• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gustiness and coherent structure under weak wind period in atmospheric boundary layer

    2016-11-23 01:12:57LiQiLongChengXueLingndZengQingCun

    Li Qi-Long, Cheng Xue-Lingnd Zeng Qing-Cun

    aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;bUniversity of Chinese Academy of Sciences, Beijing 100049, China

    Gustiness and coherent structure under weak wind period in atmospheric boundary layer

    Li Qi-Longa,b, Cheng Xue-Lingaand Zeng Qing-Cuna

    aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;bUniversity of Chinese Academy of Sciences, Beijing 100049, China

    Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out. The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47m, 120m, and 280m levels on Beijing 325m meteorological tower. The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts: basic mean flow (period > 10 min), gusty disturbances (1 min < period < 10 min) and turbulence fluctuations (period < 1 min). The results show that under weak mean wind condition: 1) the gusty disturbances are the most strong fluctuations, contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum, although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition; 2) the gusty wind disturbances are anisotropic; 3) the gusty wind disturbances have obviously coherent structure, and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively; 4) the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.

    ARTICLE HISTORY

    Atmospheric boundary layer; gusty wind;

    coherent structure; weak wind; downward flux of momentum

    1. Introduction

    Atmospheric boundary layer is influenced by the underlying earth surface such as frictional drag and heat transfer, the fluid motion in atmospheric boundary layer is no longer laminar flow-is turbulent. Turbulence plays an important role in transporting moisture, heat, momentum, and pollutants in the vertical direction. Local winds such as mountain and valley winds, sea breeze, which are caused by geographic variations,can transport moisture, heat, momentum, and pollutants also. Recently, researchers pay more attention to gusty wind. Gusty wind is velocity disturbance whose period is between 1 min and 10 min. Zeng, Hu, and Cheng (2007), Zeng et al. (2010), Cheng et al. (2007), and Cheng, Zeng, and Hu (2011) analyzed gusty wind disturbances under strong wind period. The result shows gusty wind is characterized by coherent structure. The coherent structure of gusty wind is beneficial to vertical flux of horizontal momentum. Hence, gusty wind disturbances are as important as turbulence fluctuations in downward flux of momentum. Gusty wind disturbances can transport moisture and pollutants in the vertical direction. And it is the fundamental mechanism of gusty wind blowing dust (Zeng, Hu, and Cheng 2007).

    In engineering, the research on gusty wind is systemic and mature. Recently, more and more researchers realize gusty wind in atmospheric science. Some of them were devoted to statistical analysis of wind gusts or gust factor (Jungo,Goyette, and Beniston 2002; Boettcher et al. 2003; Paulsen and Schroeder 2005). In the prediction of gusty wind, Brasseur (2001) proposed a wind gust estimate method, and it was applied to a numerical regional climate model (Goyette, Brasseur, and Beniston 2003). Thorarinsdottir and Johnson (2012)using non-homogeneous Gaussian regression proposed a new prediction method. Some of them to the numerical simulation of wind gusts (Peinke et al. 2004; Zhu 2008; Agustsson and Olafsson 2009; Cheng, Hu, and Zeng 2012; Cheng et al. 2012).

    Although researches on gusty wind have been considerable progress. But, researches on the structure of gusty wind are still lack. Only Zeng, Hu, and Cheng (2007), Zeng et al.(2010), Cheng et al. (2007), and Cheng, Zeng, and Hu (2011)found that: under strong wind period behind cold fronts, the gusty wind is characterized by a coherent structure, and the corresponding vertical velocity is negatively correlated with the horizontal wind component. The results have been verified by Guo's research (Guo et al. 2012).

    Is gustiness and coherent structure of wind universal? That is, in gusty disturbance spectrum area, whether has the gustiness and coherent structure under the weak wind condition?There is no report on it so far. We use the data obtained frommultilevel ultrasonic anemometer-thermometers located on 325m meteorological tower in Beijing in 2003 to make statistical analysis in order to fill this gap.

    For simplicity, we take the mean wind direction as the x-axis, so thatu-(t)is equal to the wind speed, and v-(t)=0.

    2. Data Processing

    2.1 Data

    The multilevel ultrasonic anemometer-thermometers (UAT-1)with frequency of 10 Hz are located at 47m, 120m, and 280m levels on 325m meteorological tower in Beijing, measuring(u,v,w) the three components of velocity and the sonic virtual temperature Ts.

    In this paper, 10 h data per month, total 120 h data in 2003 were analyzed. According to Beaufort wind scale, wind speed of 2 m/s is light breeze. So, 2 m/s is chosen as the threshold of velocity data. In all cases of 120 h data, the mean wind speed at the all the three levels are less than 2 m/s. Special atmospheric stratification is not chosen in this paper. And spikes removal is used for quality control of data.

    2.2 Extraction of gusty wind by spectral analysis

    First of all we simply use the Fourier spectral analysis to decompose the single point time series f into two parts: the low frequency part, whose period is larger than a timescale; and the high frequency part, f′, whose period is equal to and smaller than τ1. So, we have:

    Here we take τ= 10 min, call as basic or mean flow, andf′as1′the fluctuation. Next,fis decomposed further into two parts by Fourier spectral analysis with another timescale τ0=1 min,call lower frequency part as gusty wind disturbance,fg(t), and the higher frequency part as turbulences,ft(t). Thus, we haveFor example, of its three components, eiu, eiv, and eiw, andeiuand so on. Further more, we calculate the average of eiu,ivand eiwfor every 1 h (ensemblemean for one case or one hour) and denoted them as Eiu, Eiv, and Eiw, respectively.

    Figure 1. Time series of u′(t)=u(t)-u-(t),w′(t)=w(t)-w-(t)(blue), the gusty wind disturbancesug(t),wg(t)(red), and the turbulent fluctuationsu(t),w(t)(green), at 47 m at 12:00 pm-13:00 pm 5 February 2003.

    Etu, Etv, and Etware shown in Figure 2. It can be seen that in most cases they are <0.07 m2s-2. They are nearly equal in these cases; that is turbulence is nearly isotropic whenEtu< 0.07 m2s-2. But the turbulence is anisotropic whenEtu> 0.07 m2s-2.

    Egu, Egv, and Egware shown in Figure 3. It can be seen that point are not just located in the vicinity of lineEgu=Egvor Egu=Egw. Therefore, gusty wind disturbances are not isotropic but the turbulent fluctuation is near isotropic.

    Figure 4 shows ug(t)andwg(t). Time series ofug(t)and wg(t)are gusty wind wave packets, but disturbed by strong turbulence or convective eddies. In this picture, it can be seen that gusty wind at every level possesses the coherent structure: the vertical velocity is downward when horizontal velocity is in the peak phase, but upward when horizontal velocity is in the valley phase. Sometimes, convection disturbs the gusty wind and violates the coherent structure.

    where the timescale ofu- is larger than 10 min; Time scale of gusty wind disturbances is between 1 min and 10 min; and the turbulent fluctuations,ut, is less than 1 min. Zeng et al.(2010) indicated that the period of gusty wind is 3-6 min. To be prudent, we take τ0=1 min and τ1= 10 min. And this matches the definition of gusty given by WMO (2008).

    Figure 1 shows an example of time series off-, f,fg, and (f=u,w). Neglecting the rapid fluctuations, the wind gustiness in f′can be very clearly seen and well represented byfg. Series ftshows more rapid fluctuations.

    3. The Characteristics of gusty wind disturbances and turbulences

    Considering e =eg+et, where egand etcorrespond to gusty wind and turbulence, respectively. Here ei(i=t, g) is the sum

    Figure 1. (Continued).

    Figure 2.Three components of turbulence kinetic energy Etu, Etv, and Etwat three levels. (a)EtvversusEtu. (b)Etwversus Etu.

    According to Zeng, Hu, and Cheng (2007), Zeng et al.(2010), Cheng et al. (2007), and Cheng, Zeng, and Hu (2011),the coherent structure of the gusty wind disturbances is also very well represented quantitatively by the correlation coefficient,Rugwgor simply denoted as Rg:

    Table 1 gives Rg. As the same, the correlation coefficient for turbulent fluctuationis given in Table 2, and It can be seen from these tables that most ofare between 0.2 and 0.5, but most ofare less than 0.1. This clearly indicates that the structure of gusty wind disturbances is coherent,and that of turbulences is near random. Very few cases in Table 1 have<0.2, maybe they are disturbed by convection or suppressed by strong stable stratification, hence structurededdies can occur only random. These results also show, that the coherency of gusty wind disturbance under weak wind is less than that under strong wind (|Rg|>0.5, see Cheng, Zeng,and Hu (2011) ).

    Figure 3.Three components of gust kinetic energy Egu, Egv, and Egwat three levels. (a)EgvversusEgu. (b)Egwversus Egu.

    Next, the vertical flux of momentum can be directly calculated byThe direction of vertical flux contributed by the gusty disturbances even can be determined by the sign of Rg.means, that there is Rg<0and downward flux of momentum. And in our cases it is the case.

    4. The vertical profiles of turbulences and gusty disturbances

    Gust kinetic energy,eg=egu+egv+egw, turbulent kinetic energy,et=etu+etv+etw. The one-hour averages ofeg, etare denoted as Eg, Et. The vertical profiles ofEg, Etare given in Fig. 5, respectively. It can be seen that (1)Egis approximately constant with height; (2)Eg>Etat every height. Our calculations show gust kinetic energy accounted for 65% at 47 m height,64% at 120 m height, and 55% at 280 m height of total eddy kinetic energy (E′).

    Figure 4.(a) Time series ofug(t)andwg(t). (b) Time series ofut(t)andwt(t)at 47 m at 12:00 pm-13:00 pm 5 February 2003.

    Table 1.Correlation coefficients,Rg, between the two components of gusty disturbances, (ug, wg), and some basic quantity at three heights in November 2003.

    The vertical kinematic eddy flux of horizontal momentum(τx, τy) is Here ρ is the air density. The fluxes are decomposed into two parts, corresponding to gusty wind and turbulence with isotropic motion. So, we have:Program of China (2010CB951804), and the Research Program of the Chinese Academy of Sciences (XDA10010403).

    Table 2.Correlation coefficients,Rt, between the two components of turbulent fluctuations, (ut, wt) , and some basic quantity at three heights in November 2003.

    Figure 5.The vertical profile ofE, E, andE′.tg

    Figure 6.The vertical profile of ut*, ug*, andu?.

    Andug*is the friction velocities relate to gusty wind,ut*is the friction velocities relate to turbulence. The vertical profiles ofug*and ut*are given in Fig. 6, respectively.ug*and ut*are the average for 120 h.

    It can be seen that 1)ug*is approximately constant with height between 47 m and 280 m. Hence, the downward momentum flux relate to gusty wind are approximately constant with height under weak wind; 2)ut*is approximately constant with height also; 3) The downward momentum flux is approximately constant with height in the surface layer under weak wind; 4)ug*are larger than ut*at every height. Our calculations showaccounted for 85% at 47 m height, 84% at 120 m height, and 73% at 280 m height of. Hence, the gusty wind contributes about 80% downward flux of momentum under weak wind.

    5. Conclusion

    Through analyses of multilevel ultrasonic anemometerthermometer monitoring data during the weak winds period,it is revealed:

    (1) Superimposed on the basic air flow, there are gusty wind wave packets with a period between 1 min and 10 min.

    (2) Even during the weak winds period, the gusty wind is characterized by a coherent structure, and the corresponding vertical velocity is downward when horizontal velocity is in the peak phase, but upward when horizontal velocity is in the valley phase. It is the same during the strong winds period, but it is more regular during the strong winds period.

    (3) There are pronounced differences between gusty wind disturbances and turbulent fluctuations, the gusty wind disturbances are always anisotropic with moderate coherency, while the turbulent fluctuations are isotropic and nearly random.

    (4) The gusty wind disturbances (periods in the range[1 min, 10 min]) carry most of the eddy kinetic energy and play a major role in downward momentum flux. Turbulent fluctuations (period < 1 min) only contribute a few of these.

    (5) The kinetic energies of turbulent fluctuations grow with height under 280 meters. The friction velocities relate to turbulence fluctuations and gusty wind disturbances are approximately constant with height between 47 and 280 meters.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (40830103 and 41375018), the National Basic Research

    References

    Agustsson, H., and H. Olafsson. 2009. “Forecasting wind gusts in complex terrain.” Meteorology and Atmospheric Physics 103: 173-185.

    Boettcher, F., C. Renner, H. P. Waldl, and J. Peinke. 2003. “On the statistics of wind gusts.” Boundary-Layer Meteorology 108: 163-173.

    Brasseur, O. 2001. “Development and application of a physical approach to estimating wind gusts.” Monthly Weather Review 129: 5-25.

    Cheng, X. L., Q. C. Zeng, F. Hu, and Z. Peng. 2007. “Gustness and coherent structure of strong wind in the atmospheric boundary layer.” Climatic and Environmental Research (in Chinese) 12: 227-243.

    Cheng, X. L., Q. C. Zeng, and F. Hu. 2011. “Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts.” Journal of Geophysical Research 116: D06101. doi: 10.1029/2010JD015081.

    Cheng, X. L., F. Hu, and Q. C. Zeng. 2012. “Simulation of wind gust structure in the atmospheric boundary layer with Lattice Boltzmann Method.” Chinese Science Bulletin 57: 1196-1203.

    Cheng, X. L., L. Wu, F. Hu, and Q. C. Zeng. 2012. “Parameterizations of some important characteristics of turbulent fluctuations and gusty wind disturbances in the atmospheric boundary layer.” Journal of Geophysical Research 117: D08113. doi:10.1029/2011JD017191.

    Goyette, S., O. Brasseur, and M. Beniston. 2003. “Application of a new wind gust parameterization: Multiscale case studies performed with the Canadian regional climate model.” Journal of Geophysical Research 108: 4374. doi:10.1029/2002JD002646.

    Guo, Y. Q., R. M. Yuan, T. Luo, J. N. Sun, and W. W. Jiang. 2012. “Research on relationships between high-speed coherent structure and turbulence flux.” Chinese Journal of Atmospheric Sciences (in Chinese) 36: 733-743.

    Jungo, P., S. Goyette, and M. Beniston. 2002. “Daily wind gust speed probabilities over Switzerland according to three types of synoptic circulation.” International Journal of Climatology 22: 485-499.

    Paulsen, B. M., and J. L. Schroeder. 2005. “An examination of tropical and extratropical gust factors and the associated wind speed histograms.” Journal of Applied Meteorology 44: 270-280.

    Peinke, J., S. Barth, F. Bottcher, D. Heinemann, and B. Lange. 2004.“Turbulence, a challenging problem for wind energy.” Physica A 338: 187-193.

    Thorarinsdottir, T. L., and M. S. Johnson. 2012. “Probabilistic wind gust forecasting using nonhomogeneous Gaussian regression.”Monthly Weather Review 140: 889-897.

    WMO (World Meteorological Organization). 2008. Guide to Meteorological Instruments and Methods of Observation. 7th ed. Chapter 5, Part I. WMO.

    Zeng, Q. C., F. Hu, and X. L. Cheng. 2007. “The mechanism of dust entrainment by gustwind.” Climatic and Environmental Research(in Chinese) 12: 251-255.

    Zeng, Q. C., X. L. Cheng, F. Hu, and Z. Peng. 2010. “Gustiness and coherent structure of strong winds and their role in dust emission and entrainment.” Advance in Atmospheric Science 27: 1-13.

    Zhu, P. 2008. “A multiple scale modeling system for coastal hurricane wind damage mitigation.” Natural Hazards 47: 577-591.

    29 May 2015 Accepted 13 July 2015

    CONTACT Cheng Xue-Ling chengxl@mail.iap.ac.cn

    ? 2015 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) which permits unrestricted use, distribution,and reproduction in any medium, provided the original work is properly cited.

    亚洲国产精品合色在线| 丝袜美腿在线中文| 久久午夜福利片| 国产精品国产三级国产专区5o | 国产欧美另类精品又又久久亚洲欧美| 97在线视频观看| 国产精品爽爽va在线观看网站| 日韩高清综合在线| 99热全是精品| 久久久a久久爽久久v久久| 亚洲av成人精品一区久久| 大又大粗又爽又黄少妇毛片口| 日韩成人伦理影院| 99热6这里只有精品| 免费观看在线日韩| 免费av不卡在线播放| 国产探花极品一区二区| 99久国产av精品| 性色avwww在线观看| 搡老妇女老女人老熟妇| 一区二区三区四区激情视频| 久久99热这里只频精品6学生 | 超碰97精品在线观看| 99久久人妻综合| 亚洲性久久影院| 日韩欧美 国产精品| 最新中文字幕久久久久| 国产极品精品免费视频能看的| 内射极品少妇av片p| 亚洲成av人片在线播放无| 国产欧美日韩精品一区二区| 如何舔出高潮| 桃色一区二区三区在线观看| 美女高潮的动态| 久久午夜福利片| 久久国产乱子免费精品| 精品不卡国产一区二区三区| 尤物成人国产欧美一区二区三区| 久久精品国产亚洲网站| 午夜免费激情av| or卡值多少钱| 日日撸夜夜添| 日本五十路高清| 天天一区二区日本电影三级| 国产精品人妻久久久久久| 亚洲人成网站在线播| 中文字幕人妻熟人妻熟丝袜美| av在线老鸭窝| 欧美另类亚洲清纯唯美| 久久久久网色| 性插视频无遮挡在线免费观看| 国产亚洲最大av| 18禁在线播放成人免费| av在线播放精品| 亚洲国产最新在线播放| 老司机影院成人| 午夜激情欧美在线| 国产一级毛片在线| videos熟女内射| 啦啦啦韩国在线观看视频| 国产av在哪里看| 亚洲精品久久久久久婷婷小说 | 亚洲av.av天堂| 成人特级av手机在线观看| 一区二区三区四区激情视频| 一本久久精品| 日韩 亚洲 欧美在线| 少妇人妻精品综合一区二区| 国产v大片淫在线免费观看| 成人av在线播放网站| 国产精品久久久久久av不卡| 又粗又硬又长又爽又黄的视频| 九色成人免费人妻av| 日韩人妻高清精品专区| 少妇熟女aⅴ在线视频| 内射极品少妇av片p| 夜夜爽夜夜爽视频| 中文资源天堂在线| .国产精品久久| 成人毛片a级毛片在线播放| 久久精品久久久久久噜噜老黄 | 精品无人区乱码1区二区| 99热这里只有精品一区| 大又大粗又爽又黄少妇毛片口| 熟妇人妻久久中文字幕3abv| 九九在线视频观看精品| 日韩一本色道免费dvd| 国产不卡一卡二| 日本色播在线视频| 国产真实伦视频高清在线观看| 美女脱内裤让男人舔精品视频| 欧美激情久久久久久爽电影| 夫妻性生交免费视频一级片| 波野结衣二区三区在线| 国产免费福利视频在线观看| 神马国产精品三级电影在线观看| 91久久精品电影网| 国产免费一级a男人的天堂| 亚洲欧美精品自产自拍| 晚上一个人看的免费电影| 少妇猛男粗大的猛烈进出视频 | 内射极品少妇av片p| 国产色婷婷99| 成人综合一区亚洲| 非洲黑人性xxxx精品又粗又长| 国产精品国产三级国产专区5o | 亚洲最大成人中文| 网址你懂的国产日韩在线| 18+在线观看网站| 国产精品国产高清国产av| 三级经典国产精品| 波多野结衣高清无吗| 亚洲精品国产av成人精品| a级毛色黄片| 精品久久久久久久人妻蜜臀av| 国产女主播在线喷水免费视频网站 | 2021少妇久久久久久久久久久| 久久精品国产亚洲av天美| 午夜免费男女啪啪视频观看| 天堂中文最新版在线下载 | 国产色爽女视频免费观看| 国产精品一区二区三区四区免费观看| 成人毛片a级毛片在线播放| 亚洲熟妇中文字幕五十中出| 日本一二三区视频观看| 在线播放国产精品三级| 免费无遮挡裸体视频| av.在线天堂| 日日撸夜夜添| 欧美激情在线99| 久久精品国产99精品国产亚洲性色| 国产一区有黄有色的免费视频 | 免费黄色在线免费观看| 直男gayav资源| 亚洲,欧美,日韩| 成年女人看的毛片在线观看| 日本色播在线视频| 2021天堂中文幕一二区在线观| 日韩视频在线欧美| 尤物成人国产欧美一区二区三区| 波多野结衣巨乳人妻| 国产伦一二天堂av在线观看| 两个人的视频大全免费| 国产欧美另类精品又又久久亚洲欧美| 午夜福利在线观看吧| 女人被狂操c到高潮| 国产大屁股一区二区在线视频| 国产成人freesex在线| 亚洲av日韩在线播放| 欧美三级亚洲精品| 男女下面进入的视频免费午夜| 国产精品一及| 欧美日韩一区二区视频在线观看视频在线 | 国产精品熟女久久久久浪| 少妇人妻精品综合一区二区| 天堂影院成人在线观看| 亚洲,欧美,日韩| 欧美日韩一区二区视频在线观看视频在线 | 国产成年人精品一区二区| 久久99热这里只频精品6学生 | 尾随美女入室| 三级国产精品欧美在线观看| 亚洲怡红院男人天堂| 一夜夜www| 最近2019中文字幕mv第一页| 久久精品国产鲁丝片午夜精品| 女人久久www免费人成看片 | 国产亚洲一区二区精品| 精品人妻一区二区三区麻豆| 中国美白少妇内射xxxbb| 97超碰精品成人国产| 国产精品野战在线观看| 亚洲在久久综合| 欧美+日韩+精品| 色网站视频免费| 美女脱内裤让男人舔精品视频| 永久网站在线| 91久久精品电影网| 久久99热这里只有精品18| 18禁在线播放成人免费| 国产人妻一区二区三区在| 国产亚洲av片在线观看秒播厂 | 国产亚洲一区二区精品| 欧美潮喷喷水| 亚洲欧美精品自产自拍| 七月丁香在线播放| 国产男人的电影天堂91| 欧美性感艳星| 91在线精品国自产拍蜜月| 最后的刺客免费高清国语| 一级黄片播放器| 午夜久久久久精精品| 观看免费一级毛片| 亚洲av中文字字幕乱码综合| 欧美精品一区二区大全| 亚洲乱码一区二区免费版| 日韩av不卡免费在线播放| 我的女老师完整版在线观看| 岛国在线免费视频观看| 免费黄色在线免费观看| 国产成人精品一,二区| 最近中文字幕2019免费版| 97人妻精品一区二区三区麻豆| av免费在线看不卡| 成人三级黄色视频| 亚洲av男天堂| 日本爱情动作片www.在线观看| 精品欧美国产一区二区三| 亚洲成人久久爱视频| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人澡人人爽人人夜夜 | 人妻少妇偷人精品九色| 午夜激情欧美在线| 欧美97在线视频| 小说图片视频综合网站| 少妇丰满av| 日本av手机在线免费观看| 婷婷色av中文字幕| 亚洲欧美成人精品一区二区| 国产精品久久久久久久电影| 亚洲国产日韩欧美精品在线观看| 日韩在线高清观看一区二区三区| 全区人妻精品视频| 日产精品乱码卡一卡2卡三| 久久99精品国语久久久| 国产 一区 欧美 日韩| 91精品一卡2卡3卡4卡| 天天躁夜夜躁狠狠久久av| 精华霜和精华液先用哪个| 国产一区亚洲一区在线观看| 亚洲高清免费不卡视频| 亚洲精品456在线播放app| 国产精品野战在线观看| 1024手机看黄色片| 又爽又黄a免费视频| 亚洲欧美成人精品一区二区| 国内精品美女久久久久久| 日韩av在线免费看完整版不卡| 亚洲国产欧洲综合997久久,| 午夜福利在线观看吧| 国产精品永久免费网站| 欧美不卡视频在线免费观看| 五月伊人婷婷丁香| 岛国在线免费视频观看| 蜜桃亚洲精品一区二区三区| 久久久久免费精品人妻一区二区| 午夜福利在线在线| 18禁在线播放成人免费| 在线免费观看不下载黄p国产| 欧美潮喷喷水| 午夜福利高清视频| 国产黄a三级三级三级人| 成人性生交大片免费视频hd| 成人一区二区视频在线观看| 亚洲人成网站在线观看播放| 色5月婷婷丁香| 又粗又爽又猛毛片免费看| 精华霜和精华液先用哪个| 91久久精品国产一区二区成人| 国产精品嫩草影院av在线观看| 亚洲精品影视一区二区三区av| 国产美女午夜福利| av线在线观看网站| 内射极品少妇av片p| 美女脱内裤让男人舔精品视频| 少妇的逼水好多| av播播在线观看一区| 午夜亚洲福利在线播放| 中文字幕免费在线视频6| 熟妇人妻久久中文字幕3abv| 欧美日韩精品成人综合77777| 两个人视频免费观看高清| 最近最新中文字幕大全电影3| 国产免费福利视频在线观看| 五月玫瑰六月丁香| 国产精品嫩草影院av在线观看| 18+在线观看网站| 亚洲成人中文字幕在线播放| 美女cb高潮喷水在线观看| 亚洲欧美精品综合久久99| 欧美潮喷喷水| 国产在视频线在精品| 亚洲一区高清亚洲精品| 亚洲精品,欧美精品| 村上凉子中文字幕在线| 国产一区二区三区av在线| 日本午夜av视频| 五月伊人婷婷丁香| 国产伦精品一区二区三区视频9| 精品久久久久久电影网 | av在线观看视频网站免费| 亚洲精品日韩在线中文字幕| 久久欧美精品欧美久久欧美| 国产亚洲5aaaaa淫片| 欧美精品一区二区大全| 亚洲精品aⅴ在线观看| 人人妻人人澡欧美一区二区| 免费看a级黄色片| 高清日韩中文字幕在线| 丰满乱子伦码专区| 久久韩国三级中文字幕| 国产真实乱freesex| 亚洲人成网站在线播| 国产又色又爽无遮挡免| 中文亚洲av片在线观看爽| 成人高潮视频无遮挡免费网站| 日本色播在线视频| 美女内射精品一级片tv| videos熟女内射| 黄色一级大片看看| 有码 亚洲区| 特大巨黑吊av在线直播| 少妇高潮的动态图| 免费电影在线观看免费观看| 熟女人妻精品中文字幕| 国产亚洲精品av在线| 久久久久久久久大av| 欧美3d第一页| av天堂中文字幕网| 亚洲最大成人av| 国产久久久一区二区三区| 亚洲精品aⅴ在线观看| 免费看美女性在线毛片视频| 又黄又爽又刺激的免费视频.| 欧美精品一区二区大全| av在线播放精品| 99热这里只有精品一区| 久久热精品热| 亚洲五月天丁香| 欧美高清成人免费视频www| 热99在线观看视频| 国产片特级美女逼逼视频| 高清在线视频一区二区三区 | 少妇丰满av| 亚洲国产色片| 伦精品一区二区三区| 亚洲精品乱久久久久久| 在线免费十八禁| 伦精品一区二区三区| 国产av在哪里看| 免费观看在线日韩| 国产成年人精品一区二区| 亚洲最大成人手机在线| 日韩欧美国产在线观看| 欧美精品一区二区大全| 日本av手机在线免费观看| 国产精品久久久久久久久免| 欧美人与善性xxx| 99久久中文字幕三级久久日本| 亚洲欧美中文字幕日韩二区| 天堂影院成人在线观看| 精品不卡国产一区二区三区| 我的女老师完整版在线观看| 午夜福利视频1000在线观看| 欧美日韩综合久久久久久| 欧美精品国产亚洲| 桃色一区二区三区在线观看| 伦理电影大哥的女人| 九色成人免费人妻av| 欧美高清性xxxxhd video| 男人舔奶头视频| 成人性生交大片免费视频hd| 91午夜精品亚洲一区二区三区| 在线免费十八禁| 人妻夜夜爽99麻豆av| 亚洲av一区综合| 亚洲天堂国产精品一区在线| 日本免费一区二区三区高清不卡| 中文字幕熟女人妻在线| 国产精品国产三级国产专区5o | 亚洲欧美精品自产自拍| 爱豆传媒免费全集在线观看| 99热全是精品| 赤兔流量卡办理| 亚洲精品乱码久久久久久按摩| 亚洲av一区综合| 午夜久久久久精精品| 国产女主播在线喷水免费视频网站 | 成人欧美大片| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 亚洲国产日韩欧美精品在线观看| www.色视频.com| 国产v大片淫在线免费观看| 久久国产乱子免费精品| 中文字幕制服av| 亚洲精品成人久久久久久| 如何舔出高潮| 国产伦精品一区二区三区视频9| 日本三级黄在线观看| 亚洲怡红院男人天堂| 久久精品国产鲁丝片午夜精品| 日韩制服骚丝袜av| 国产亚洲av片在线观看秒播厂 | 高清日韩中文字幕在线| 国产视频内射| 在线天堂最新版资源| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 亚洲在线自拍视频| 亚洲精品日韩在线中文字幕| av卡一久久| 十八禁国产超污无遮挡网站| 国产女主播在线喷水免费视频网站 | 神马国产精品三级电影在线观看| 国产成人a∨麻豆精品| 国产伦精品一区二区三区四那| 国产亚洲最大av| 国产精品伦人一区二区| 久久鲁丝午夜福利片| 爱豆传媒免费全集在线观看| 一级av片app| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 国产成人午夜福利电影在线观看| 七月丁香在线播放| 晚上一个人看的免费电影| 亚洲乱码一区二区免费版| 韩国av在线不卡| 亚洲精品亚洲一区二区| 国产片特级美女逼逼视频| 美女脱内裤让男人舔精品视频| 91在线精品国自产拍蜜月| 日韩视频在线欧美| 国产探花极品一区二区| 寂寞人妻少妇视频99o| 久久久久久国产a免费观看| 久久人人爽人人片av| 亚洲经典国产精华液单| 精品午夜福利在线看| 三级国产精品片| 日本熟妇午夜| 一边亲一边摸免费视频| 国产人妻一区二区三区在| 可以在线观看毛片的网站| 日韩欧美精品v在线| 丰满少妇做爰视频| 欧美变态另类bdsm刘玥| 黄片wwwwww| 精品欧美国产一区二区三| 久久久久久久久中文| 亚洲乱码一区二区免费版| 久久久精品欧美日韩精品| 一级黄色大片毛片| 国产激情偷乱视频一区二区| 国产极品天堂在线| 嫩草影院入口| 久久精品熟女亚洲av麻豆精品 | 午夜视频国产福利| 色吧在线观看| 成人鲁丝片一二三区免费| 91久久精品电影网| 国产精品久久久久久av不卡| 久久这里有精品视频免费| 亚洲国产精品专区欧美| 欧美丝袜亚洲另类| 国产高清不卡午夜福利| 综合色丁香网| 国产大屁股一区二区在线视频| 国产乱人视频| 2021少妇久久久久久久久久久| 中文字幕av在线有码专区| 国产精品国产三级国产av玫瑰| 午夜精品国产一区二区电影 | 国产精品久久视频播放| 亚洲最大成人中文| 深爱激情五月婷婷| 少妇的逼水好多| 床上黄色一级片| 国产高清三级在线| 久久99热这里只有精品18| 婷婷色av中文字幕| 久久精品人妻少妇| 国语对白做爰xxxⅹ性视频网站| 亚洲无线观看免费| 美女国产视频在线观看| 亚洲国产精品久久男人天堂| 少妇人妻一区二区三区视频| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 国产精品日韩av在线免费观看| 精品人妻一区二区三区麻豆| 在线观看一区二区三区| 免费看av在线观看网站| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 午夜福利高清视频| 午夜精品在线福利| 欧美日韩一区二区视频在线观看视频在线 | 97热精品久久久久久| 久久精品国产亚洲av涩爱| 久久久精品94久久精品| 精品国内亚洲2022精品成人| 七月丁香在线播放| 日本三级黄在线观看| 26uuu在线亚洲综合色| 久久草成人影院| 神马国产精品三级电影在线观看| 秋霞在线观看毛片| 国产极品天堂在线| 乱系列少妇在线播放| 欧美精品一区二区大全| 男人和女人高潮做爰伦理| 身体一侧抽搐| 国产淫片久久久久久久久| 国产av码专区亚洲av| 美女内射精品一级片tv| 亚洲欧美日韩东京热| 最近中文字幕高清免费大全6| 午夜免费男女啪啪视频观看| 久久这里只有精品中国| 最近的中文字幕免费完整| 国产白丝娇喘喷水9色精品| 精品久久国产蜜桃| 亚洲精品一区蜜桃| 亚洲精品日韩在线中文字幕| 日韩欧美精品免费久久| av在线亚洲专区| 亚洲精品乱久久久久久| 成年免费大片在线观看| 少妇高潮的动态图| 国产精品人妻久久久影院| 狂野欧美白嫩少妇大欣赏| 日韩国内少妇激情av| 在线免费观看的www视频| 水蜜桃什么品种好| 天堂av国产一区二区熟女人妻| eeuss影院久久| 能在线免费观看的黄片| 国产成人freesex在线| 中文精品一卡2卡3卡4更新| 国产麻豆成人av免费视频| 尾随美女入室| 97人妻精品一区二区三区麻豆| 18禁在线无遮挡免费观看视频| 大又大粗又爽又黄少妇毛片口| 日日啪夜夜撸| 一个人观看的视频www高清免费观看| 亚洲av成人精品一区久久| 久久久午夜欧美精品| 一区二区三区免费毛片| 天堂av国产一区二区熟女人妻| 久久精品夜夜夜夜夜久久蜜豆| 乱系列少妇在线播放| 黄色配什么色好看| 欧美一区二区国产精品久久精品| 亚洲av中文字字幕乱码综合| 久久久精品94久久精品| 少妇的逼水好多| av在线天堂中文字幕| 九草在线视频观看| 在线免费十八禁| 黄片无遮挡物在线观看| 国产精品蜜桃在线观看| 美女大奶头视频| 国产精品一二三区在线看| 亚洲精品乱码久久久久久按摩| 在线免费十八禁| 成人毛片60女人毛片免费| 最近手机中文字幕大全| 全区人妻精品视频| 99久国产av精品国产电影| 看十八女毛片水多多多| 天美传媒精品一区二区| 久久鲁丝午夜福利片| 国产成人a∨麻豆精品| 伊人久久精品亚洲午夜| av在线天堂中文字幕| 亚洲人成网站在线观看播放| 精品免费久久久久久久清纯| 大香蕉久久网| 午夜福利在线观看吧| 欧美区成人在线视频| 国产精华一区二区三区| 身体一侧抽搐| 国产美女午夜福利| 汤姆久久久久久久影院中文字幕 | 国产亚洲午夜精品一区二区久久 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美高清成人免费视频www| 五月玫瑰六月丁香| 久久精品熟女亚洲av麻豆精品 | 在线观看av片永久免费下载| 99热全是精品| 精华霜和精华液先用哪个| 高清毛片免费看| 亚州av有码| 国产高清国产精品国产三级 | 麻豆一二三区av精品| 偷拍熟女少妇极品色| 国产精品人妻久久久久久| 在线观看美女被高潮喷水网站| 欧美不卡视频在线免费观看| 欧美潮喷喷水| 99热网站在线观看| 欧美zozozo另类| 一个人看的www免费观看视频| 日本一二三区视频观看| 在线观看av片永久免费下载| 一级黄片播放器| 日韩中字成人| 亚洲av成人精品一区久久| 麻豆国产97在线/欧美| 欧美变态另类bdsm刘玥| 欧美性感艳星| 欧美激情久久久久久爽电影| 欧美xxxx黑人xx丫x性爽| 高清午夜精品一区二区三区| 我要看日韩黄色一级片| 搞女人的毛片| 91精品伊人久久大香线蕉| av.在线天堂| 毛片女人毛片| 精品人妻偷拍中文字幕| 精品无人区乱码1区二区|