• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unrealistic treatment of detrained water substance in FGOALS-s2 and its influence on the model's climate sensitivity

    2016-11-23 01:12:56HEBian
    關鍵詞:水云水球對流

    HE Bian

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China;bKey Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

    Unrealistic treatment of detrained water substance in FGOALS-s2 and its influence on the model's climate sensitivity

    HE Biana,b

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China;bKey Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

    Based on a series of aqua-planet and air-sea coupled experiments, the influence of unrealistic treatment of water substance in the Flexible Global Ocean-Atmosphere-Land System Model,spectral version 2 (FGOALS-s2), on the model's climate sensitivity is investigated in this paper. Because the model does not adopt an explicit microphysics scheme, the detrained water substance from the convection scheme is converted back to the humidity. This procedure could lead to an additional increase of water vapor in the atmosphere, which could strengthen the model's climate sensitivity. Further sensitivity experiments confirm this deduction. After removing the water vapor converted from the detrained water substance, the water vapor reduced significantly in the upper troposphere and the high clouds also reduced. Quantitative calculations show that the water vapor reduced almost 10% of the total water vapor, and 50% at 150 hPa, when the detrained water substance was removed, contributing to the 30% atmospheric surface temperature increase. This study calls for an explicit microphysics scheme to be introduced into the model in order to handle the detrained water vapor and thus improve the model's simulation skill.

    ARTICLE HISTORY

    FGOALS-s2; climate

    sensitivity; cloud radiation;global warming

    在CMIP5的歷史情景試驗中,F(xiàn)GOALS-s2模擬的地表溫度趨勢遠大于觀測和其他氣候系統(tǒng)模式,表現(xiàn)出較高的氣候敏感性。本文通過一系列水球試驗和海氣耦合試驗,研究了FGOALS-s2大氣分量模式對流-輻射過程中對流參數(shù)化卷出云水云冰的處理問題,發(fā)現(xiàn)了模式診斷出的次網(wǎng)格尺度的云水云冰輻射效應過強,導致熱帶地區(qū)對流層高層水汽反饋和長波云輻射反饋過程偏強,是模式高敏感性的主要原因。文章強調(diào)了需要引入顯式的云微物理過程來克服這種不確定性。

    1. Introduction

    Cloud formation processes span scales from the sub-micrometer scale of cloud condensation nuclei, to cloud systems of up to thousands of kilometers. This range of scales is impossible to resolve in climate models (IPCC 2013), and various clouds schemes are applied to simulate the cloud macro- and micro-properties and the associated radiative forcings. Despite decades of advancement, cloud parameterization schemes, especially microphysics schemes,still contain many uncertainties, which lead to the largest uncertainty in simulating cloud feedbacks and to a wide range of climate sensitivity in state-of-the-art climate models (Wang et al. 1976; Hall and Manabe 1999; Kristin et al. 1999; Schneider et al. 1999; Gettelman et al. 2012).

    The Flexible Global Ocean-Atmosphere-Land System Model, spectral version 2 (FGOALS-s2), is a climate system model developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP)(Bao et al. 2010, 2013) in which the atmospheric model Spectral Atmosphere Model developed at LASG/IAP, version 2 (SAMIL2) is applied. SAMIL2 uses a diagnostic method to estimate the effective radius of cloud droplets for both the liquid and ice phase, which is based on the detrained liquid water content in the convection scheme and assumed droplet concentrations in the cloud (Martin et al. 1994). Because the model does not employ an explicit microphysics scheme to simulate cloud condensation nuclei and the associated radiative forcings, the detrained water substance (cloud water and cloud ice) in the convection scheme is evaporated back to the water vapor in the atmosphere after deep convection occurs. This treatment will potentially cause excessive water vapor in the upper troposphere and lead to an excessively strong water vapor feedback and high climate sensitivity.

    Recently, two studies (Zhou et al. 2013; Chen et al. 2014)have revealed that FGOALS-s2 shows quite high climate sensitivity in response to increasing greenhouse gases(GHGs) in both historical simulations and future projections, which may be related to the excessively strong water vapor feedback in the model. Whether or not the unrealistic treatment of converting detrained water substance to the water vapor is related to the model's high climate sensitivity remains unclear. Therefore, in this study, based on a series of aqua-planet experiments and an air-sea coupled experiment, the influence of the unrealistic treatment of detrained water vapor in SAMIL2 on the radiation forcing is investigated. The contribution of the unrealistic treatment to the model's high climate sensitivity is measured quantitatively. Additionally, an eventual solution to the high climate sensitivity of FGOALS-s2 is also discussed. The remainder of the paper is organized as follows: Section 2 introduces the datasets, the model configurations, and the experimental design. Section 3 reports the results. Section 4 presents the final conclusions and a discussion.

    2. Datasets and model configuration

    2.1. Datasets

    The Goddard Institute for Space Studies (GISS) Surface Temperature Analysis dataset is used for observation in the present study (Hansen et al. 2010). This dataset is on a 2° × 2° grid and covers the period 1880 to the present day with monthly mean anomalies. More details of the documentation of the datasets can be found at http://data.giss.nasa.gov/ gistemp/.

    The monthly mean outputs of atmospheric surface temperature (AST) of 24 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models (ACCESS1-0, BCC-CSM1-1,CanESM2, CCSM4, CESM1-CAM5, CMCC-CM, CNRM-CM5,CSIRO-Mk3-6-0, EC-EARTH, FGOALS-g2, GFDL-CM3, GFDLESM2G, GISS-E2-H, GISS-E2-R, HadGEM2-AO, HadGEM2-ES,INMCM4, IPSL-CM5A-LR, MIROC5, MIROC-ESM, MPI-ESM-LR,MPI-ESM-MR, MRI-CGCM3, and NorESM1_M) are used to obtain the multi-model ensemble (MME). The datasets covers the period from 1880 to 2005 and are derived from the website http://pcmdi9.llnl.gov/esgf-web-fe/.

    2.2. Model configuration

    The climate system model FGOALS-s2 is composed of four individual components: SAMIL2 (Wu et al. 1996; Bao et al. 2010); version 2 of the LASG/IAP Climate System Ocean Model, LICOM2 (Liu et al. 2013); version 3 of the Community Land Model, CLM3 (Oleson et al. 2004); and version 5 of the Community Sea Ice Model, CSIM5 (Briegleb et al. 2004). The exchanged fluxes among these components are connected by the National Center for Atmospheric Research(NCAR) coupler module 6 (Collins et al. 2006). The basic performances of the models are described in Bao et al.(2013).

    The atmospheric model SAMIL2 has an R42 horizontal resolution (2.81° longitude × 1.66° latitude) with 26 vertical layers in a σ-p hybrid coordinate, extending from the surface to 2.19 hPa. The mass flux cumulus parameterization of Tiedtke (1989) is used to calculate convective precipitation. The cloud scheme is a diagnostic method based on relative humidity (RH), vertical velocity, atmospheric stability, and the convective mass flux associated with parameterized moist convection (Slingo 1987; Kiehl et al. 1996), while a statistic low cloud method is also applied(Dai et al. 2004). A nonlocal scheme is employed in the boundary layer to calculate the eddy-diffusivity profile and turbulent velocity scale, and the model incorporates nonlocal transport effects for heat and moisture (Holtslag and Boville 1993). The radiation scheme employed is an updated Edwards-Slingo scheme (Edwards and Slingo 1996; Sun and Rikus 1999).

    2.3. Experimental design

    To investigate the possible influence of the unrealistic treatment of detrained water substance on the model's climate sensitivity, a series of sensitivity experiments were designed, as summarized in Table 1. For simplicity,the detrained water substance in the convection scheme is defined as Δqcl. An aqua-planet control run was performed first, with the default SAMIL2 physics configuration(CON_A) and with the sea surface temperature (SST) forced as in Equation (1):

    Table 1.Experimental design.

    Figure 1.(a) Cross section of water vapor difference (units: g kg-1) between RMQ_A and CON_A. (b) As in (a) but for the water vapor percentage (units: %). (c) Cross section of water vapor percentage change (units: %) between CON_B and CON_A, and (d) between RMQ_B minus RMQ_A.

    whereλdenotes the longitude and ? denotes the latitude. The Maximum SST was 27 °C at the equator. Poleward of both 60°N and 60°S the SST remained at 0 °C with sea-ice switched off. More details of the experimental settings can be found in Neale and Hoskins (2001). The sensitivity run named RMQ_A removed the Δqclin the model's physics but kept other forcings the same as in CON_A. The influences of theΔqclon the model's climate sensitivity were investigated by conducting additional experiments,CON_B and RMQ_B, which were the same as CON_A and RMQ_A, respectively, but a uniform 4 °C addition on the SST for the perturbation. Thus, quantitative measurement of the model's climate sensitivity parameter could be calculated from Equation (2). Lastly, the possible influence ofΔqclon the evolution of AST in the fully coupled model FGOALS-s2 was estimated. The historical run (CON_CP)was performed from 1850 to 2005, while a sensitivity run(RMP_CP) was performed with the same configuration as CON_CP but with Δqclremoved from the model's physical package.

    3. Results

    The influence of detrained water substance in the convection scheme on the total water vapor simulation in the model is first examined. The water vapor differences between RMQ_A and CON_A for the mass ratio unit are shown in Figure 1a, and for the percentage in Figure 1b. It is clear that once the Δqclhas been removed the water vapor decreases significantly throughout the troposphere,especially in the tropics (Figure 1a). Because the radiative effect of absorption by water vapor is roughly proportional to the logarithm of its concentration (IPCC 2013),the change of water vapor in percentage terms is shownin Figure 1b, revealing that the water vapor percentage decreases significantly in the upper troposphere, which would weaken the greenhouse effect from water vapor(Yang and Tung 1998; Minschwaner and Dessler 2004).

    Figure 2.Zonal mean value of (a) clear-sky outgoing longwave radiation (units: W m-2), (b) 150 hPa relative humidity (units: %), (c)500 hPa vertical velocity (units: 100 × Pa s-1), (d) high cloud fraction (units: %), (e) longwave cloud radiation forcing (units: W m-2), and(f) shortwave cloud radiation forcing (units: W m-2), in the four aqua-planet experiments.

    Next the change in the vertical water vapor percentage is examined under the uniform +4 °C warming by comparing CON_B minus CON_A and RMQ_B minus RMQ_A (Figures 1c and 1d). When the increase in upper tropospheric water vapor still contains the amount ofΔ qcl(Figure 1c), the ratio of the increase of water vapor shows a maximum over the tropics at 100-200 hPa, which exceeds 180%. However, when the Δqclis removed in the second group (RMQ_B minus RMQ_A), the simulated water vapor change in the upper troposphere weakens significantly(Figure 1d). The percentage of increased water vapor in the upper troposphere reduces to 150% over the tropics, while remaining almost unchanged at other latitudes. The results of the global mean water vapor change and the vertical distribution indicate that the Δqclaccounts for about 10% of the total water vapor and is more sensitive in the upper troposphere where the convection occurs.

    Because the water vapor decreases significantly in the upper troposphere, its own radiative forcing and the associated cloud radiation forcing (CRF) will both change. These two kinds of radiative forcing changes are estimated in the following paragraph. The longwave CRF (LWCRF) is defined as the difference between clear-sky net upward longwave flux and upward longwave flux at the top of the atmosphere (TOA). The shortwave CRF (SWCRF) is defined as the difference between net downward shortwave fluxes and clear-sky net downward shortwave fluxes.

    Because the GHGs are all prescribed in the model,except the water vapor, the change of the clear-sky longwave radiation (LWCS) is mainly induced by the changes of water vapor. It shows clearly that LWCS increases significantly when Δqclis removed (Figure 2a), and the difference of LWCS between CON_B and RMQ_B is larger when the surface is warming.

    The zonal mean RH at 150 hPa is shown in Figure 2b,revealing clearly that the RH decreases from about 80% in CON_A and CON_B to 50% in RMQ_A and RMQ_B. Because the model diagnoses the cloud fraction based on the air temperature and RH (Kiehl et al. 1996), Figure 2b also indicates that the removal of the radiative effect fromΔqclwill largely reduce the generation of the high cloud fraction in the convective regions, as shown in Figure 2d, while the vertical ascending motion does not change (Figure 2c). Consequently, the LWCRF (Figure 2e) reduces significantly by about 10 W m-2in the tropics, where convection mainly occurs, while it changes little at other latitudes. This is quite different with the changes in SWCRF (Figure 2f).

    The combined radiative effect of theΔqclon the climate sensitivity can be quantitatively measured by calculating the climate sensitivity parameter. Following Cess et al. (1990), the climate sensitivity parameterλcan be expressed as

    where F and Q denote the global-mean emitted infrared and net downward solar fluxes at the TOA. Thus, ΔF and ΔQ represent the climate change TOA responses to the direct radiative forcing, which are impacted by climate feedback mechanisms.ΔTsdenotes the change in global-mean surface temperature.

    In the aqua-planet experiments, the change of surface temperature was equal to 4 °C in both CON_B minus CON_A (CON group) and RMQ_B minus RMQ_A (RMQ group). Therefore,λis determined by the change in the denominator on the right side of Equation (2). Equation (2)was calculated in both the CON and RMQ group, revealing λto be 0.65 °C m2W-1in CON and 0.44 °C m2W-1in RMQ.Compared to the results of Cess et al. (1990), in which a typicalλvalue of 0.5 °C m2W-1was shown, theλfor the CON group is too high. However, when theΔqclis removed in the model's physical package, theλshows a reasonable value that is close to Cess et al. (1990), indicating a reduction in the model's climate sensitivity. Therefore, from the aqua-planet sensitivity experiments, it is revealed that if the detrained water substance is converted back to water vapor, it can strengthen the water vapor feedback to increase the model's climate sensitivity.

    Lastly, the possible influence of Δqclon the evolution of AST is measured directly in the fully coupled model FGOALS-s2. The historical run (named RMQ_CP) was repeated in the same way as CON_CP (Table 1) but with the Δqclremoved from the model's physical package. The linear trends in the vertical water vapor percentage from 1880 to 2005 for CON_CP and RMQ_CP are shown in Figures 3a and 3b, respectively. The ratio of increased water vapor in the upper troposphere reduces to 20-25% in RMQ_CP(Figure 3b), less than CON_CP (Figure 3a) in which the ratio of increased water vapor is up to 40%. The trend in the absolute amount of water vapor at 150 hPa is 0.63 ppm/126 yr in RMQ_CP, reduced from 1.29 ppm/126 yr in CON_CP. The results indicate that the positive bias of water vapor in the upper troposphere is largely suppressed by removing Δqcl. It also indicates that the greenhouse effect due to water vapor is reduced in RMQ_CP, which will lead to a more realistic simulation in the evolution of global AST.

    Figure 3c shows the time series of the annual mean global AST evolution from 1880 to 2005 simulated by CON_CP, RMQ_CP, and the MME, and that observed. After reducing the Δqclin each model step, the evolution of global AST in RMQ_CP is lower than CON_CP and closer to the MME's results. The linear trend of AST during 1880 to 2005 is 1.32 °C/126 yr in RMQ_CP; compared to the 1.79 °C/126 yr in CON_CP, RMQ_CP reduces 30% of the global warming trend. Note that this linear trend is still larger than the MME value of 0.91 °C/126 yr and the observed value of 0.66 °C/126 yr, which demonstrates that the unrealistic treatment of the water substance in the model physics is not the only source of the model's high climate sensitivity. Other possible reasons are to be studied further.

    4. Summary and discussion

    This study investigates the influence of the unrealistic treatment of detrained water substance in SAMIL2 on the model's climate sensitivity, by carrying out a series of sensitivity experiments. Because the model does not adopt an explicit microphysics scheme, the detrained water vapor from the convection is converted back to the humidity. This procedure leads to an additional increase of water vapor in the upper troposphere, which could strengthen the model's climate sensitivity. Further sensitivity experiments show that the unrealistic treatment increases the water vapor content in the upper troposphere, leading to more high cloud and thus causing an increase in the cloud longwave radiative forcing. Quantitative calculations show that, after removing the detrained water substance in the model's physics, the climate sensitivity parameterλ reduces from 0.65 to 0.44 °C m2W-1. In the historical simulation, the water vapor reduces by almost 50% at 150 hPa when the detrained water substance is removed, contributing to the 30% AST increase.

    The present study suggests that it is necessary to implement a physical-based microphysics scheme in SAMIL2. This will mean that the detrained water substance can be directly handled, which is conducive to reducing the model's high climate sensitivity. In fact, the accurate treatment of clouds and their radiative properties should be widely considered as one of the most important issues facing global climate modeling (Hack 1998). While some of the changes in cloud, cloud water, cloud ice, and cloud distribution provide positive feedback, others provide negative feedback. Therefore, improving radiative effects of the cloud properties in FGOALS-s2 should be the primary approach to improving the model's simulation skill in the future.

    Acknowledgments

    The author would like to thank the anonymous reviewers for their constructive suggestions, which were indispensable for the improvement of the manuscript.

    Funding

    This work was jointly supported by the National Basic Research Program of China [grant number 2014CB953904], the National Natural Science Foundation of China [grant numbers 41405091 and 91337110], the Open Projects of the Key Laboratory of Meteorological Disaster of the Ministry of Education [grant number KLME1405], and the Strategic Leading Science Projects of the Chinese Academy of Sciences [grant number XDA11010402].

    References

    Bao, Q., P. F. Lin, T. J. Zhou, Y. M. Liu, Y. Q. Yu, G. X. Wu, B. He, et al. 2013. “The Flexible Global Ocean-Atmosphere-Land System Model, Spectral Version 2: FGOALS-s2.” Advances in Atmospheric Sciences 30: 561-576.

    Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou. 2010. “An Introduction to the Coupled Model FGOALS1.1-s and Its Performance in East Asia.” Advances in Atmospheric Sciences 27: 1131-1142. doi:10.1007/s00376-010-9177-1.

    Briegleb, B. P., W. H. Lipscomb, M. M. Holland, J. L. Schramm, R. E. Moritz. 2004. Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. NCAR Tech. Note NCAR/TN-463+STR, 70pp.

    Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, A. D. Del Genio,M. Deque, V. Dymnikov, et al. 1990. “Intercomparison and Interpretation of Climate Feedback Processes in 19 Atmospheric General Circulation Models.” Journal of Geophysical Research 10 (16): 601-615.

    Chen, X. L., T. J. Zhou, and Z. Guo. 2014. “Climate Sensitivities of Two Versions of FGOALS Model to Idealized Radiative Forcing.” Science China Earth Sciences 57 (6): 1363-1373.

    Collins, W. D., C. M. Bitz, M. L. Blackmon, G. B. Bonan, C. S. Bretherton, J. A. Carton, P. Chang, et al. 2006. “The Community Climate System Model Version 3 (CCSM3).” Journal of Climate 19: 2122-2143.

    Dai, F. S., R. C. Yu, X. H. Zhang, Y. Q. Yu. 2004. “A Statistical Lowlevel Cloud Scheme and its Tentative Application in a General Circulation Model.” Acta Meteorologica Sinica 62 (4): 385-394(in Chinese).

    Edwards, J. M., and A. Slingo. 1996. “Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-scale Model.” Quarterly Journal of the Royal Meteorological Society 122: 689-719.

    Gettelman, A., J. E. Kay, and K. M. Shell. 2012. “The Evolution of Climate Sensitivity and Climate Feedbacks in the Community Atmosphere Model.” Journal of Climate 25 (5): 1453-1469.

    Hack, J. J. 1998. “Sensitivity of the Simulated Climate to a Diagnostic Formulation for Cloud Liquid Water.” Journal of Climate 11: 1497-1515.

    Hall, A. M., and S. Manabe. 1999. “The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming.” Journal of Climate 12: 2327-2346.

    Hansen, J., R. Ruedy, M. Sato, and K. Lo. 2010. “Global Surface Temperature Change.” Reviews of Geophysics. 48 (4): RG4004. doi:10.1029/2010RG000345.

    Holtslag, A. A. M., and B. A. Boville. 1993. “Local Versus Nonlocal Boundary-layer Diffusion in a Global Climate Model.” Journal of Climate 6: 1825-1842.

    Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang. 2013. “The Baseline Evaluation of LASG/IAP Climate System Ocean Model(LICOM) Version 2.” Acta Meteorologica Sinica 26 (3): 318-329. doi:10.1007/s13351-012-0305-y.

    IPCC. 2013. “Summary for Policymakers.” In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner,M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, 3-32. Cambridge: Cambridge University Press. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch. 1996. Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420+STR. doi:10.5065/D6FF3Q99.

    Kristin, L. H., D. L. Hartmann, and S. A. Klein. 1999. “The Role of Clouds, Water Vapor, Circulation, and Boundary Layer Structure in the Sensitivity of the Tropical Climate.” Journal of Climate 12: 2359-2374.

    Martin, G. M., D. W. Johnson, and A. Spice. 1994. “The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds.” Journal of the Atmospheric Sciences 51 (13): 1823-1842.

    Minschwaner, K., and A. E. Dessler. 2004. “Water Vapor Feedback in the Tropical Upper Troposphere: Model Results and Observations.” Journal of Climate 17 (6): 1272-1282.

    Neale, R. B., and B. J. Hoskins. 2001. “A Standard Test for AGCMs Including Their Physical Parametrizations I: The Proposal.”Atmospheric science Letters 1 (2): 101-107.

    Oleson, K. W., M. L. David, G. B. Bonan, M. G. Flanner, E. Kluzek,P. J. Lawrence, S. Levis, et al. 2004. Technical Description of the Community Land Model (CLM). NCAR/TN-461+STR, 173pp.

    Schneider, E. K., B. P. Kirtman, and R. S. Lindzen. 1999.“Tropospheric Water Vapor and Climate Sensitivity.” Journal of the Atmospheric Sciences 56 (11): 1649-1658.

    Slingo, J. M. 1987. “The Development and Verification of a Cloud Prediction Scheme for the ECMWF Model.” Quarterly Journal of the Royal Meteorological Society 113: 899-927.

    Sun, Z. A., and L. Rikus. 1999. “Parametrization of Effective Sizes of Cirrus-cloud Particles and Its Verification Against Observations.” Quarterly Journal of the Royal Meteorological Society 125: 3037-3055.

    Tiedtke, M. 1989. “A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-scale Models.” Monthly Weather Review 117: 1779-1800.

    Wang, W. C., Y. L. Yung, A. A. Lacis, T. Mo, and J. E. Hansen. 1976.“Greenhouse Effects Due to Man-made Perturbations of Trace Gases.” Science 194: 685-690.

    Wu, G. X., H. Liu, and Y. C. Zhao. 1996. “A Nine-layer Atmospheric General Circulation Model and Its Performance.” Advances in Atmospheric Sciences 13: 1-18.

    Yang, H., and K. K. Tung. 1998. “Water Vapor, Surface Temperature,and the Greenhouse Effect - A Statistical Analysis of Tropical - Mean Data.” Journal of Climate 11: 2686-2697.

    Zhou, T. J., F. F. Song, and X. L. Chen. 2013. “Historical Evolution of Global and Regional Surface Air Temperature Simulated by FGOALS-s2 and FGOALS-g2: How reliable are the Model Results?” Advances in Atmospheric Sciences 30 (3): 638-657.

    18 May 2015 Accepted 20 July 2015

    CONTACT HE Bian heb@lasg.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    水云水球對流
    水球
    微波水云間
    保健與生活(2023年6期)2023-03-17 08:39:54
    好玩兒的太空水球實驗
    軍事文摘(2022年14期)2022-08-26 08:14:24
    齊口裂腹魚集群行為對流態(tài)的響應
    水云間
    “水球”實驗再次亮相“天宮課堂”
    古琴曲《瀟湘水云》的題解流變考
    藝術品鑒(2019年10期)2019-11-25 07:10:10
    胡忌先生讀《水云村稿》札記一則
    中華戲曲(2017年2期)2017-02-16 06:53:16
    水球比賽
    小學生導刊(2016年1期)2016-12-01 06:02:17
    基于ANSYS的自然對流換熱系數(shù)計算方法研究
    纵有疾风起免费观看全集完整版| 亚洲精品国产成人久久av| av免费在线看不卡| 欧美日韩国产mv在线观看视频 | 国产黄片美女视频| 国产一区二区三区av在线| xxx大片免费视频| 亚洲高清免费不卡视频| 亚洲精品国产av蜜桃| 亚洲欧美成人精品一区二区| 日产精品乱码卡一卡2卡三| 亚洲内射少妇av| 我要看黄色一级片免费的| 亚洲美女搞黄在线观看| 亚洲久久久国产精品| 这个男人来自地球电影免费观看 | 看非洲黑人一级黄片| 亚洲av电影在线观看一区二区三区| 毛片女人毛片| 高清在线视频一区二区三区| 你懂的网址亚洲精品在线观看| 99热国产这里只有精品6| 超碰av人人做人人爽久久| 国产中年淑女户外野战色| 精品一品国产午夜福利视频| 人妻夜夜爽99麻豆av| av免费在线看不卡| 亚洲精品日本国产第一区| 久久久a久久爽久久v久久| 免费av不卡在线播放| 3wmmmm亚洲av在线观看| 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 久久久久久久久久成人| 一级黄片播放器| av在线老鸭窝| 最近中文字幕2019免费版| 亚洲欧美日韩无卡精品| 超碰av人人做人人爽久久| 国产精品一二三区在线看| 蜜桃在线观看..| 亚洲激情五月婷婷啪啪| 2018国产大陆天天弄谢| 亚洲欧美日韩另类电影网站 | 我的女老师完整版在线观看| 国内精品宾馆在线| 午夜免费观看性视频| 我的老师免费观看完整版| 18禁裸乳无遮挡动漫免费视频| 欧美xxxx黑人xx丫x性爽| 蜜桃久久精品国产亚洲av| 国产成人精品福利久久| 欧美bdsm另类| 最后的刺客免费高清国语| 国产在线一区二区三区精| 亚洲色图av天堂| 男女下面进入的视频免费午夜| 国产av国产精品国产| 91精品国产九色| 欧美人与善性xxx| 亚洲精品,欧美精品| 18禁在线播放成人免费| 蜜桃久久精品国产亚洲av| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| 毛片一级片免费看久久久久| tube8黄色片| 永久网站在线| 国产亚洲最大av| 在线免费观看不下载黄p国产| 少妇的逼水好多| 亚洲av中文av极速乱| 久久久精品94久久精品| 国产无遮挡羞羞视频在线观看| 麻豆成人av视频| 国产午夜精品久久久久久一区二区三区| 99九九线精品视频在线观看视频| 国产亚洲一区二区精品| 亚洲经典国产精华液单| 中文精品一卡2卡3卡4更新| 色婷婷久久久亚洲欧美| 97超碰精品成人国产| 一区二区三区精品91| 欧美性感艳星| 国产精品蜜桃在线观看| 黄色一级大片看看| 国产精品人妻久久久影院| 99久国产av精品国产电影| 日本欧美视频一区| 我的老师免费观看完整版| 国产精品欧美亚洲77777| 97精品久久久久久久久久精品| 国产在线男女| 日本午夜av视频| 少妇猛男粗大的猛烈进出视频| 欧美成人精品欧美一级黄| 九草在线视频观看| 日韩中文字幕视频在线看片 | 国产黄频视频在线观看| 在线观看免费高清a一片| 老熟女久久久| 国产精品一区二区性色av| 国产精品欧美亚洲77777| 麻豆精品久久久久久蜜桃| 赤兔流量卡办理| 国产极品天堂在线| 久久精品久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 三级经典国产精品| 久久久久久久久大av| 2021少妇久久久久久久久久久| 国产淫语在线视频| 日本色播在线视频| 久久6这里有精品| 欧美成人午夜免费资源| 成人毛片a级毛片在线播放| 亚洲精品国产色婷婷电影| 狂野欧美白嫩少妇大欣赏| 国产精品不卡视频一区二区| 亚洲欧美成人综合另类久久久| 国产免费一区二区三区四区乱码| 联通29元200g的流量卡| 中文欧美无线码| 91在线精品国自产拍蜜月| 直男gayav资源| 成年美女黄网站色视频大全免费 | 久久久久久伊人网av| 毛片女人毛片| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片| 精品一区二区三区视频在线| 不卡视频在线观看欧美| 在线观看三级黄色| 国产精品久久久久久久久免| av天堂中文字幕网| 亚洲国产欧美在线一区| 国产精品久久久久久精品古装| 伦理电影大哥的女人| 久久久久久久久大av| 男人爽女人下面视频在线观看| 日韩在线高清观看一区二区三区| 少妇人妻 视频| 亚洲精品国产av成人精品| 大又大粗又爽又黄少妇毛片口| 亚洲精品自拍成人| 亚洲,一卡二卡三卡| 97在线人人人人妻| 国产黄色免费在线视频| 毛片一级片免费看久久久久| 在线观看免费视频网站a站| 国产亚洲5aaaaa淫片| 久久韩国三级中文字幕| 成年女人在线观看亚洲视频| 最新中文字幕久久久久| 51国产日韩欧美| 亚洲在久久综合| 精品久久久久久电影网| 99热6这里只有精品| 人妻制服诱惑在线中文字幕| 免费久久久久久久精品成人欧美视频 | 天堂俺去俺来也www色官网| 色综合色国产| 欧美另类一区| 涩涩av久久男人的天堂| 国产精品偷伦视频观看了| 美女内射精品一级片tv| 国产精品不卡视频一区二区| 日韩三级伦理在线观看| 少妇 在线观看| h视频一区二区三区| 少妇高潮的动态图| 国产精品久久久久久av不卡| 国产视频内射| 亚洲国产毛片av蜜桃av| 国产探花极品一区二区| 久久国产精品大桥未久av | 亚洲av综合色区一区| 夜夜爽夜夜爽视频| 亚洲欧美一区二区三区黑人 | 午夜福利高清视频| 免费不卡的大黄色大毛片视频在线观看| 美女福利国产在线 | 亚洲中文av在线| 成人黄色视频免费在线看| 亚洲精品国产成人久久av| 国产黄色视频一区二区在线观看| 欧美一级a爱片免费观看看| 插逼视频在线观看| 日日撸夜夜添| 一区二区三区乱码不卡18| 亚洲图色成人| 黄色日韩在线| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院入口| 老熟女久久久| 欧美日韩综合久久久久久| 亚洲综合色惰| 午夜福利影视在线免费观看| 新久久久久国产一级毛片| 成人亚洲欧美一区二区av| 日本wwww免费看| 少妇猛男粗大的猛烈进出视频| 亚洲av综合色区一区| 精品一品国产午夜福利视频| 永久免费av网站大全| 欧美精品国产亚洲| 在线免费十八禁| 美女中出高潮动态图| av在线蜜桃| 中文精品一卡2卡3卡4更新| 久久久久网色| 一级毛片aaaaaa免费看小| 欧美精品人与动牲交sv欧美| 国产亚洲午夜精品一区二区久久| 国产淫片久久久久久久久| 欧美97在线视频| 久久精品人妻少妇| 爱豆传媒免费全集在线观看| 国产精品女同一区二区软件| 久久久久精品性色| 一级毛片aaaaaa免费看小| 1000部很黄的大片| 又粗又硬又长又爽又黄的视频| 国产精品熟女久久久久浪| 成人一区二区视频在线观看| 我的老师免费观看完整版| 久久久精品94久久精品| 亚洲欧美中文字幕日韩二区| 成人一区二区视频在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产成人久久av| 性色av一级| 欧美激情国产日韩精品一区| 日韩中字成人| 国产免费一区二区三区四区乱码| 老女人水多毛片| 久久热精品热| 观看美女的网站| 国产深夜福利视频在线观看| 在线天堂最新版资源| 日日撸夜夜添| 国产精品伦人一区二区| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 日本-黄色视频高清免费观看| av在线播放精品| 午夜免费观看性视频| 亚洲国产av新网站| 妹子高潮喷水视频| 两个人的视频大全免费| 性色avwww在线观看| 亚洲无线观看免费| 国产精品爽爽va在线观看网站| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 久久精品久久久久久久性| 亚洲电影在线观看av| 黄色怎么调成土黄色| 美女中出高潮动态图| 99久久精品热视频| 国产69精品久久久久777片| 国产免费一级a男人的天堂| 六月丁香七月| 岛国毛片在线播放| 日韩成人av中文字幕在线观看| 亚洲三级黄色毛片| 日本wwww免费看| 色视频www国产| 国产免费福利视频在线观看| 午夜福利影视在线免费观看| 亚洲成人av在线免费| 日韩成人av中文字幕在线观看| 久久这里有精品视频免费| 高清日韩中文字幕在线| 精品亚洲乱码少妇综合久久| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 婷婷色综合www| 亚洲最大成人中文| 成人18禁高潮啪啪吃奶动态图 | 夜夜骑夜夜射夜夜干| 国产在线免费精品| 成人漫画全彩无遮挡| 成年女人在线观看亚洲视频| 国产亚洲91精品色在线| 又爽又黄a免费视频| 成人毛片60女人毛片免费| 人人妻人人添人人爽欧美一区卜 | 超碰97精品在线观看| 成年女人在线观看亚洲视频| 2022亚洲国产成人精品| 美女xxoo啪啪120秒动态图| 五月天丁香电影| 嘟嘟电影网在线观看| 少妇精品久久久久久久| 内射极品少妇av片p| 菩萨蛮人人尽说江南好唐韦庄| 亚洲四区av| 免费看不卡的av| 草草在线视频免费看| 美女cb高潮喷水在线观看| a级一级毛片免费在线观看| 亚洲熟女精品中文字幕| 一二三四中文在线观看免费高清| 亚洲国产精品国产精品| 老师上课跳d突然被开到最大视频| 边亲边吃奶的免费视频| 亚洲av电影在线观看一区二区三区| 啦啦啦啦在线视频资源| 免费看光身美女| 一本色道久久久久久精品综合| a级毛色黄片| 欧美日韩综合久久久久久| 久久综合国产亚洲精品| 精品一区二区三卡| 深夜a级毛片| 婷婷色综合www| 国产av一区二区精品久久 | 国产亚洲精品久久久com| 国产白丝娇喘喷水9色精品| 久久久久久久精品精品| 国产探花极品一区二区| 久久青草综合色| 日韩在线高清观看一区二区三区| 国产高清国产精品国产三级 | 亚洲色图综合在线观看| 久久久久国产网址| 久久6这里有精品| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 蜜桃在线观看..| 欧美国产精品一级二级三级 | 久久热精品热| 狂野欧美激情性bbbbbb| 中文字幕av成人在线电影| 国产精品嫩草影院av在线观看| 国产高清不卡午夜福利| 亚洲成人手机| 久久国产精品大桥未久av | 99久久人妻综合| 日韩中字成人| 熟妇人妻不卡中文字幕| 日韩不卡一区二区三区视频在线| 亚洲不卡免费看| 最新中文字幕久久久久| 国产在线一区二区三区精| 视频区图区小说| 亚洲人成网站在线播| 婷婷色综合大香蕉| 中文字幕亚洲精品专区| 成人亚洲欧美一区二区av| 在线观看三级黄色| 欧美xxxx性猛交bbbb| 91狼人影院| 久久精品国产自在天天线| 色婷婷久久久亚洲欧美| 九草在线视频观看| 2018国产大陆天天弄谢| 晚上一个人看的免费电影| 精品熟女少妇av免费看| 日韩强制内射视频| av在线app专区| 午夜日本视频在线| 99久久综合免费| 久久婷婷青草| 亚洲国产av新网站| 精品人妻熟女av久视频| 亚洲成色77777| 狂野欧美激情性xxxx在线观看| 又爽又黄a免费视频| 看非洲黑人一级黄片| 欧美日韩亚洲高清精品| 成人国产麻豆网| 欧美高清性xxxxhd video| 久久精品久久久久久噜噜老黄| 极品教师在线视频| 国产精品av视频在线免费观看| 免费黄网站久久成人精品| 26uuu在线亚洲综合色| 特大巨黑吊av在线直播| 亚洲欧洲国产日韩| 久久精品国产鲁丝片午夜精品| 欧美bdsm另类| 国产91av在线免费观看| 亚洲美女视频黄频| av在线老鸭窝| 国产精品三级大全| 亚洲国产精品999| 青春草亚洲视频在线观看| 尾随美女入室| 最近中文字幕高清免费大全6| 看免费成人av毛片| 天美传媒精品一区二区| 九草在线视频观看| 丰满少妇做爰视频| 成人毛片60女人毛片免费| 国产 精品1| 国产爱豆传媒在线观看| 99热全是精品| 精品久久久久久久久亚洲| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 久久久久久久久久久丰满| 精品一区二区免费观看| 亚洲av成人精品一区久久| 精品午夜福利在线看| 久久国产精品男人的天堂亚洲 | 成人午夜精彩视频在线观看| 少妇的逼好多水| 一级毛片aaaaaa免费看小| 精品久久国产蜜桃| 亚洲国产精品999| 最近中文字幕高清免费大全6| 日本黄色日本黄色录像| 久久 成人 亚洲| 成人亚洲欧美一区二区av| 毛片女人毛片| 亚洲av中文av极速乱| 热re99久久精品国产66热6| 3wmmmm亚洲av在线观看| 亚洲国产精品国产精品| 欧美精品国产亚洲| 久久毛片免费看一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 午夜激情福利司机影院| 黄片无遮挡物在线观看| 亚洲美女搞黄在线观看| 五月玫瑰六月丁香| 国产精品国产av在线观看| 欧美一区二区亚洲| 亚洲中文av在线| 最后的刺客免费高清国语| 免费观看在线日韩| 在线免费观看不下载黄p国产| 亚洲av国产av综合av卡| 男人狂女人下面高潮的视频| 九九久久精品国产亚洲av麻豆| tube8黄色片| 一级a做视频免费观看| 亚洲精品一二三| 国产av国产精品国产| 最近中文字幕2019免费版| 在线 av 中文字幕| 只有这里有精品99| 国产久久久一区二区三区| 色吧在线观看| av视频免费观看在线观看| 一级二级三级毛片免费看| 日本黄色日本黄色录像| 插阴视频在线观看视频| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 一区二区av电影网| 成人综合一区亚洲| 免费大片18禁| av天堂中文字幕网| 熟女人妻精品中文字幕| av免费观看日本| 高清在线视频一区二区三区| 国产精品三级大全| 亚洲国产日韩一区二区| 不卡视频在线观看欧美| 91在线精品国自产拍蜜月| 成人亚洲欧美一区二区av| 国产淫片久久久久久久久| 久久99精品国语久久久| 国产爽快片一区二区三区| 99久久中文字幕三级久久日本| h视频一区二区三区| 青青草视频在线视频观看| 国产白丝娇喘喷水9色精品| 99久国产av精品国产电影| 这个男人来自地球电影免费观看 | 欧美精品亚洲一区二区| 欧美日韩视频精品一区| 精品亚洲成a人片在线观看 | 女性生殖器流出的白浆| 国产精品嫩草影院av在线观看| 久久精品人妻少妇| 欧美极品一区二区三区四区| xxx大片免费视频| 另类亚洲欧美激情| 午夜福利视频精品| 插逼视频在线观看| 韩国av在线不卡| 日韩中字成人| 国产色婷婷99| 黄色怎么调成土黄色| 国产男女超爽视频在线观看| 亚洲欧美中文字幕日韩二区| 哪个播放器可以免费观看大片| 久久精品国产鲁丝片午夜精品| 免费久久久久久久精品成人欧美视频 | 精品熟女少妇av免费看| 国产视频内射| 久久久久久久久大av| 成人午夜精彩视频在线观看| 久久国产亚洲av麻豆专区| 制服丝袜香蕉在线| 成人二区视频| 日韩三级伦理在线观看| 国产成人一区二区在线| 日韩免费高清中文字幕av| 午夜日本视频在线| 国产深夜福利视频在线观看| 国产精品欧美亚洲77777| 久久久久国产网址| 成年人午夜在线观看视频| 黄片无遮挡物在线观看| 极品少妇高潮喷水抽搐| 激情五月婷婷亚洲| 国产精品一区二区在线观看99| 最近手机中文字幕大全| 国产爱豆传媒在线观看| 极品教师在线视频| 久久人人爽人人爽人人片va| 国产一区二区三区综合在线观看 | 在线看a的网站| 国产精品久久久久久精品古装| 日韩大片免费观看网站| 91狼人影院| 一本久久精品| 亚洲真实伦在线观看| 极品少妇高潮喷水抽搐| 成人18禁高潮啪啪吃奶动态图 | videos熟女内射| 久久久精品94久久精品| 久久女婷五月综合色啪小说| 久久久久国产精品人妻一区二区| 亚洲美女视频黄频| 国产精品国产av在线观看| 大片免费播放器 马上看| 91午夜精品亚洲一区二区三区| 国产91av在线免费观看| 国产精品欧美亚洲77777| 国产白丝娇喘喷水9色精品| 国产成人aa在线观看| 亚洲欧美精品专区久久| 热re99久久精品国产66热6| 国产真实伦视频高清在线观看| a级毛色黄片| 自拍偷自拍亚洲精品老妇| 少妇 在线观看| 国产亚洲5aaaaa淫片| 日韩一区二区三区影片| 亚洲激情五月婷婷啪啪| 国产人妻一区二区三区在| 成人毛片a级毛片在线播放| 下体分泌物呈黄色| 国产免费一级a男人的天堂| 亚洲av免费高清在线观看| 全区人妻精品视频| 男女国产视频网站| 亚洲国产精品999| 欧美一区二区亚洲| 熟女av电影| 深爱激情五月婷婷| 亚洲三级黄色毛片| 国产成人精品婷婷| 在线观看人妻少妇| 国产精品人妻久久久影院| 99热这里只有是精品50| 亚洲国产av新网站| 国产深夜福利视频在线观看| 国产永久视频网站| 成年免费大片在线观看| 亚洲欧美精品专区久久| 中文字幕亚洲精品专区| 亚洲伊人久久精品综合| 欧美一级a爱片免费观看看| 91久久精品国产一区二区三区| 国产男女超爽视频在线观看| 韩国高清视频一区二区三区| 亚洲精品色激情综合| 看免费成人av毛片| 狂野欧美白嫩少妇大欣赏| 久久久久久久久大av| 亚洲,欧美,日韩| 久久久久网色| 国产精品秋霞免费鲁丝片| 欧美老熟妇乱子伦牲交| 一本一本综合久久| 最新中文字幕久久久久| 日韩在线高清观看一区二区三区| 大香蕉97超碰在线| 99热国产这里只有精品6| 国产又色又爽无遮挡免| 最近手机中文字幕大全| 精品久久久久久久久亚洲| 国产午夜精品一二区理论片| 亚洲成人手机| 亚洲欧美精品专区久久| 日韩电影二区| 欧美xxxx黑人xx丫x性爽| 国产午夜精品久久久久久一区二区三区| 久久国产精品男人的天堂亚洲 | 永久免费av网站大全| 亚洲图色成人| 天堂8中文在线网| 日韩欧美 国产精品| 高清在线视频一区二区三区| 黄色怎么调成土黄色| 国产乱人视频| 国产色爽女视频免费观看| 亚洲aⅴ乱码一区二区在线播放| 婷婷色麻豆天堂久久| 国产精品麻豆人妻色哟哟久久| 久久 成人 亚洲| 只有这里有精品99| 成人一区二区视频在线观看| 丰满少妇做爰视频| 五月伊人婷婷丁香| 亚洲精华国产精华液的使用体验| 99久国产av精品国产电影|