• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MJO ensemble prediction in BCC-CSM1.1(m) using different initialization schemes

    2016-11-23 01:12:59RenHongLiWuJieZhaoChongBoChengYanJieandLiuXiangWen
    關鍵詞:時效擾動氣候

    Ren Hong-Li, Wu Jie, Zhao Chong-Bo, Cheng Yan-Jie and Liu Xiang-Wen

    Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China

    MJO ensemble prediction in BCC-CSM1.1(m) using different initialization schemes

    Ren Hong-Li, Wu Jie, Zhao Chong-Bo, Cheng Yan-Jie and Liu Xiang-Wen

    Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China

    The Madden-Julian Oscillation (MJO) is a dominant mode of tropical intraseasonal variability (ISV)and has prominent impacts on the climate of the tropics and extratropics. Predicting the MJO using fully coupled climate system models is an interesting and important topic. This paper reports upon a recent progress in MJO ensemble prediction using the climate system model of the Beijing Climate Center, BCC-CSM1.1(m); specifically, the development of three different initialization schemes in the BCC ISV/MJO prediction system, IMPRESS. Three sets of 10-yr hindcasts were separately conducted with the three initialization schemes. The results showed that the IMPRESS is able to usefully predict the MJO, but is sensitive to the initialization scheme used and becomes better with the initialization of moisture. In addition, a new ensemble approach was developed by averaging the predictions generated from the different initialization schemes, helping to address the uncertainty in the initial values of the MJO. The ensemble-mean MJO prediction showed significant improvement, with a valid prediction length of about 20 days in terms of the different criteria, i.e., a correlation score beyond 0.5, a RMSE lower than 1.414, or a mean square skill score beyond 0. This study indicates that utilizing the different initialization schemes of this climate model may be an efficient approach when forming ensemble predictions of the MJO.

    ARTICLE HISTORY

    Accepted 21 September 2015

    MJO; initialization scheme;ensemble prediction; climate model

    熱帶大氣季節(jié)內振蕩(MJO)預報是國際研究熱點,我國尚處于起步階段。近些年國際上MJO預報水平得到大幅提升,主要得益于包含海氣耦合過程的氣候模式的使用,這其中模式預報初始化和集合擾動生成方法至關重要。本文發(fā)展了適用于國家氣候中心第二代氣候預測業(yè)務模式BCC-CSM1.1(m)的MJO初始化方案,并在此基礎上提出了基于不同初始化方案形成擾動的集合預報新方法,可以將MJO有技巧預報時效延長到約20天,為次季節(jié)-季節(jié)預報提供重要依據(jù)。

    Introduction

    The Madden-Julian Oscillation (MJO), as a dominant mode of tropical intraseasonal variability (ISV) (Madden and Julian 1971, 1972), is well-recognized to play a crucial role in bridging weather and climate, as an important predictability source (Zhang 2005, 2013; Li 2014). Therefore, MJO prediction is a key part of intraseasonal and extended range predictions. In the past decade, major international scientific institutes and operational centers have achieved significant improvements in the MJO prediction level. These improvements have largely been based on the use of fully coupled global climate models (CGCMs)and high-quality assimilated data (Vitart et al. 2007; Vitart,Leroy, and Wheeler 2010; Vitart 2014; Seo et al. 2010; Kang and Kim 2010; Rashid et al. 2011; Fu et al. 2013; Hudson et al. 2013; Kang et al. 2014; Wang et al. 2014). Indeed, MJO prediction is currently a hot topic in the global scientific community, with increasing attention being paid to developing new methods and techniques.

    The prediction skill and potential predictability of the MJO in dynamical climate models have been examined in many previous studies (e.g., Kang et al. 2014; Neena et al. 2014.). Until now, useful MJO prediction skill, based on a large sample size of hindcasts in a number of stateof-the-art CGCMs, can extend to 20-25 days before the correlation coefficients between the observed and predicted MJO indices drop to 0.5 (Hudson et al. 2013; Kang et al. 2014; Wang et al. 2014; Vitart 2014; Ling et al. 2015). However, only a minority of the CGCMs involved in the Coupled Model Intercomparison Project Phase 5 (CMIP5)can simulate the MJO's spectral characteristics reasonably (Hung et al. 2013). The climate system models of theBeijing Climate Center (BCC) can reproduce the ISV/MJO signal and main features reasonably well, despite some deficiencies that still need to be resolved (Zhao et al. 2014, 2015).

    In the last two years, the BCC has been developing a prediction system for ISV/MJO based on its atmospheric/ coupled GCMs (Ren et al. 2015). Previously, two statistical methods were used for MJO index prediction (Jia et al. 2012). Therefore, it is important to develop adequate model initialization schemes and ensemble perturbation approaches in establishing the new prediction system. In this paper, we report upon a recent progress in MJO prediction via the development of different initialization schemes in the BCC climate system model. In addition,considering the great potential of ensemble prediction in increasing MJO prediction skill (Neena et al. 2014), a new ensemble approach for MJO prediction, based on the different initialization schemes, is designed. This is also reported in the present paper.

    Data, model, and experiments

    The daily observed outgoing longwave radiation data were from the NOAA (Liebmann and Smith 1996), and the daily wind, moisture, and temperature data were from ERA-Interim (Dee et al. 2011). These data were used to generate model initial values and evaluate the model results. In the ISV/MJO monitoring and prediction system (IMPRESS) being developed at the BCC, the dynamic model used for prediction is BCC-CSM1.1(m) which atmospheric component has been used in the operational MJO prediction at the BCC (Ren et al. 2015). This model includes four basic components (atmosphere, ocean, land-use,and sea ice), and has been applied in research on climate change projection and climate prediction at the BCC (Wu et al. 2014). Evaluation has shown that this model can simulate the features of the ISV/MJO reasonably well,albeit with a relatively shorter period and weaker eastward propagation compared to observations (Zhao et al. 2014, 2015). This deficiency may influence the predictability of the MJO.

    To better predict the MJO using this model in IMPRESS,we sought to develop adequate initialization schemes that are able to introduce realistic MJO signals into the model,as well as make initial values dynamically consistent with model behaviors. Three experiments were designed,adopting three different initialization schemes, as follows:(1) Nudging experiment I (NDG.RPLC), in which the model variables were completely replaced with observations, as a special kind of explicit nudging in which the relaxation time was set to a double time step (Krishnamurti et al. 1991); (2) Nudging experiment II (NDG.UVT), which used an implicit nudging scheme that only allowed an adequate part of the values of model variables (including zonal and meridional wind as well as air temperature) to be replaced by observations; (3) Nudging experiment III (NDG.UVTQ),which was the same as NDG.UVT but with the addition of specific humidity into the nudging process. The nudging relaxation time scale was set to one hour for the latter two schemes, consistent with Subramanian and Zhang (2014). The experiments were conducted at 0000 UTC on the first day of each month, covering 2000-10, with a two-month initialization period before each initial time, followed by a one-month prediction. In addition to the three experiments, the ensemble mean of the three prediction results was taken, referred to as ENSEMBLE.

    To verify the MJO prediction results, we first calculated the real-time multivariate MJO (RMM) indices for both the observation and model predictions, following the definition of Wheeler and Hendon (2004). The prediction skillscores used for verification included the bivariate anomaly correlation coefficient (COR), bivariate root-mean-square error (RMSE), and mean square skill score (MSSS), following Lin et al. (2008).

    Figure 3. COR skill scores of ENSEMBLE as a function of the eight initial MJO phases (x-axis) and different lead days (y-axis).

    Results

    The skill scores of RMM index prediction for all of the initialization schemes and their ensemble mean are shown in Figure 1. As can clearly be seen in Figure 1a, prediction of the MJO using any initialization scheme has a valid prediction length of around 15-16 days, during which the COR is beyond 0.5. The NDG.UVTQ scheme gives a slightly longer predictable length (16 days), compared to the other two,but its corresponding COR is the smallest within the first 10 days. These results indicates that while on one hand the initialization schemes that partly nudge the model states towards the observations are more effective in improving the prediction of the MJO than the scheme that directly replaces the model variables with observations, on the other hand it is fairly important to involve moisture in the initialization process besides the dynamic and thermodynamic variables, although model adjustment could take more time than with the other two schemes. Also, marked improvement in MJO prediction using the model is apparent compared to the skill generated through using the previous statistical methods (Jia et al. 2012).

    The ensemble mean of the three individual MJO predictions shows a considerable improvement in skill, with a valid prediction length reaching 19 days. Also, the COR skill scores of ENSEMBLE are higher than the three ensemble members for all the forecast lead days, particularly after the first week of weather range forecasting. This clearly indicates that such a new ensemble approach, based on averaging the predictions generated from the different initialization schemes of the same climate model, is able to effectively reduce the uncertainty induced by the model initial values and reasonably capture the MJO signal that dominates in the extended range predictability.

    The skill scores defined from the quantification of prediction errors, i.e., the RMSE and MSSS, were also examined, even though they are not often employed to measure the duration of useful MJO prediction. Overall, both the RMSE and MSSS results indicate the same conclusions as the COR. As seen in Figures 1b and 1c, the times at which the RMSE becomes 1.414 when using the NDG.UVT, NDG. RPLC, and NDG.UVTQ schemes are 13, 15, and 16 days,respectively, which are exactly the same as the times at which the corresponding MSSS scores are beyond 0. Among the three schemes, NDG.UVTQ always produces the best prediction during the valid prediction period,while NDG.UVT produces the worst. These results indicate that losing the moisture information in the model initialization may cause inconsistency or an imbalance between the model's dry and moist variables, and hence cause the prediction error to increase.

    It is also reasonably clear that the ensemble mean of the three individual predictions can significantly reduce the prediction error and increase the prediction skill, compared to any single ensemble member, as shown in Figures 1b and 1c. Even more encouraging is that the time length of useful prediction is 20 (22) days in terms of the criterion defined by the RMSE (MSSS), which is slightly greater than the time length of the COR definition. Recently, Neena et al. (2014) estimated MJO predictability at 20-30 and 35-45 days, based on a single member and the ensemble mean, respectively. Our results reflect their conclusion well and demonstrate further that a well-perturbed ensemble can greatly improve the prediction skill of the MJO.

    Figure 4. Zonal-vertical structure patterns of the equatorial specific humidity averaged at (10°S, 10°N), where the red lines in each panel are the zonal structure patterns of the equatorial precipitation averaged at (10°S, 10°N), all regressed by the index of tropical Indian Ocean precipitation averaged over (5°S-5°N, 90-100°E) for (a) ERA-Interim, (b) NDG.RPLC, (c) NDG.UVT, and (d)NDG.UVTQ fields in 2014.

    The seasonality of the skill scores of the MJO prediction is examined in Figure 2. There is a clear seasonal variation in the COR skill that is beyond 0.8, with the higher COR scores during boreal winter and the lower scores during summer. However, in contrast, the lead days of useful MJO prediction show no clear seasonality, being beyond 20 days during the months from March through October, while being much shorter in February, November, and December. Note that the variation in MJO prediction skill with the calendar months is not consistent with other studies, e.g. Raishid et al.(2011) showed higher skill scores in winter but lower ones in summer. This may imply model dependence,and requires further clarification.

    Figure 3 presents the dependence of the COR skill scores on the different initial MJO phases. It is clear that the COR scores in terms of the values beyond 0.5 are much larger in phases 1, 3, 5, and 8, and relatively smaller in phases 2,4, 6, and 7, which suggests model dependence. This result indicates that the prediction is better when the MJO is initiated in the eastern Indian Ocean and western Pacific, but worse when initiated in the Maritime Continent, western Indian Ocean, and other regions.

    The ensemble method is always important in improving prediction skill and reducing prediction error, particularly for MJO prediction. Comparisons of the prediction skill scores clearly show that the ensemble prediction based on the different initialization schemes is superior to the individual predictions, presenting great improvement in MJO prediction within IMPRESS. More importantly,the improvement in MJO prediction skill mostly appears after 10 forecast lead days, indicating great potential of the new ensemble approach in improving the extended-range forecasting level. Note, however, that this ensemble has only a few members. Thus, increasing the ensemble size may potentially increase the prediction skill and extend the length of useful prediction.

    Summary and discussion

    The MJO dominates the variability of the tropical intraseasonal timescale and prominently impacts the climate in the tropics and extratropics. At present, international efforts regarding MJO prediction are made through the use of fully coupled climate models because the air-sea coupling in these models can improve the simulation and prediction skill of the MJO through the two-way feedback between the MJO-related convection and sea surface temperature. In this paper, based on the ISV/MJO monitoring and prediction system (IMPRESS) at the BCC, significant progress in MJO prediction using BCC-CSM1.1(m)is presented; specifically, through the development of three different initialization schemes and their use in a new ensemble approach. The results show that IMPRESS is able to predict the MJO signal well and produce useful prediction skill, albeit this skill is sensitive to the initialization scheme used to some degree. In particular, the ensemble mean, based simply on the three initialization schemes, can significantly improve the MJO prediction skill. That is, the duration of useful MJO prediction can reach about 20 days, as comprehensively measured by different skill scores, i.e., a COR score beyond 0.5, a RMSE lower than1.414, and a MSSS greater than 0. Also, the MJO prediction skill shows distinct dependences on both the initial calendar month and the initial MJO phase. However,the sample size used in this study was not large enough for clarifying such dependences.

    The fact that the performance of MJO prediction was clearly sensitive to the initialization scheme in the model guided us to propose a new ensemble approach for MJO prediction in the model. We also noted the dependence of the model initial values on the different initialization schemes, as shown in Figure 4, for example. The moisture structures that are initialized in terms of the different schemes display large differences compared to each other as well as to the observation, reflecting great uncertainty in the initial values of the model. It has been shown in previous studies that moisture plays a critical role in MJO propagation (Jiang et al. 2004; Hsu and Li 2012) and initiation (Zhao et al. 2013; Hsu et al. 2014;Li et al. 2015). Therefore, a superior approach might be to perturb the model initialization scheme for generating good perturbations of the ensemble. Compared to Neena et al. (2014.), the valid prediction length of a single member provided in this study is quite close to their estimation (20-30 days); whereas, that of the ensemble mean is only about 20 days, which is much shorter than their estimation (35-45 days). This implies that further improvements in the ensemble approach for MJO prediction may contribute to more skillful MJO forecasts within IMPRESS.

    Acknowledgements

    This work was jointly supported by the National Basic Research Program of China (973 Program, Grant No. 2015CB453203),the China Meteorological Special Project (Grant No. GYHY201406022), and the LCS/CMA Open Funds for Young Scholars (2014).

    References

    Dee, D. P., S. M. Uppala, A. J. Simmons, et al. 2011. “The ERAInterim reanalysis: Configuration and performance of the data assimilation system.” Quarterly Journal of the Royal Meteorological Society 137: 553-597.

    Fu, X. H., J. Y. Lee, P. C. Hsu, et al. 2013. “Multi-model MJO forecasting during DYNAMO/CINDY period.” Climate Dynamics 41: 1067-1081.

    Hsu, P.-C., and T. Li. 2012. “Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian Oscillation.” Journal of Climate 25 (14): 4914-4931.

    Hsu, P.-C., T. Li, and H. Murakami. 2014. “Moisture asymmetry and MJO eastward propagation in an aqua-planet general circulation model.” Journal of Climate 27: 8747-8760.

    Hudson, D., A. G. Marshall, Y. H. Yin, et al. 2013. “Improving Intraseasonal Prediction with a New Ensemble Generation Strategy.” Monthly Weather Review 141: 4429-4449.

    Hung, M. P., J. L. Lin, W. Wang, et al. 2013. “MJO and convectively coupled equatorial waves simulated by CMIP5 climate models.” Journal of Climate 26: 6185-6214.

    Jia, X., Y. Yuan, F. Ren, et al. 2012. “The real-time monitoring and prediction operation in NCC.” Meteorological Monthly 38 (4): 425-431. (in Chinese).

    Jiang, X., T. Li, and B. Wang. 2004. “Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation.” Journal of Climate 17: 1022-1039.

    Kang, I. S., and H. M. Kim. 2010. “Assessment of MJO predictability for boreal winter with various statistical and dynamical models.” Journal of Climate 23: 2368-2378.

    Kang, I. S., P. H. Jang, and M. Almazroui. 2014. “Examination of multi-perturbation methods for ensemble prediction of the MJO during boreal summer.” Climate Dynamics 42: 2627-2637.

    Krishnamurti, T. N., X. Jishan, H. S. Bedi, K. Ingles, and D. Oosterhof. 1991. “Physical initialization for numerical weather prediction over the tropics.” Tellus 43A: 53-81.

    Li, T. 2014. “Recent advance in understanding the dynamics of the Madden-Julian oscillation.” Journal of Meteorological Research 28 (1): 1-33.

    Li, T., C. Zhao, P.-C. Hsu, and T. Nasuno. 2015. “MJO Initiation Processes over the Tropical Indian Ocean during DYNAMO/ CINDY2011.” Journal of Climate 28: 2121-2135.

    Liebmann, B., and C. A. Smith. 1996. “Description of a complete(interpolated) outgoing longwave radiation dataset.” Bulletin of the American Meteorological Society 77: 1275-1277.

    Lin, H., G. Brunet, and J. Derome. 2008. “Forecast skill of the Madden-Julian oscillation in two Canadian atmospheric models.” Monthly Weather Review 136: 4130-4149.

    Ling, J., P. Bauer, P. Bechtold, et al., 2015. Global vs. Local MJO Forecast Skill of the ECMWF model during DYNAMO. Monthly Weather Review, 142(6), 2228-2247.

    Madden, R. A., and P. R. Julian. 1971. “Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific.” Journal of the Atmospheric Sciences 28: 702-708.

    Madden, R. A., and P. R. Julian. 1972. “Description of globalscale circulation cells in the tropics with a 40-50 day period.”Journal of the Atmospheric Sciences 29: 1109-1123.

    Neena, J. M., J. Y. Lee, D. Waliser, et al. 2014. “Predictability of the Madden-Julian oscillation in the intraseasonal variability hindcast experiment (ISVHE).” Journal of Climate27: 4531-4543.

    Seo, K.-H., and W. Wang. 2010. “The Madden-Julian oscillation simulated in the NCEP Climate Forecast System model: the importance of stratiform heating.” Journal of Climate 23: 4770-4793.

    Rashid, H. A., H. H. Hendon, M. C. Wheeler, et al. 2011. “Prediction of the Madden-Julian oscillation with the POAMA dynamical prediction system.” Climate Dynamics 36: 649-661.

    Ren, H.-L., J. Wu, C. Zhao, et al. 2015. “Progresses of MJO prediction researches and developments.” Journal of Applied Meteorology and Science 26 (6): 658-668. doi:10.11898/1001-7313.201506. (in Chinese).

    Subramanian, A. C., and G. J. Zhang. 2014. “Diagnosing MJO hindcast biases in NCAR CAM3 using nudging during the DYNAMO field campaign.” Journal of Geophysical Research: Atmospheres 119 (12): 7231-7253. doi:10.1002/2013JD021370.

    Vitart, F. 2014. “Evolution of ECMWF sub-seasonal forecast skill scores.” Quarterly Journal of the Royal Meteorological Society 140 (683): 1889-1899. doi:10.1002/qj.2256.

    Vitart, F., A. Leroy, and M. C. Wheeler. 2010. “A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the southern hemisphere.” Monthly Weather Review 138: 3671-3682.

    Vitart, F., S. Woolnough, M. A. Balmaseda, and A. M. Tompkins. 2007. “Monthly Forecast of the Madden-Julian Oscillation Using a Coupled GCM.” Monthly Weather Review 135: 2700-2715.

    Wang, W. Q., P. H. Jang, and M. Almazroui. 2014. “Examination of multi-perturbation methods for ensemble prediction of the MJO during boreal summer.” Climate Dynamics 42: 2627-2637.

    Wheeler, M. C., and H. H. Hendon. 2004. “An all-season realtime multivariate MJO index: Development of an index for monitoring and prediction.” Monthly Weather Review 132: 1917-1932.

    Wu, T., L. Song, W. Li, et al. 2014. “An overview of BCC climate system model development and application for climate change studies.” Journal of Meteorology Research 28 (1): 34-56.

    Zhang, C., 2005: Madden-Julian oscillation. Reviews of Geophysics., 43, RG2003, doi:10.1029/2004RG000158.

    Zhang, C. 2013. “Madden-Julian oscillation: bridging weather and climate.” Broad Area Maritime Surveillance 1849-1870.

    Zhao, C.-B., T. Li, and T. Zhou. 2013. “Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean.” Journal of Climate 26: 291-307.

    Zhao, C., T. Zhou, L. Song, et al. 2014. “The boreal summer intraseasonal oscillation simulated by 4 Chinese AGCMs participated in CMIP5 project.” Advances in Atmospheric Sciences 31: 1167-1180.

    Zhao, C., H.-L. Ren, L. Song, et al., 2015: Madden-Julian oscillation simulated in BCC climate models. Dynamics of Atmospheres and Oceans., 10.1016/j.dynatmoce.2015.10.004.

    13 August 2015

    CONTACT Ren Hong-Li renhl@cma.gov.cn

    This article was originally published with errors. This version has been corrected. Please see Erratum (http://dx.doi.org/10.1080/16742834.2015.1132989).

    ? 2015 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    時效擾動氣候
    Bernoulli泛函上典則酉對合的擾動
    (h)性質及其擾動
    瞧,氣候大不同
    氣候變暖會怎樣?
    J75鋼的時效處理工藝
    小噪聲擾動的二維擴散的極大似然估計
    一種新型耐熱合金GY200的長期時效組織與性能
    上海金屬(2016年3期)2016-11-23 05:19:47
    環(huán)保執(zhí)法如何把握對違法建設項目的追責時效?
    用于光伏MPPT中的模糊控制占空比擾動法
    電源技術(2015年11期)2015-08-22 08:50:38
    X80管線鋼的應變時效行為研究
    上海金屬(2014年1期)2014-12-18 06:51:59
    欧美成人午夜精品| 在线观看免费日韩欧美大片| 精品卡一卡二卡四卡免费| 国产一区二区在线观看av| 欧美激情极品国产一区二区三区| 建设人人有责人人尽责人人享有的| 一级片'在线观看视频| 国产成人一区二区在线| 亚洲欧美清纯卡通| 日本wwww免费看| 国产欧美亚洲国产| 国产精品麻豆人妻色哟哟久久| 国产精品免费视频内射| 国精品久久久久久国模美| 自拍欧美九色日韩亚洲蝌蚪91| cao死你这个sao货| 国产av一区二区精品久久| 狠狠精品人妻久久久久久综合| 侵犯人妻中文字幕一二三四区| 午夜福利影视在线免费观看| 国产激情久久老熟女| 99精品久久久久人妻精品| 女人久久www免费人成看片| 无遮挡黄片免费观看| 欧美日韩av久久| 欧美大码av| 亚洲人成电影免费在线| 免费观看人在逋| avwww免费| 欧美亚洲日本最大视频资源| 国产一区二区 视频在线| 欧美人与性动交α欧美精品济南到| 五月开心婷婷网| 天天躁狠狠躁夜夜躁狠狠躁| 成年人午夜在线观看视频| 搡老乐熟女国产| 两性夫妻黄色片| 欧美激情极品国产一区二区三区| 国产一级毛片在线| 好男人视频免费观看在线| 伦理电影免费视频| 成人国产av品久久久| 国产精品久久久人人做人人爽| 九色亚洲精品在线播放| 中文字幕av电影在线播放| 亚洲国产中文字幕在线视频| 日本wwww免费看| 十八禁网站网址无遮挡| 丝袜在线中文字幕| 午夜福利影视在线免费观看| 亚洲精品久久久久久婷婷小说| 精品人妻在线不人妻| 成年人午夜在线观看视频| 99久久精品国产亚洲精品| 中文字幕色久视频| 最黄视频免费看| 汤姆久久久久久久影院中文字幕| 大香蕉久久网| 美女午夜性视频免费| 日韩中文字幕欧美一区二区 | 亚洲av成人不卡在线观看播放网 | 日日爽夜夜爽网站| 亚洲欧洲日产国产| 观看av在线不卡| 黄频高清免费视频| 久久av网站| 天天躁狠狠躁夜夜躁狠狠躁| 99热全是精品| 欧美久久黑人一区二区| 亚洲av男天堂| 久久天躁狠狠躁夜夜2o2o | 黑人欧美特级aaaaaa片| 久久久久国产一级毛片高清牌| 后天国语完整版免费观看| 久久中文字幕一级| 午夜福利一区二区在线看| 国产欧美日韩一区二区三区在线| www日本在线高清视频| 久久人人爽av亚洲精品天堂| 桃花免费在线播放| 成人手机av| 满18在线观看网站| 午夜福利,免费看| 亚洲人成网站在线观看播放| 女人高潮潮喷娇喘18禁视频| 又紧又爽又黄一区二区| 色播在线永久视频| 丰满迷人的少妇在线观看| 久久久久视频综合| 日本av免费视频播放| 久久99一区二区三区| 日韩熟女老妇一区二区性免费视频| 男女无遮挡免费网站观看| 婷婷成人精品国产| 欧美 亚洲 国产 日韩一| 青春草亚洲视频在线观看| 精品国产一区二区久久| 久久天躁狠狠躁夜夜2o2o | 黄色怎么调成土黄色| 国产男人的电影天堂91| 观看av在线不卡| 纵有疾风起免费观看全集完整版| 一本一本久久a久久精品综合妖精| 男女午夜视频在线观看| 亚洲熟女毛片儿| 亚洲欧美一区二区三区久久| 国产亚洲午夜精品一区二区久久| bbb黄色大片| 日韩av在线免费看完整版不卡| 免费高清在线观看日韩| 熟女av电影| 久久国产精品男人的天堂亚洲| 国产亚洲av片在线观看秒播厂| 亚洲精品国产区一区二| 下体分泌物呈黄色| 9191精品国产免费久久| 青青草视频在线视频观看| 日本猛色少妇xxxxx猛交久久| 桃花免费在线播放| 黄色片一级片一级黄色片| 亚洲五月婷婷丁香| 亚洲黑人精品在线| 肉色欧美久久久久久久蜜桃| 美女高潮到喷水免费观看| 欧美激情 高清一区二区三区| 国产xxxxx性猛交| videos熟女内射| 国产高清视频在线播放一区 | 国产深夜福利视频在线观看| 婷婷成人精品国产| 超碰97精品在线观看| 一级黄片播放器| 一边摸一边抽搐一进一出视频| 老司机亚洲免费影院| 老司机深夜福利视频在线观看 | 脱女人内裤的视频| 午夜久久久在线观看| 日本vs欧美在线观看视频| 香蕉国产在线看| 最近最新中文字幕大全免费视频 | 精品第一国产精品| 欧美国产精品一级二级三级| 亚洲国产欧美在线一区| 99久久精品国产亚洲精品| 久久这里只有精品19| 国产色视频综合| 日韩av不卡免费在线播放| 满18在线观看网站| 叶爱在线成人免费视频播放| www.999成人在线观看| 亚洲视频免费观看视频| 日韩电影二区| 亚洲国产毛片av蜜桃av| 午夜精品国产一区二区电影| 久久精品久久久久久久性| 亚洲精品久久午夜乱码| 欧美久久黑人一区二区| 亚洲情色 制服丝袜| 天堂8中文在线网| 看免费av毛片| 热re99久久国产66热| 咕卡用的链子| 久久精品亚洲熟妇少妇任你| 欧美人与性动交α欧美软件| 午夜91福利影院| 久久精品国产综合久久久| 一本综合久久免费| 99国产精品一区二区三区| 亚洲精品日本国产第一区| 亚洲午夜精品一区,二区,三区| 一边摸一边抽搐一进一出视频| 精品福利观看| 亚洲熟女毛片儿| 少妇粗大呻吟视频| 男人舔女人的私密视频| 成人国产一区最新在线观看 | 亚洲国产欧美一区二区综合| 国产福利在线免费观看视频| 肉色欧美久久久久久久蜜桃| 欧美日韩亚洲综合一区二区三区_| 成人亚洲欧美一区二区av| 色网站视频免费| 黑丝袜美女国产一区| 最近中文字幕2019免费版| 99国产综合亚洲精品| 精品国产一区二区三区久久久樱花| 国产成人影院久久av| 欧美日韩一级在线毛片| 亚洲av成人精品一二三区| 性少妇av在线| 啦啦啦在线观看免费高清www| www.精华液| 欧美久久黑人一区二区| 99国产精品99久久久久| 美国免费a级毛片| 最黄视频免费看| 国产精品 国内视频| 男女边摸边吃奶| 亚洲人成电影观看| 国产精品一国产av| 最黄视频免费看| 亚洲欧洲国产日韩| 又粗又硬又长又爽又黄的视频| 极品人妻少妇av视频| 成人黄色视频免费在线看| 99香蕉大伊视频| 日本午夜av视频| 在线看a的网站| 少妇裸体淫交视频免费看高清 | 99九九在线精品视频| 亚洲精品国产av成人精品| 免费日韩欧美在线观看| a 毛片基地| 国产亚洲一区二区精品| 18禁观看日本| 国产日韩欧美在线精品| 80岁老熟妇乱子伦牲交| 亚洲久久久国产精品| 亚洲国产中文字幕在线视频| 欧美另类一区| 亚洲,一卡二卡三卡| 在线 av 中文字幕| 亚洲熟女毛片儿| av线在线观看网站| 国产主播在线观看一区二区 | 女人精品久久久久毛片| 成年女人毛片免费观看观看9 | 天堂中文最新版在线下载| 男的添女的下面高潮视频| 亚洲激情五月婷婷啪啪| 91国产中文字幕| 亚洲人成电影免费在线| 99热国产这里只有精品6| 日韩一卡2卡3卡4卡2021年| 可以免费在线观看a视频的电影网站| 美女扒开内裤让男人捅视频| 久久ye,这里只有精品| 热re99久久国产66热| 九色亚洲精品在线播放| 国产欧美日韩一区二区三区在线| 91成人精品电影| 国产又色又爽无遮挡免| 色94色欧美一区二区| 男女下面插进去视频免费观看| 欧美精品一区二区免费开放| 操美女的视频在线观看| 国产精品三级大全| 午夜免费鲁丝| 久久精品国产综合久久久| 国产老妇伦熟女老妇高清| 又紧又爽又黄一区二区| 亚洲国产成人一精品久久久| 免费黄频网站在线观看国产| 另类亚洲欧美激情| 女性生殖器流出的白浆| 性色av乱码一区二区三区2| 又大又爽又粗| 视频区图区小说| 午夜激情久久久久久久| 国产成人av激情在线播放| 99九九在线精品视频| 又紧又爽又黄一区二区| 999久久久国产精品视频| avwww免费| 叶爱在线成人免费视频播放| 日韩av在线免费看完整版不卡| 婷婷色综合大香蕉| 欧美黄色淫秽网站| 色视频在线一区二区三区| 国产精品熟女久久久久浪| 亚洲精品在线美女| 97在线人人人人妻| 久久天堂一区二区三区四区| 黑丝袜美女国产一区| 国产黄色免费在线视频| 久久这里只有精品19| √禁漫天堂资源中文www| 高清不卡的av网站| 久久久久国产精品人妻一区二区| av天堂在线播放| a级片在线免费高清观看视频| 国产免费现黄频在线看| 伊人亚洲综合成人网| 日本av免费视频播放| 色婷婷av一区二区三区视频| 国产精品 欧美亚洲| 国产成人精品久久二区二区免费| a 毛片基地| 成年av动漫网址| 男女无遮挡免费网站观看| 欧美日本中文国产一区发布| 午夜福利一区二区在线看| 午夜福利免费观看在线| 亚洲av国产av综合av卡| 色婷婷av一区二区三区视频| 精品第一国产精品| 色婷婷久久久亚洲欧美| 999久久久国产精品视频| 午夜福利一区二区在线看| 亚洲人成77777在线视频| 久久性视频一级片| 国产精品免费大片| 天天躁日日躁夜夜躁夜夜| 国产一级毛片在线| 亚洲人成网站在线观看播放| 亚洲九九香蕉| 精品国产乱码久久久久久小说| svipshipincom国产片| 欧美乱码精品一区二区三区| 久久精品久久久久久久性| 国产日韩欧美在线精品| 女人久久www免费人成看片| 亚洲激情五月婷婷啪啪| 国产成人av教育| 国产片内射在线| 婷婷色综合www| 三上悠亚av全集在线观看| 另类亚洲欧美激情| 国产伦人伦偷精品视频| 操出白浆在线播放| 制服人妻中文乱码| 一边摸一边抽搐一进一出视频| 日本五十路高清| 国产在线免费精品| 久久精品亚洲av国产电影网| 国产精品免费大片| 亚洲自偷自拍图片 自拍| 久久人人97超碰香蕉20202| av线在线观看网站| 亚洲视频免费观看视频| 男女下面插进去视频免费观看| 桃花免费在线播放| 美女福利国产在线| 欧美 日韩 精品 国产| 人妻一区二区av| 汤姆久久久久久久影院中文字幕| 色综合欧美亚洲国产小说| 欧美日韩国产mv在线观看视频| 午夜精品国产一区二区电影| 亚洲男人天堂网一区| a级毛片在线看网站| 自拍欧美九色日韩亚洲蝌蚪91| 一本大道久久a久久精品| 亚洲国产精品国产精品| 亚洲中文av在线| 午夜av观看不卡| 久久热在线av| 亚洲欧美激情在线| 免费看不卡的av| 麻豆av在线久日| √禁漫天堂资源中文www| 五月天丁香电影| 欧美精品高潮呻吟av久久| 一级毛片黄色毛片免费观看视频| 老司机午夜十八禁免费视频| 啦啦啦在线免费观看视频4| 啦啦啦啦在线视频资源| 亚洲视频免费观看视频| 高清黄色对白视频在线免费看| 精品一区二区三区四区五区乱码 | 美女国产高潮福利片在线看| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲综合一区二区三区_| 日韩制服骚丝袜av| 国产成人精品久久二区二区免费| 久久久久久人人人人人| 啦啦啦 在线观看视频| 欧美人与性动交α欧美精品济南到| 人人澡人人妻人| 国产亚洲av高清不卡| 亚洲精品久久成人aⅴ小说| 亚洲欧美精品自产自拍| 首页视频小说图片口味搜索 | 国产一卡二卡三卡精品| 久久天躁狠狠躁夜夜2o2o | 日本91视频免费播放| 久久中文字幕一级| 成人国语在线视频| 亚洲精品国产av成人精品| 免费黄频网站在线观看国产| 99国产综合亚洲精品| 老司机午夜十八禁免费视频| 中文字幕av电影在线播放| 美女视频免费永久观看网站| 欧美黑人欧美精品刺激| 香蕉国产在线看| 黄色a级毛片大全视频| 国产一级毛片在线| 日韩,欧美,国产一区二区三区| 久久精品亚洲av国产电影网| 黄片播放在线免费| 999久久久国产精品视频| 久久女婷五月综合色啪小说| 最黄视频免费看| 日韩 亚洲 欧美在线| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 女性被躁到高潮视频| 国产一区二区三区综合在线观看| 国产国语露脸激情在线看| 黄色视频在线播放观看不卡| 看免费成人av毛片| 欧美另类一区| 在线观看人妻少妇| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色毛片三级朝国网站| 国产真人三级小视频在线观看| 两人在一起打扑克的视频| 女性被躁到高潮视频| 91麻豆精品激情在线观看国产 | 亚洲精品日本国产第一区| 欧美97在线视频| 国产成人影院久久av| 91精品国产国语对白视频| 亚洲男人天堂网一区| 国产成人欧美在线观看 | 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 老汉色av国产亚洲站长工具| 99热国产这里只有精品6| 99久久99久久久精品蜜桃| 国产精品麻豆人妻色哟哟久久| 男的添女的下面高潮视频| 丰满迷人的少妇在线观看| 999久久久国产精品视频| 一级毛片黄色毛片免费观看视频| www.精华液| 妹子高潮喷水视频| videosex国产| 国产精品人妻久久久影院| 久热爱精品视频在线9| 十八禁网站网址无遮挡| 操美女的视频在线观看| a级毛片黄视频| 国产又色又爽无遮挡免| 欧美成狂野欧美在线观看| 久久精品久久精品一区二区三区| 老熟女久久久| 亚洲av日韩在线播放| 丰满迷人的少妇在线观看| 好男人电影高清在线观看| 天堂中文最新版在线下载| 国产真人三级小视频在线观看| 国产日韩欧美亚洲二区| 人成视频在线观看免费观看| 日本午夜av视频| 欧美乱码精品一区二区三区| 国产淫语在线视频| 嫁个100分男人电影在线观看 | 午夜精品国产一区二区电影| 欧美日韩亚洲综合一区二区三区_| www.精华液| 蜜桃国产av成人99| 99精国产麻豆久久婷婷| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 国产高清不卡午夜福利| 大片电影免费在线观看免费| 国产日韩欧美视频二区| 黄色视频不卡| 女人精品久久久久毛片| 欧美日韩视频高清一区二区三区二| 亚洲伊人色综图| 亚洲激情五月婷婷啪啪| 高清不卡的av网站| 天天影视国产精品| 中文欧美无线码| 91九色精品人成在线观看| 国产av一区二区精品久久| 亚洲天堂av无毛| 热99国产精品久久久久久7| 高清视频免费观看一区二区| 成人国产av品久久久| 在线观看一区二区三区激情| 亚洲人成电影观看| 国产在视频线精品| 久久女婷五月综合色啪小说| 免费一级毛片在线播放高清视频 | 2018国产大陆天天弄谢| 丝袜在线中文字幕| 欧美精品一区二区免费开放| 一级黄色大片毛片| 交换朋友夫妻互换小说| www日本在线高清视频| 久久99一区二区三区| 老司机深夜福利视频在线观看 | 免费观看人在逋| 深夜精品福利| 国产欧美亚洲国产| 少妇裸体淫交视频免费看高清 | 国产精品 国内视频| 午夜福利在线免费观看网站| 欧美亚洲 丝袜 人妻 在线| www.精华液| 婷婷色av中文字幕| avwww免费| 欧美xxⅹ黑人| 少妇人妻久久综合中文| 咕卡用的链子| 久久狼人影院| 国产成人一区二区三区免费视频网站 | 午夜日韩欧美国产| 女警被强在线播放| 天天躁日日躁夜夜躁夜夜| 亚洲第一av免费看| www.999成人在线观看| 中文字幕人妻熟女乱码| 欧美日韩国产mv在线观看视频| 18禁国产床啪视频网站| 亚洲国产av影院在线观看| 国产视频一区二区在线看| 国产精品av久久久久免费| 久久国产精品人妻蜜桃| 亚洲第一av免费看| 18禁黄网站禁片午夜丰满| 欧美日韩黄片免| 这个男人来自地球电影免费观看| 女性被躁到高潮视频| 久久中文字幕一级| netflix在线观看网站| 久久国产精品大桥未久av| 咕卡用的链子| 大陆偷拍与自拍| 9191精品国产免费久久| 99精国产麻豆久久婷婷| 日本欧美国产在线视频| 欧美在线一区亚洲| 一本综合久久免费| 大香蕉久久网| 国产精品一区二区免费欧美 | 久久人人97超碰香蕉20202| 最新的欧美精品一区二区| 欧美人与性动交α欧美软件| 九草在线视频观看| 久久影院123| av欧美777| 首页视频小说图片口味搜索 | 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 五月开心婷婷网| 青青草视频在线视频观看| 欧美黑人精品巨大| 成人国语在线视频| 伊人久久大香线蕉亚洲五| 中文欧美无线码| 一二三四在线观看免费中文在| 免费观看av网站的网址| 国产成人精品久久二区二区免费| 亚洲成av片中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 在线观看人妻少妇| 久久这里只有精品19| 每晚都被弄得嗷嗷叫到高潮| 超色免费av| 狂野欧美激情性bbbbbb| 国产福利在线免费观看视频| 手机成人av网站| 日韩大码丰满熟妇| 久久久精品区二区三区| av福利片在线| 极品少妇高潮喷水抽搐| 日韩制服骚丝袜av| 午夜精品国产一区二区电影| 日本av免费视频播放| 亚洲成人免费电影在线观看 | 2021少妇久久久久久久久久久| 国产亚洲欧美在线一区二区| 亚洲欧美日韩高清在线视频 | av一本久久久久| h视频一区二区三区| 色综合欧美亚洲国产小说| 久久久国产欧美日韩av| av片东京热男人的天堂| 日韩制服丝袜自拍偷拍| 亚洲人成电影免费在线| 蜜桃国产av成人99| 国产一区二区三区av在线| 国产精品一二三区在线看| 久久精品成人免费网站| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品麻豆人妻色哟哟久久| 99久久精品国产亚洲精品| 乱人伦中国视频| 亚洲国产av新网站| 亚洲图色成人| 精品一区二区三区四区五区乱码 | 欧美人与善性xxx| 久久久久久久久免费视频了| 免费在线观看完整版高清| 久久久久精品国产欧美久久久 | 欧美精品啪啪一区二区三区 | 国产野战对白在线观看| 日本vs欧美在线观看视频| 人人妻,人人澡人人爽秒播 | 日本av手机在线免费观看| www.999成人在线观看| xxxhd国产人妻xxx| 在线天堂中文资源库| 国精品久久久久久国模美| 黄色视频不卡| 国产免费视频播放在线视频| 美女高潮到喷水免费观看| 精品高清国产在线一区| 国产精品一区二区在线观看99| 国产成人精品久久二区二区免费| 午夜福利在线免费观看网站| 午夜91福利影院| 少妇裸体淫交视频免费看高清 | 伦理电影免费视频| 91麻豆精品激情在线观看国产 | 欧美黄色片欧美黄色片| 我的亚洲天堂| 黄色一级大片看看| 大片免费播放器 马上看| 99精国产麻豆久久婷婷|