Simulation of Ozone Intrusion Caused by a Tropopause Fold and Cut-off Low.” Atmospheric Environment. Part a. General Topics 25 (10): 2131-2144. doi:10.1016/0960-1686(91)90089-p.

    Fueglistaler, S., H. Wernli, and T. Peter. 2004. “Tropical Troposphere-to-Stratosphere Transport Inferred from Trajectory Calculations.” Journal of Geophysical Research 109: D03108. doi:10.1029/2003jd004069.

    Hu, K. X., R. Y. Lu, and D. H. Wang. 2011. “Cold Vortex over North East China and Its Climate Effect.” Chinese Journal of Atmospheric Sciences (in Chinese) 35 (1): 179-191.

    James, P., A. Stohl, C. Forster, S. Eckhardt, P. Seibert, and A. Frank. 2003. “A 15-Year Climatology of Stratosphere-Troposphere Exchange with a Lagrangian Particle Dispersion Model: 1. Methodology and Validation.” Journal of Geophysical Research 108 (D12): 8519. doi:10.1029/2002jd002639.

    Kentarchos, A. S., T. D. Davies, and C. S. Zerefos. 1998. “A Low Latitude Stratospheric Intrusion Associated with a Cut-off Low.” Geophysical Research Letters 25 (1): 67-70. doi:10.1029/97gl03351.

    Kentarchos, A. S., G. J. Roelofs, and J. Lelieveld. 1999.“Model Study of a Stratospheric Intrusion Event at Lower Midlatitudes Associated with the Development of a Cutoff Low.” Journal of Geophysical Research 104 (D1): 1717-1727. doi:10.1029/1998jd100051.

    Lamarque, J. F., and P. G. Hess. 1994. “Cross-Tropopause Mass Exchange and Potential Vorticity Budget in a Simulated Tropopause Folding.” Journal of the Atmospheric Sciences 51 (15): 2246-2269. doi:10.1175/1520-0469(1994)051<2246:CTMEAP>2.0.CO;2.

    Lü, D. R., Z. Y. Chen, J. C. Bian, and H. B. Chen. 2008. “Advances in Researches on the Characteristics of Multi-Scale Processes of Interactions between the Stratosphere and the Troposphere and Its Relations with Weather and Climate.” Chinese Journal of Atmospheric Sciences (in Chinese) 32 (4): 782-792.

    Meloen, J., P. Siegmund, and M. Sigmond. 2001. “A Lagrangian Computation of Stratosphere-Troposphere Exchange in a Tropopause-Folding Event in the Subtropical Southern Hemisphere.” Tellus A 53 (3): 368-379. doi:10.1034/j.1600-0870.2001.01175.x.

    Methven, J. 1997. Offline Trajectories: Calculation and Accuracy,UGAMP, Technical Report 44. Reading, UK: Department of Meteorology, University of Reading.

    Nieto, R. L., L. De Gimeno, P. La Torre, D. Ribera, R. Gallego, J. A. Garcia-Herrera, M. Garcia, A. Nunez, and J. Lorente Redano. 2005. “Climatological Features of Cutoff Low Systems in the Northern Hemisphere.” Journal of Climate 18 (16): 3085-3103. doi:10.1175/jcli3386.1.

    Nieto, R., M. Sprenger, H. Wernli, R. M. Trigo, and L. Gimeno. 2008. “Identification and Climatology of Cut-off Lows near the Tropopause.” In Trends and Directions in Climate Research,edited by L. Gimeno, R. GarciaHerrera, and R. M. Trigo, Vol. 1146, 256-290. Malden: Wiley-Blackwell.

    Pan, L. L., E. J. Hintsa, E. M. Stone, E. M. Weinstock, and W. J. Randel. 2000. “The Seasonal Cycle of Water Vapor and Saturation Vapor Mixing Ratio in the Extratropical Lowermost Stratosphere.” Journal of Geophysical Research 105: 26519-26530. doi:10.1029/2000jd900401.

    Ploeger, F., P. Konopka, G. Gunther, J. U. Grooss, and R. Muller. 2010. “Impact of the Vertical Velocity Scheme on Modeling Transport in the Tropical Tropopause Layer.” Journal of Geophysical Research 115: D03301. doi:10.1029/2009JD012023.

    Ploeger, F., S. Fueglistaler, J. U. Groo?, G. Gunther, P. Konopka,Y. S. Liu, R. Muller, et al. 2011. “Insight from Ozone and Water Vapour on Transport in the Tropical Tropopause Layer(TTL).” Atmospheric Chemistry and Physics 11 (1): 407-419. doi:10.5194/acp-11-407-2011.

    Porcu, F., A. Carrassi, C. M. Medaglia, F. Prodi, and A. Mugnai. 2007.“A Study on Cut-off Low Vertical Structure and Precipitation in the Mediterranean Region.” Meteorology and Atmospheric Physics 96 (1-2): 121-140. doi:10.1007/s00703-006-0224-5.

    Price, J. D., and G. Vaughan. 1993. “The Potential for Stratosphere-Troposphere Exchange in Cut-off-Low Systems.” Quarterly Journal of the Royal Meteorological Society 119 (510): 343-365. doi:10.1002/qj.49711951007.

    Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and H. Pumphrey. 2010. “Asian Monsoon Transport of Pollution to the Stratosphere.” Science 328(5978): 611-613. doi:10.1126/science.1182274.

    Reutter, P., B. ?kerlak, M. Sprenger, and H. Wernli. 2015.“Stratosphere-Troposphere Exchange (STE) in the Vicinity of North Atlantic Cyclones.” Atmospheric Chemistry and Physics Discussions 15 (2): 2535-2575. doi:10.5194/acpd-15-2535-2015. Siegmund, P. C., P. F. J. van Velthoven, and H. Kelder. 1996. “Cross-Tropopause Transport in the Extratropical Northern Winter Hemisphere, Diagnosed from High-Resolution ECMWF Data.”Quarterly Journal of the Royal Meteorological Society 122: 1921-1941. doi:10.1256/smsqj.53608.

    Sigmond, M., J. Meloen, and P. C. Siegmund. 2000. “Stratosphere-Troposphere Exchange in an Extratropical Cyclone, Calculated with a Lagrangian Method.” Annales Geophysicae 18 (5): 573-582. doi:10.1007/s00585-000-0573-1.

    Simmons, A., S. Uppala, D. Dee, and S. Kobayashi. 2006. “ERAInterim: New ECMWF Reanalysis Products from 1989 Onwards.” ECMWF Newsletter 110: 25-35.

    Skerlak, B., M. Sprenger, and H. Wernli. 2013. “A Global Climatology of Stratosphere-Troposphere Exchange Using the ERA-Interim Dataset from 1979 to 2011.” Atmospheric Chemistry and Physics Discussions 13 (5): 11537-11595. doi:10.5194/acp-14-913-2014.

    Spaete, P., R. J. Donald, and T. K. Schaack. 1994. “Stratospheric-Tropospheric Mass Exchange during the Presidents' Day Storm.” Monthly Weather Review 122: 424-439. doi:10.1175/1520-0493(1994) 122<0424:SMEDTP>2.0.CO;2.

    Sprenger, M., H. Wernli, and M. Bourqui. 2007. “Stratosphere-Troposphere Exchange and Its Relation to Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause.”Journal of the Atmospheric Sciences 64 (5): 1587-1602.doi:10.1175/jas3911.1.

    Stohl, A. 1998. “Computation, Accuracy and Applications of Trajectories-A Review and Bibliography.” Atmospheric Environment 32 (6): 947-966. doi:10.1016/s1352-2310(97)00457-3.

    Stohl, A., P. Bonasoni, P. Cristofanelli, W. Collins, J. Feichter, A. Frank, C. Forster, et al. 2003a. “Stratosphere-Troposphere Exchange: A Review, and What We Have Learned from STACCATO.” Journal of Geophysical Research 108 (D12): 8516. doi:10.1029/2002jd002490.

    Stohl, A., H. Wernli, P. James, M. Bourqui, C. Forster, M. A. Liniger,P. Seibert, and M. Sprenger. 2003b. “A New Perspective of Stratosphere-Troposphere Exchange.” Bulletin of the American Meteorological Society 84: 1565-1573. doi:10.1175/ bams-84-11-1565.

    Vogel, B., L. L. Pan, P. Konopka, G. Gunther, R. Muller, W. Hall,and T. Campos. 2011. “Transport Pathways and Signatures of Mixing in the Extratropical Tropopause Region Derived from Lagrangian Model Simulations.” Journal of the Atmospheric Sciences 116: D05306. doi:10.1029/2010jd014876.

    Wei, M. -Y. 1987. “A New Formulation of the Exchange of Mass and Trace Constituents between the Stratosphere and Troposphere.”Journal of the Atmospheric Sciences 44: 3079-3086. doi:10.1175/1520-0469(1987) 044<3079:ANFOTE>2.0.CO;2.

    Wirth, V. 1995. “Comments on “a New Formulation of the Exchange of Mass and Trace Constituents between the Stratosphere and Troposphere”.” Journal of the Atmospheric Sciences 52: 2491-2493. doi:10.1175/1520-0469(1995)052<2491:CONFOT>2.0.CO;2.

    Wirth, V., and J., Egger. 1999. “Diagnosing Extratropical Synoptic-Scale Stratosphere-Troposphere Exchange: A Case Study.”Quarterly Journal of the Royal Meteorological Society 125: 635-655. doi:10.1256/smsqj.55412.

    Yang, J., and D. R. Lü. 2003. “A Simulation Study of Stratosphere-Troposphere Exchange due to Cut-off-Low over Eastern Asia.”Chinese Journal of Atmospheric Science (in Chinese) 27 (6): 1031-1044.

    Zhang, L. X., and Z. C. Li. 2009. “A Summary of Research on Cold Vortex over Northeast China.” Climatic Environmental Research (in Chinese) 14 (2): 218-228.

    11 May 2015

    CONTACT Lü Da-Ren ludr@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    東亞地區(qū)個例平流層
    青藏高原上空平流層水汽的時空演變特征
    基于副氣囊的平流層浮空器高度控制
    一例膀胱鏡下留置尿管困難拔除個例分析
    如何看待我國的高投資率
    會“珰”洞鑒以昭然——古代東亞地區(qū)冠飾“珰”之探究
    四川省春季一次飛機(jī)增雨作業(yè)個例分析
    四川盆地南部一次冬季飛機(jī)增雨作業(yè)個例分析
    1979~2011年間平流層溫度及平流層水汽的演變趨勢
    一次森林滅火人工增雪個例分析
    西藏科技(2016年8期)2016-09-26 09:00:53
    鼎盛與危機(jī):明清東亞宗藩體系嬗變
    国产一区二区 视频在线| 香蕉丝袜av| 国产乱人偷精品视频| 久久人人爽人人片av| 久久人人爽人人片av| 国产精品免费视频内射| 一区二区三区乱码不卡18| 国产成人a∨麻豆精品| 日本av手机在线免费观看| 国产精品 欧美亚洲| 国产成人免费观看mmmm| 婷婷色综合大香蕉| av免费观看日本| 国产精品无大码| 免费人妻精品一区二区三区视频| 美女大奶头黄色视频| 国产精品国产三级专区第一集| 午夜福利网站1000一区二区三区| 99re6热这里在线精品视频| a级片在线免费高清观看视频| 国产成人午夜福利电影在线观看| 另类亚洲欧美激情| 欧美97在线视频| 亚洲国产看品久久| 男女无遮挡免费网站观看| 精品亚洲成国产av| 国产日韩欧美亚洲二区| 伊人久久国产一区二区| 亚洲少妇的诱惑av| 精品亚洲乱码少妇综合久久| 嫩草影视91久久| 久久精品国产a三级三级三级| 欧美成人精品欧美一级黄| 欧美成人精品欧美一级黄| 久久久久久久国产电影| 久久精品国产a三级三级三级| 日韩制服丝袜自拍偷拍| 飞空精品影院首页| 国产精品久久久久久精品古装| 秋霞在线观看毛片| 亚洲欧美日韩另类电影网站| 久久精品久久久久久久性| 亚洲国产欧美日韩在线播放| 一本色道久久久久久精品综合| 成人国产麻豆网| 国产欧美日韩综合在线一区二区| 免费在线观看黄色视频的| 亚洲伊人久久精品综合| 99久久精品国产亚洲精品| 日本一区二区免费在线视频| 国产一区二区在线观看av| 国产精品秋霞免费鲁丝片| 18禁裸乳无遮挡动漫免费视频| 啦啦啦在线观看免费高清www| 欧美日韩亚洲国产一区二区在线观看 | av不卡在线播放| 国产免费一区二区三区四区乱码| 无限看片的www在线观看| 国产精品熟女久久久久浪| 午夜福利影视在线免费观看| 精品福利永久在线观看| 欧美在线一区亚洲| 久久久久久久久久久久大奶| 亚洲精品视频女| 免费观看a级毛片全部| 满18在线观看网站| 亚洲av日韩精品久久久久久密 | 国产精品香港三级国产av潘金莲 | 男女国产视频网站| 伊人久久国产一区二区| 18禁观看日本| 一区二区三区乱码不卡18| 亚洲av日韩在线播放| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 丝袜喷水一区| 国产精品免费大片| √禁漫天堂资源中文www| 国产亚洲一区二区精品| 成人影院久久| 最新的欧美精品一区二区| 伦理电影大哥的女人| 精品国产一区二区三区四区第35| 久久精品亚洲av国产电影网| 欧美xxⅹ黑人| 丝袜美腿诱惑在线| 久久毛片免费看一区二区三区| 999久久久国产精品视频| 国产精品久久久久久精品古装| a 毛片基地| 日本欧美国产在线视频| 欧美 亚洲 国产 日韩一| 国产1区2区3区精品| 高清不卡的av网站| 中文字幕av电影在线播放| av卡一久久| 男女边吃奶边做爰视频| 最新美女视频免费是黄的| 欧美国产日韩亚洲一区| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕人妻熟女乱码| 国产精品美女特级片免费视频播放器 | 亚洲精品国产区一区二| 国产午夜福利久久久久久| 黑人巨大精品欧美一区二区mp4| 黑人巨大精品欧美一区二区mp4| 一级毛片女人18水好多| 精品无人区乱码1区二区| 一进一出抽搐动态| 波多野结衣一区麻豆| a级毛片在线看网站| 日韩大码丰满熟妇| 亚洲色图 男人天堂 中文字幕| a在线观看视频网站| 在线观看午夜福利视频| 日本a在线网址| 叶爱在线成人免费视频播放| 天堂√8在线中文| 亚洲av日韩精品久久久久久密| av视频在线观看入口| 天天添夜夜摸| 亚洲狠狠婷婷综合久久图片| av天堂在线播放| 亚洲中文日韩欧美视频| 一级毛片高清免费大全| 国产亚洲精品综合一区在线观看 | 日韩精品免费视频一区二区三区| 国产一区在线观看成人免费| 亚洲欧美日韩无卡精品| 在线观看一区二区三区| 亚洲美女黄片视频| 亚洲自拍偷在线| 久久精品国产亚洲av香蕉五月| 亚洲成人国产一区在线观看| 欧美老熟妇乱子伦牲交| 亚洲熟妇熟女久久| 91成年电影在线观看| 69av精品久久久久久| 老鸭窝网址在线观看| 狠狠狠狠99中文字幕| 国产高清有码在线观看视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 午夜精品久久久久久毛片777| 非洲黑人性xxxx精品又粗又长| 精品熟女少妇八av免费久了| 精品一区二区三区四区五区乱码| 精品无人区乱码1区二区| 亚洲国产精品久久男人天堂| 国产精品一区二区在线不卡| av超薄肉色丝袜交足视频| 91麻豆精品激情在线观看国产| 精品乱码久久久久久99久播| 亚洲av日韩精品久久久久久密| or卡值多少钱| 一级,二级,三级黄色视频| 免费看十八禁软件| 麻豆国产av国片精品| 国产国语露脸激情在线看| 亚洲黑人精品在线| 大陆偷拍与自拍| 欧美日韩乱码在线| av在线天堂中文字幕| 亚洲av熟女| 搡老妇女老女人老熟妇| 老鸭窝网址在线观看| 一本久久中文字幕| 香蕉国产在线看| 国产av又大| 欧美日韩福利视频一区二区| 热99re8久久精品国产| 中文字幕色久视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成国产人片在线观看| 99久久综合精品五月天人人| 可以免费在线观看a视频的电影网站| av片东京热男人的天堂| 久久精品国产99精品国产亚洲性色 | 国产精品九九99| 久久精品人人爽人人爽视色| 搡老妇女老女人老熟妇| 中亚洲国语对白在线视频| 啪啪无遮挡十八禁网站| 久久精品成人免费网站| 香蕉国产在线看| 69精品国产乱码久久久| 国产精品秋霞免费鲁丝片| 99久久综合精品五月天人人| 亚洲精品国产一区二区精华液| 久久人人爽av亚洲精品天堂| 精品国产国语对白av| 亚洲午夜精品一区,二区,三区| ponron亚洲| 欧美在线黄色| 99在线人妻在线中文字幕| 狠狠狠狠99中文字幕| 在线观看免费视频网站a站| 人人妻,人人澡人人爽秒播| 国产不卡一卡二| 国产一区二区在线av高清观看| 亚洲九九香蕉| 国产熟女午夜一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲国产中文字幕在线视频| 黄色毛片三级朝国网站| 黑人操中国人逼视频| 国语自产精品视频在线第100页| 精品国产亚洲在线| 亚洲精品中文字幕在线视频| 亚洲视频免费观看视频| 日韩欧美免费精品| 午夜福利在线观看吧| 国产成人啪精品午夜网站| 国产成人av激情在线播放| 看黄色毛片网站| 少妇熟女aⅴ在线视频| 乱人伦中国视频| 午夜福利欧美成人| 久久久精品欧美日韩精品| 久久久久国内视频| 自拍欧美九色日韩亚洲蝌蚪91| 成人精品一区二区免费| 搞女人的毛片| 国产一区二区三区视频了| 国产高清激情床上av| 国产三级黄色录像| 中亚洲国语对白在线视频| 99久久综合精品五月天人人| 国产精品电影一区二区三区| 麻豆成人av在线观看| 日本欧美视频一区| 久久久精品欧美日韩精品| 制服诱惑二区| 日本在线视频免费播放| 国产熟女xx| 18禁观看日本| 久久中文看片网| 午夜福利在线观看吧| 免费久久久久久久精品成人欧美视频| av电影中文网址| 国产成人欧美| 中文字幕人妻丝袜一区二区| www.www免费av| 久久影院123| 亚洲五月色婷婷综合| 日韩欧美三级三区| 色精品久久人妻99蜜桃| 欧美国产日韩亚洲一区| 婷婷精品国产亚洲av在线| 久久人人精品亚洲av| 欧美日韩亚洲综合一区二区三区_| 黄色片一级片一级黄色片| 啦啦啦观看免费观看视频高清 | 一级片免费观看大全| 可以免费在线观看a视频的电影网站| 欧美日韩瑟瑟在线播放| 日韩成人在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 欧美成狂野欧美在线观看| 国产精品电影一区二区三区| 亚洲中文字幕日韩| 国产精品久久久久久精品电影 | 亚洲av熟女| 欧美一级毛片孕妇| 搞女人的毛片| 婷婷六月久久综合丁香| 亚洲国产欧美一区二区综合| 久久伊人香网站| 欧美不卡视频在线免费观看 | 色综合欧美亚洲国产小说| 欧美乱码精品一区二区三区| 亚洲精品国产区一区二| 亚洲精品国产精品久久久不卡| 一区二区三区精品91| 日韩欧美国产在线观看| 日本免费一区二区三区高清不卡 | 淫妇啪啪啪对白视频| 91在线观看av| 国产亚洲av高清不卡| 十八禁网站免费在线| 无人区码免费观看不卡| 高潮久久久久久久久久久不卡| 中文亚洲av片在线观看爽| 国产一卡二卡三卡精品| 亚洲国产精品成人综合色| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 午夜免费观看网址| 黄片大片在线免费观看| 亚洲在线自拍视频| 在线观看www视频免费| 日韩三级视频一区二区三区| 日韩高清综合在线| 黄色a级毛片大全视频| 大型黄色视频在线免费观看| 久久中文看片网| 欧美成狂野欧美在线观看| 啦啦啦观看免费观看视频高清 | 亚洲欧美精品综合久久99| 成人亚洲精品av一区二区| 亚洲av五月六月丁香网| 国产又爽黄色视频| 母亲3免费完整高清在线观看| 亚洲国产精品久久男人天堂| 夜夜看夜夜爽夜夜摸| 欧美黑人欧美精品刺激| 久久久国产成人免费| 欧美日本视频| 久久久国产欧美日韩av| 欧美日韩乱码在线| 欧美中文综合在线视频| 国产视频一区二区在线看| 国产主播在线观看一区二区| 日本 欧美在线| 久久影院123| 韩国精品一区二区三区| 亚洲七黄色美女视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三 | 脱女人内裤的视频| 午夜福利高清视频| 嫩草影院精品99| 国产成人欧美在线观看| www日本在线高清视频| 国产精品香港三级国产av潘金莲| www.www免费av| 亚洲在线自拍视频| 日韩精品青青久久久久久| 亚洲人成77777在线视频| 性少妇av在线| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区三| 久久精品成人免费网站| 久久久久久久久免费视频了| 亚洲精品一区av在线观看| 免费看美女性在线毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 女性被躁到高潮视频| 一进一出好大好爽视频| 久久香蕉激情| 亚洲av成人一区二区三| 午夜福利18| 视频在线观看一区二区三区| 淫妇啪啪啪对白视频| 嫩草影视91久久| 免费女性裸体啪啪无遮挡网站| svipshipincom国产片| 女同久久另类99精品国产91| 免费av毛片视频| 波多野结衣一区麻豆| 久久精品国产综合久久久| 男女下面进入的视频免费午夜 | 久久婷婷人人爽人人干人人爱 | 欧美亚洲日本最大视频资源| 久久精品影院6| 久久久国产成人精品二区| 久久久久国产精品人妻aⅴ院| 国产精品久久久人人做人人爽| 禁无遮挡网站| 国产1区2区3区精品| 美女免费视频网站| a在线观看视频网站| 国产1区2区3区精品| 嫩草影视91久久| 免费高清在线观看日韩| 可以免费在线观看a视频的电影网站| 亚洲色图av天堂| 午夜福利,免费看| 极品人妻少妇av视频| 亚洲专区字幕在线| av在线播放免费不卡| 久久天躁狠狠躁夜夜2o2o| 最近最新中文字幕大全电影3 | 亚洲av成人一区二区三| 日韩欧美一区视频在线观看| 1024视频免费在线观看| 久久热在线av| 伊人久久大香线蕉亚洲五| 亚洲熟妇熟女久久| 欧美日韩一级在线毛片| av电影中文网址| 欧美激情 高清一区二区三区| 精品一区二区三区四区五区乱码| 国产精品99久久99久久久不卡| 人人妻人人爽人人添夜夜欢视频| 女警被强在线播放| 一边摸一边抽搐一进一出视频| 欧美老熟妇乱子伦牲交| 久久久精品国产亚洲av高清涩受| 国产精品乱码一区二三区的特点 | 欧美一级毛片孕妇| 欧美激情久久久久久爽电影 | 国产aⅴ精品一区二区三区波| 老汉色∧v一级毛片| 亚洲人成77777在线视频| 老司机午夜福利在线观看视频| 老司机在亚洲福利影院| 精品乱码久久久久久99久播| 国产精品秋霞免费鲁丝片| 欧美绝顶高潮抽搐喷水| 丰满的人妻完整版| 亚洲人成电影免费在线| 亚洲色图av天堂| 国产亚洲欧美在线一区二区| 女人被狂操c到高潮| 欧美日韩黄片免| 叶爱在线成人免费视频播放| 欧美另类亚洲清纯唯美| 久久精品91蜜桃| 精品国产乱码久久久久久男人| 欧美久久黑人一区二区| 999久久久国产精品视频| 日本免费a在线| 亚洲精品国产一区二区精华液| 无限看片的www在线观看| 岛国视频午夜一区免费看| 一本久久中文字幕| 久久热在线av| 人人妻,人人澡人人爽秒播| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| 色综合亚洲欧美另类图片| 非洲黑人性xxxx精品又粗又长| 激情在线观看视频在线高清| 天堂√8在线中文| 国产激情久久老熟女| 男人舔女人的私密视频| 电影成人av| 在线观看舔阴道视频| 精品久久久久久,| 亚洲一码二码三码区别大吗| 午夜精品在线福利| 可以在线观看的亚洲视频| 欧美+亚洲+日韩+国产| 欧美性长视频在线观看| 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 最新美女视频免费是黄的| 色婷婷久久久亚洲欧美| 久久国产精品影院| 免费在线观看完整版高清| 18禁黄网站禁片午夜丰满| 亚洲专区字幕在线| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 不卡一级毛片| a级毛片在线看网站| 一区二区三区国产精品乱码| 国产精品久久久久久精品电影 | 成在线人永久免费视频| 日韩欧美国产在线观看| 亚洲国产毛片av蜜桃av| 精品熟女少妇八av免费久了| 黄色成人免费大全| 91成年电影在线观看| xxx96com| 国产又色又爽无遮挡免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜激情av网站| 香蕉丝袜av| 夜夜躁狠狠躁天天躁| 天天躁狠狠躁夜夜躁狠狠躁| 如日韩欧美国产精品一区二区三区| 岛国在线观看网站| 久久久水蜜桃国产精品网| www.精华液| 男人舔女人的私密视频| 丝袜人妻中文字幕| 成人永久免费在线观看视频| 丰满的人妻完整版| 少妇的丰满在线观看| 亚洲一区二区三区色噜噜| 黑丝袜美女国产一区| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利高清视频| 久久天躁狠狠躁夜夜2o2o| 可以在线观看毛片的网站| 一区二区日韩欧美中文字幕| 久9热在线精品视频| 亚洲av五月六月丁香网| 淫秽高清视频在线观看| 正在播放国产对白刺激| 日本五十路高清| 又大又爽又粗| 熟妇人妻久久中文字幕3abv| 国产精品一区二区三区四区久久 | 大型av网站在线播放| 窝窝影院91人妻| 美女大奶头视频| 欧美乱妇无乱码| www日本在线高清视频| 变态另类丝袜制服| 中文字幕最新亚洲高清| 久久欧美精品欧美久久欧美| 一级片免费观看大全| 亚洲国产日韩欧美精品在线观看 | 91老司机精品| 久热这里只有精品99| 免费不卡黄色视频| 亚洲一区二区三区色噜噜| 国产精品久久久久久人妻精品电影| 国产在线精品亚洲第一网站| 免费少妇av软件| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕日韩| 久久人妻福利社区极品人妻图片| 国产成人免费无遮挡视频| 国产私拍福利视频在线观看| 久久久久国产一级毛片高清牌| 国产男靠女视频免费网站| 在线观看免费日韩欧美大片| 久久久久久久久中文| 一区福利在线观看| 国产精品美女特级片免费视频播放器 | 搡老妇女老女人老熟妇| 成人欧美大片| 欧美黄色片欧美黄色片| 91麻豆av在线| 国产精品久久久av美女十八| 午夜精品久久久久久毛片777| 亚洲熟女毛片儿| 国产成人影院久久av| 欧美乱色亚洲激情| 久久精品人人爽人人爽视色| 久久 成人 亚洲| 人人妻人人爽人人添夜夜欢视频| 精品久久久久久成人av| 欧美在线黄色| 精品午夜福利视频在线观看一区| 亚洲伊人色综图| 久久久精品国产亚洲av高清涩受| 亚洲精品国产区一区二| 免费搜索国产男女视频| 又黄又粗又硬又大视频| 欧美日韩乱码在线| 免费在线观看日本一区| 亚洲第一青青草原| 多毛熟女@视频| 在线观看免费视频网站a站| 可以免费在线观看a视频的电影网站| 人人妻,人人澡人人爽秒播| 18禁黄网站禁片午夜丰满| 国产成人欧美| 久99久视频精品免费| 亚洲三区欧美一区| 欧美成人一区二区免费高清观看 | 欧美不卡视频在线免费观看 | 国产亚洲精品一区二区www| 欧美日韩中文字幕国产精品一区二区三区 | 欧美色欧美亚洲另类二区 | 如日韩欧美国产精品一区二区三区| 十八禁人妻一区二区| 亚洲午夜精品一区,二区,三区| 久久精品国产亚洲av高清一级| 国产熟女xx| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看 | 久久人人爽av亚洲精品天堂| avwww免费| 美女扒开内裤让男人捅视频| avwww免费| 欧美另类亚洲清纯唯美| 欧美av亚洲av综合av国产av| 免费在线观看亚洲国产| 一区二区三区高清视频在线| 男人操女人黄网站| 黄色 视频免费看| 又大又爽又粗| 香蕉久久夜色| 一进一出好大好爽视频| 国产av一区在线观看免费| 日韩欧美一区视频在线观看| 久久精品国产99精品国产亚洲性色 | 97人妻天天添夜夜摸| 69av精品久久久久久| 丁香六月欧美| 一二三四社区在线视频社区8| 欧美久久黑人一区二区| www.999成人在线观看| 久久 成人 亚洲| 午夜福利免费观看在线| 久久国产亚洲av麻豆专区| or卡值多少钱| 亚洲av成人一区二区三| 国产av精品麻豆| 亚洲av片天天在线观看| 久久中文字幕人妻熟女| 国产免费男女视频| 母亲3免费完整高清在线观看| 国产精品一区二区精品视频观看| 免费人成视频x8x8入口观看| 又紧又爽又黄一区二区| 桃红色精品国产亚洲av| 一区二区三区激情视频| a在线观看视频网站| 亚洲中文字幕日韩| 国产色视频综合| 欧美+亚洲+日韩+国产| 性少妇av在线| 精品久久久久久,| x7x7x7水蜜桃| 韩国精品一区二区三区| 少妇的丰满在线观看| 国产一区在线观看成人免费| 制服人妻中文乱码| 欧美黄色片欧美黄色片| 真人做人爱边吃奶动态| 91av网站免费观看| 曰老女人黄片| av网站免费在线观看视频| 一二三四在线观看免费中文在| 两性夫妻黄色片| 精品人妻1区二区| 最新在线观看一区二区三区| 国产精品久久久av美女十八| 久久影院123|