• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Change of Arctic sea-ice volume and its relationship with sea-ice extent in CMIP5 simulations

    2016-11-23 01:12:53SONGMiRong
    關(guān)鍵詞:北極海覆蓋范圍海冰

    SONG Mi-Rong

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China

    Change of Arctic sea-ice volume and its relationship with sea-ice extent in CMIP5 simulations

    SONG Mi-Rong

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China

    The future change of September Arctic sea-ice volume, simulated by 30 state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), is examined, which depends on both ice extent and ice thickness. In comparison with the September sea-ice extent,the September sea-ice volume has larger spread in the historical simulation but faster convergence in the projection simulation, especially in the context of increasing greenhouse gas emissions. This indicates that the ice volume might be more sensitive to external forcings than the ice extent. Using the averaged projection of those climate models from the 30 CMIP5 models that can better reflect the ‘observed' sea-ice volume climatology and variability, it is shown that the September sea ice volume will decrease to ~3000 km3in the early 2060s, and then level off under a medium-mitigation scenario. However, it will drop to ~3000 km3in the early 2040s and reach a near-zero ice volume in the mid-2070s under a high-emission scenario. With respect to the historical condition, the reduction of the ice volume, associated with increasing greenhouse gas emissions, is more rapid than that of the ice extent during the twenty-first century.

    ARTICLE HISTORY

    Accepted 11 August 2015

    Sea-ice volume; sea-ice extent; sea-ice thickness;CMIP5

    由于對(duì)未來(lái)北極海冰體積的變化研究相對(duì)較少,本文利用多模式比較計(jì)劃模擬的海冰結(jié)果,對(duì)北極9月海冰體積及其與海冰覆蓋范圍的關(guān)系進(jìn)行了分析。結(jié)果發(fā)現(xiàn),相對(duì)于海冰覆蓋范圍,多模式模擬得到的北極海冰體積的差異跨度更大,但這種差異跨度隨著時(shí)間的演變迅速減小,表明海冰體積可能是比海冰覆蓋范圍更為敏感的因子。同時(shí)少數(shù)幾個(gè)能夠更加合理反映觀測(cè)的海冰特征與變化的模式的模擬結(jié)果顯示,在高排放情景下,北極海冰在本世紀(jì)70年代時(shí),基本達(dá)到了無(wú)冰的狀態(tài)。

    Introduction

    The Arctic sea-ice volume (area multiplied by thickness)is an important indicator of climate change. In general,sea-ice volume is less susceptible to particular weather events (i.e. storms) than sea-ice extent (Schweiger et al. 2011; Zygmuntowska et al. 2014). Moreover, sea-ice volume might be more closely tied to climate forcings than sea-ice extent, i.e. sea-ice extent may still have considerable variability even when the Arctic Ocean reaches near ice-free conditions, whereas sea-ice volume variability is small. Associated with the rapid decline of summer Arctic sea-ice extent in the past three decades (Serreze,Holland, and Stroeve 2007; Comiso et al. 2008), the combined records from submarine measurements and the Ice, Cloud, and land Elevation Satellite (ICESat) show that mean summer Arctic sea-ice thickness has decreased by about 1.65 m (from 2.80 m in 1980 to 1.15 m in 2007)(Rothrock, Yu, and Maykut 1999; Kwok and Rothrock 2009;Kwok and Untersteiner 2011). Moreover, the abrupt seaice reductions since 2007 have further contributed to the overall dramatic decrease in the ice thickness. This is reflected by the pronounced decrease of the perennial(multi-year) sea ice and the increasing coverage of seasonal (first-year) sea ice in the Arctic Ocean (Maslanik et al. 2007, 2011; Giles et al. 2008). Decline in sea-ice extent and thickness leads to a reduction of sea-ice volume. Arctic sea-ice volume estimated from the Pan Arctic Ice Modeling and Assimilation System (PIOMAS, Schweiger et al. 2011) shows that the September ice volume has decreased by ~75% from 1979 to 2011 (thick black line in Figure 1), which outpaces the decrease of September ice extent (~36% from 1979 to 2011). This indicates that seaice volume may be a more sensitive indicator of climate change than sea-ice extent.

    Figure 1.Time series of the observed (thick black line) and simulated (colored lines) September sea-ice volume of 30 CMIP5 models from 1979 to 2005 in the historical simulation and from 2006 to 2099 under the (a) RCP4.5 and (b) RCP8.5 scenarios (the thick brown line is the multi-model ensemble mean).

    Several studies have been conducted recently describing the future change of Arctic sea-ice extent during the twenty-first century using the recent available simulations from Coupled Model Intercomparison Project Phase 5(CMIP5) (e.g. Massonnet et al. 2012; Stroeve et al. 2012;Wang and Overland 2012; Liu et al. 2013). A few studies have looked into Arctic sea-ice thickness; for instance,Langehaug et al. (2013) evaluated the Fram Strait ice area export and its influence on Arctic sea-ice area and thickness using historical simulations of six CMIP5 models. However,relatively little attention has been paid to the simulated ice volume in CMIP5. The present study focuses mainly on the future change of Arctic sea-ice volume and its relationship with Arctic sea-ice extent, providing insights to further our understanding of sea-ice simulations and projections in CMIP5.

    Data

    Figure 2.Evolution of 30 CMIP5 models' spread for the September Arctic sea-ice volume and extent during 1979-2005.

    This study focuses on September sea ice (all the grid cells covered by sea ice in the Northern Hemisphere are included), given that the seasonal minimum of Arctic sea ice is in September, and Arctic shipping has increased as sea ice has decreased dramatically. The coordinated CMIP5 climate change experiments (Taylor, Stouffer, and Meehl 2012; Knutti and Sedlá?ek 2013; Sillmann et al. 2013) provide new perspectives that aid understanding and studies of present and future climate. Here, 30 CMIP5 models are analyzed (the first ensemble member for each model achieved on the Program for Climate Model Diagnosis and Intercomparison (PCMDI) data portal), including both historical simulations that end in 2005 and projection simulations under the +4.5 and +8.5 W m-2Representative Concentration Pathway (RCP4.5 and RCP8.5, respectively)scenarios from 2006 to 2099. The reanalysis of sea-ice volume during 1979-2011 from the recently updated PIOMAS is used in this study as the ‘observation', since there are no long-term and spatially homogenous sea-ice thickness observations, which improves on prior versions by assimilating sea surface temperatures for ice-free areas and by using a different parameterization for the strength of the ice (Schweiger et al. 2011). Note that the PIOMAS ice volume has uncertainty (a coupled sea-ice-ocean model constrained by the assimilation of sea-ice concentration and sea surface temperature), even though the spatial pattern of the PIOMAS ice thickness resembles the ICESat observation (Schweiger et al. 2011), and the seasonal cycle of the PIOMAS ice volume is largely consistent with the recent CryoSat2 observation (Laxon et al. 2013). Seaice extent data are from the National Snow and Ice Data Center (NSIDC) (Fetterer et al. 2009). Since most of the historical simulations end in 2005, the data for 2006-11 from the RCP4.5 runs are used to extend the time series where necessary.

    Results and discussion

    Figure 1 shows the evolution of September sea-ice volume from 1979 to 2099 simulated by 30 CMIP5 models. The inter-model spread in the simulated September sea-ice volume is very large (i.e. from 2.42 × 103to 36.21 × 103km3in 1979). Some individual models (e.g. ACCESS1.3, CESM1-BGC) capture the rapid decline of the Arctic September sea-ice volume after 2007. The September sea-ice volume trend of the multi-model mean during 1979-2011 is -7.22 × 103km3, and the corresponding observed ice volume trend is -10.28 × 103km3. Since the multi-model mean primarily represents the external forcing effect (Kay et al. 2011), it gives a rough estimate of 70% of the anthropogenic contribution to the September ice volume decline rate from 1979 to 2011. This forced contribution factor is close to 97% for the September sea-ice volume from 1979 to 2005, which is much stronger than the forced contribution of 56% for the September sea-ice extent during 1979-2005 (Kay, Holland, and Jahn 2011).

    For each year in the historical simulation (1979-2005;CMIP5 historical simulation ends in 2005), the absolute bias is calculated for the September sea-ice volume between the simulation of each individual CMIP5 model and the observation, and the 30 biases are averaged. The standard deviation of the observed sea-ice volume during 1979-2005 is also calculated. Then, the averaged bias is divided by the observed standard deviation, which represents the modeled ice volume spread in CMIP5. The calculation is also repeated for the simulated and observed September sea-ice extent. Note that the spreads of the simulated ice volume and extent are normalized so that they can be compared directly.

    Figure 3.Evolution of the standard deviation of the simulated September sea-ice volume (SepSIV, red) and extent (SepSIE, blue) for 30 models during 1979-2099 with respect to PIOMAS SepSIV and NSIDC SepSIE standard deviation of 1979-2005, respectively, under (a)RCP4.5 and (b) RCP8.5.

    As shown in Figure 2, the averaged difference between the simulated September ice volume and observed September ice volume is four times the interannual variability of the volume observation at the beginning (the late 1970s). By contrast, the averaged difference between the simulated September ice extent and observed September sea-ice extent is two times the interannual variability of the extent observation at the beginning. Compared with the September sea-ice extent, the September sea-ice volume has larger spread in the historical simulations of the 30 CMIP5 models, which is mainly attributed to the large spread of simulated sea-ice thickness. With time, the averaged difference of the ice volume gradually decreases and,in 2005, the difference is ~2.8 times the observed interannual variability, but no obvious change is found for the averaged difference of the ice extent during 1979-2005. This implies that the thinning of sea-ice thickness during 1979-2005 tends to reduce the spread in the simulated sea-ice thickness, which is not the case for sea-ice extent. Given that the models could not capture the observed year-to-year variability in an uninitialized long-term simulation, the simulated September ice volume standard deviation of the 30 CMIP5 models is also calculated for each year (i.e. 1979, 1980, 1981, … , 2099), and divided by the standard deviation of PIOMAS September sea-ice volume during 1979-2005, as illustrated in Figure 3. The calculation is also repeated for the simulated and observed September ice extent. It almost reproduces the evolution in Figure 2 when using a different definition to quantify the model spread, which certifies a robust result for evaluating the model spread.

    Additionally, the simulated September ice volume shows a faster convergence towards the late twenty-first century than that of the September ice extent for both RCP4.5 and RCP8.5 (Figure 3). The anthropogenic forcing steadily increases from 2005 to 2069 and then becomes stabilized for the RCP4.5 runs, while it shows a sustained increase for the RCP8.5 runs (also Hezel et al. (2014), Figure 1). As shown in Figure 3, from the late 1970s to 2040s, the model spread of the projected September sea-ice extent expands gradually as the Arctic sea ice declines, which shows good agreement with the anthropogenic forcing change for both emissions scenarios, while the modeledSeptember sea-ice volume spread continues to shrink rapidly. By contrast, from the 2050s, the ice extent spread tends to oscillate around 3.5 for RCP4.5, and turns to converge for RCP8.5, while the ice volume spread continues to decrease until ~2070 (~2080) under the RCP4.5 (RCP8.5) scenario, and then oscillates slightly toward the end of the twenty-first century. Thus, the decrease of the ice volume spread is a consequence of both the declining ice extent spread and ice thickness spread. Meanwhile, the consistent signal of shrinking spread under both the RCP4.5 andRCP8.5 scenarios indicates that the September ice volume is a more robust sensor to the forcings.

    Figure 4.(a) Climatology (average) and (b) linear trend of September sea-ice volume for the ‘observation' (black bar on left) and each CMIP5 model (gray bars) during 1979-2011 (the second to last black bar on right-hand side is the ensemble mean of the four selected models, while the right-most bar is the ensemble mean of all 30 models).

    Figure 5.Time series of the observed (thick black line) and simulated (colored lines) September sea-ice volume of four selected CMIP5 models from 1979 to 2005 in the historical simulation and from 2006 to 2099 under the (a) RCP4.5 and (b) RCP8.5 scenarios (the thick brown line is the four-model ensemble mean).

    Figure 6.Evolution of the ratio between the proportional reduction in the simulated September sea-ice volume and extent (averaged for the sliding five-year windows) with respect to 1979 for the four selected models under the RCP4.5 (solid line) and RCP8.5 (dashed line)scenarios. The black dot is the ratio for the present state (2007-11) with respect to 1979.

    Nonetheless, large spread exists regarding the simulation of September Arctic sea-ice volume. Credible projection of future change in Arctic sea-ice volume is strongly built on the CMIP5 models' abilities to reproduce the observed climatology and variability of sea-ice volume. Using similar methods to those proposed by Liu et al. (2013), the models with the simulated September sea ice volume falling within one standard deviation of the observed September ice volume during 1979-2011 (two gray lines in Figure 4a) are first selected. The corresponding time range is the combination of 1979-2005 for the historical simulation and 2006-11 under the medium-mitigation scenario. Eight of the 30 CMIP5 models satisfy that requirement (ACCESS1.3, BNU-ESM, CCSM4, CESM1-BGC, FIO-ESM, GFDL-CM3, HADGEM2-CC and HADGEM2-ES; Figure 4a). Furthermore, those models with the simulated trend of September sea-ice volume falling within one standard deviation of the observed September ice volume during 1979-2011 are retained and superimposed on the observed trend (two gray lines in Figure 4b). Nine of the 30 CMIP5 models satisfy that requirement (ACCESS1.3, CCSM4,CESM1-BGC, CESM1-CAM5, FGOALS-G2, HADGEM2-CC,IPSL-CM5A.LR, IPSL-CM5A.MR, and NORESM1-M; Figure 4b). The four models that meet both the climatology and trend criteria are ultimately retained. They are: ACCESS1.3,CCSM4, CESM1-BGC, and HADGEM2-CC. The climatology and trend of September sea-ice volume for the ensemble mean of the four models during 1979-2011 are in good agreement with the observation. Compared with the result from the 30-model ensemble mean, an obvious improvement based on the four selected models is reflected in the simulated Arctic sea-ice volume trend in September. Note that, using similar methods to those proposed by Liu et al. (2013), three models (ACCESS1.3, CESM1-BGC, and HADGEM2-CC) of the four selected models in this study based on the ice volume are the same as those in Liu et al.(2013) based on the ice extent. This suggests that the ice volume and extent reflect different ice state evolutions,although they are interrelated.

    The ensemble mean of the four models shows that,under the RCP4.5 scenario, the simulated September seaice volume decreases to ~3000 km3(~25% of the observed September ice volume averaged during 1979-2011) in the early 2060s, and then tends to level off towards the end of the twenty-first century after the forcing stabilizes. By contrast, under RCP8.5, the simulated September seaice volume drops to ~3000 km3in the early 2040s, which is almost two decades earlier than under RCP4.5, and approaches zero in the mid-2070s (Figure 5). This is consistent with recent studies showing that the Arctic may reach an ice-free state in the middle of the twenty-first century under RCP8.5 (Massonnet et al. 2012; Liu et al. 2013), while under RCP4.5 the September Arctic sea ice decreases until early in the 2060s when it starts to level off.

    Since 2007, the observed September Arctic sea-ice volume has decreased much faster (thick black line in Figure 1) than that of 1979-2006. The PIOMAS estimate shows that the averaged September sea-ice volume for the new low ice-cover state (2007-2011) has decreased by~65.1% with respect to 1979, which is double the speed of decrease of the September sea-ice extent (the averaged September ice extent for 2007-2011 has decreased by~33.4% with respect to 1979). As shown in Figure 6, the relationship between the proportional reduction in simulated September sea-ice volume and extent throughout the twenty-first century is not linear. Here, the proportional reduction is defined as follows: (1) Compute the mean September sea-ice volume (extent) of the four selected models for each year from 2008 to 2099. (2) Based on the results from (1), compute the five-year mean of 2008-12,2009-13, 2010-14, and so on. (3) Compute the rate of decrease of the five-year mean ice volume (extent) relative to 1979. (4) Finally, compute the ratio of the ice volume rate of decrease to the ice extent rate of decrease. Under the RCP4.5 scenario, the proportional reduction of the ice volume is nearly two times that of the ice extent at thebeginning of the twenty-first century, which is consistent with the observation. The ratio decreases to ~1.2-1.3 in the early 2060s, and then tends to oscillate around ~1.2-1.3 towards the end of the twenty-first century. It reflects a more rapid decline of the ice volume than that of the ice extent before the early 2060s. Since the ratio primarily reflects the ensemble mean evolution of the ice thickness,it implies that the basin-wide average ice thickness tends to level off in the early 2060s. By contrast, under the RCP8.5 scenario, the ratio decreases to ~1.2-1.3 in the early 2040s,and approaches ~1 in the early 2070s. The timings of these ratio changes (Figure 6, which mainly reflects the averaged sea-ice thickness change) are in good agreement with the aforementioned spread variations (Figure 3) in RCP4.5 and RCP8.5.

    Conclusions

    This study identifies (1) significantly larger spread regarding September sea-ice volume forced by anthropogenic and natural forcings, as compared to September sea-ice extent, as shown in the historical simulations, and (2)greater sensitivity regarding September sea-ice volume in response to the increase in greenhouse gas emissions relative to September sea-ice extent, as shown in the projection simulations. These impose further challenges to achieve accurate simulation of Arctic sea-ice volume as the climate warms.

    The model selection described in this study reduces the spread in the projected September sea-ice volume under both emissions scenarios. A quantitative analysis of the ice volume and extent reduction using the selected models is implemented, and it indicates that, with respect to the historical condition, the reduction of the ice volume,associated with increasing greenhouse gas emissions, is more rapid than that of the ice extent during the twenty-first century. The ratio evolution (expressing the relation between the reduction in sea-ice volume and sea-ice extent) is in quite good agreement with the anthropogenic forcing variations in both RCP4.5 and RCP8.5. Firstly, the ratio decreases from ~2.0 in the early 2010s to 1.2-1.3 in the early 2060s, then becomes persistent around 1.2,under the RCP4.5 scenario. Secondly, the ratio decreases from ~1.9 at the beginning of the 2010s to near 1 by the end of twenty-first century, under the RCP8.5 scenario. The transition from large to small ratio indicates that the Arctic sea-ice state is changing. Thus, better understanding the evolution of the ratio between the proportional reduction of observed September sea-ice volume and extent may provide us with further clues on the future change of Arctic sea ice.

    Moreover, the rapid loss of Arctic sea ice in recent years provides further evidence that Arctic sea ice has entered a new regime of thinner and predominantly first-year ice. Given the discrepancy between the simulated and observed ice volume and rapid change of sea ice, we need to improve the radiative interactions among the atmosphere, sea ice and ocean (positive feedbacks),and poleward oceanic and atmospheric heat transports(potential negative feedback) in climate models, as they play important roles in the simulation of Arctic sea-ice volume. Better representation of these processes, leading to reasonable simulation of Arctic sea-ice volume in response to anthropogenic and natural forcings, is a priority for the accurate prediction of how Arctic sea ice might change in the near future.

    Acknowledgments

    Thanks and appreciation are extended to the climate modeling groups all across the world, the WCRP Working Group on Coupled Modeling, and the Program for Climate Model Diagnosis and Intercomparison, for making the CMIP5 model outputs available.

    Funding

    This research was supported by the National Natural Science Foundation of China [grant numbers 41305097 and 41176169],the National Basic Research Program of China [973 program,grant number 2011CB309704].

    References

    Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock. 2008.“Accelerated Decline in the Arctic Sea Ice Cover.” Geophysical Research Letters 35: L01703.

    Fetterer, F., K. Knowles, W. Meier, and M. Savoie. 2009. Sea Ice Index [1979-2011]. Boulder, CO: National Snow and Ice Data Center. http://nsidc.org/data/G02135.

    Giles, K. A., S. W. Laxon, and A. L. Ridout. 2008. “Circumpolar Thinning of Arctic Sea Ice following the 2007 Record Ice Extent Minimum.” Geophysical Research Letters 35: L22502.

    Hezel, P. J., T. Fichefet, and F. Massonnet. 2014. “Modeled Arctic Sea Ice Evolution through 2300 in CMIP5 Extended RCPs.” The Cryosphere 8: 1195-1204.

    Kay, J. E., M. M. Holland, and A. Jahn. 2011. “Inter-annual to Multi-decadal Arctic Sea Ice Extent Trends in a Warming World.” Geophysical Research Letters 38: L15708.

    Knutti, R., and J. Sedlá?ek. 2013. “Robustness and Uncertainties in the New CMIP5 Climate Model Projections.” Nature Climate Change 3: 369-373.

    Kwok, R., and D. Rothrock. 2009. “Decline in Arctic Sea Ice Thickness from Submarine and ICESat Records: 1958-2008.”Geophysical Research Letters 36: L15501.

    Kwok, R., and N. Untersteiner. 2011. “The Thinning of Arctic Sea Ice.” Physics Today 64 (4): 36-41.

    Langehaug, H. R., F. Geyer, L. H. Smedsrud, and Y. Gao. 2013.“Arctic Sea Ice Decline and Ice Export in the CMIP5 Historical Simulations.” Ocean Modelling 71: 114-126.

    Laxon, S. W., K. A. Giles, A. L. Ridout, D. J. Wingham, R. Willatt, R.Cullen, R. Kwok, A. Schweiger, J. Zhang, and C. Haas. 2013.“CryoSat-2 Estimates of Arctic Sea Ice Thickness and Volume.”Geophysical Research Letters 40 (4): 732-737.

    Liu, J. P., M. R. Song, R. M. Horton, and Y. Y. Hu. 2013. “Reducing Spread in Climate Model Projections of a September Ice-Free Arctic.” Proceedings of the National Academy of Sciences of the United States of America 110: 12571-12576.

    Maslanik, J., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery. 2007. “A Younger, Thinner Arctic Ice Cover: Increased Potential for Rapid, Extensive Sea-Ice Loss.” Geophysical Research Letters 34: L24501.

    Maslanik, J., J. Stroeve, C. Fowler, and W. Emery. 2011.“Distribution and Trends in Arctic Sea Ice Age through Spring 2011.” Geophysical Research Letters 38: L13502.

    Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P. Y. Barriat. 2012. “Constraining Projections of Summer Arctic Sea Ice.” Cryosphere 6: 1383-1394. Rothrock, D. A., Y. Yu, and G. A. Maykut. 1999. “Thinning of the Arctic Sea-Ice Cover.” Geophysical Research Letters 26: 3469-3472.

    Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and R. Kwok. 2011. “Uncertainty in Modeled Arctic Sea Ice Volume.”Journal of Geophysical Research-Oceans 116: C00D06.

    Serreze, M. C., M. M. Holland, and J. Stroeve. 2007. “Perspectives on the Arctic's Shrinking Sea-Ice Cover.” Science 315: 1533-1536.

    Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh. 2013. “Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate.”Journal of Geophysical Research-Atmospheres 118: 1716-1733. Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier. 2012. “Trends in Arctic Sea Ice Extent from CMIP5, CMIP3 and Observations.” Geophysical Research Letters 39: L16502.

    Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An Overview of CMIP5 and the Experiment Design.” Bulletin of the American Meteorological Society 93: 485-498.

    Wang, M. Y., and J. E. Overland. 2012. “A Sea Ice Free Summer Arctic within 30 Years: An Update from CMIP5 Models.”Geophysical Research Letters 39: L18501.

    Zygmuntowska, M., P. Rampal, N. Ivanova, and L. H. Smedsrud. 2014. “Uncertainties in Arctic Sea Ice Thickness and Volume: New Estimates and Implications for Trends.” The Cryosphere 8: 705-720.

    7 May 2015

    CONTACT SONG Mi-Rong songmirong@lasg.iap.ac.cn

    ? 2016 The Author(s)

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    北極海覆蓋范圍海冰
    末次盛冰期以來(lái)巴倫支海-喀拉海古海洋環(huán)境及海冰研究進(jìn)展
    基于機(jī)器學(xué)習(xí)的基站覆蓋范圍仿真
    基于SIFT-SVM的北冰洋海冰識(shí)別研究
    工傷社會(huì)保險(xiǎn)覆蓋范圍的擴(kuò)展及其路徑
    淺談提高小功率短波電臺(tái)覆蓋范圍的措施
    電子制作(2016年23期)2016-05-17 03:54:06
    關(guān)于短波廣播覆蓋范圍的幾點(diǎn)探討
    科技視界(2016年9期)2016-04-26 09:14:10
    累積海冰密集度及其在認(rèn)識(shí)北極海冰快速變化的作用
    中部型El Nino與北極海冰變化的聯(lián)系
    南、北極海冰的長(zhǎng)期變化趨勢(shì)及其與大氣環(huán)流的聯(lián)系
    應(yīng)用MODIS數(shù)據(jù)監(jiān)測(cè)河北省近海海域海冰
    河北遙感(2014年4期)2014-07-10 13:54:59
    日韩精品有码人妻一区| 中国国产av一级| 日本黄大片高清| 国产成人a区在线观看| 亚洲欧美中文字幕日韩二区| 夫妻午夜视频| 免费黄色在线免费观看| 国产精品一及| 国产乱人视频| 亚洲色图av天堂| 精品国内亚洲2022精品成人| 免费在线观看成人毛片| 久久97久久精品| 日韩大片免费观看网站| 婷婷色综合大香蕉| 国产 一区精品| av.在线天堂| 久久久久久久久久成人| 大又大粗又爽又黄少妇毛片口| 又爽又黄a免费视频| 成人性生交大片免费视频hd| 好男人视频免费观看在线| 亚洲熟妇中文字幕五十中出| 国产一区二区在线观看日韩| 欧美区成人在线视频| 国产伦一二天堂av在线观看| 国产成人精品一,二区| 婷婷色av中文字幕| 欧美成人a在线观看| 床上黄色一级片| 久久久久精品久久久久真实原创| 麻豆久久精品国产亚洲av| 国产伦一二天堂av在线观看| 国产伦精品一区二区三区四那| 建设人人有责人人尽责人人享有的 | 国产成人a区在线观看| 日本黄色片子视频| 精品欧美国产一区二区三| 97热精品久久久久久| 久久精品久久精品一区二区三区| 亚州av有码| 神马国产精品三级电影在线观看| 三级男女做爰猛烈吃奶摸视频| 欧美日本视频| 又黄又爽又刺激的免费视频.| 免费黄色在线免费观看| 午夜免费激情av| 日本免费a在线| 亚洲内射少妇av| 亚洲国产av新网站| 国产午夜精品久久久久久一区二区三区| 永久网站在线| 欧美最新免费一区二区三区| 欧美不卡视频在线免费观看| 国产伦在线观看视频一区| 天堂av国产一区二区熟女人妻| 国产一区有黄有色的免费视频 | 秋霞伦理黄片| 中文字幕久久专区| 日本一本二区三区精品| 亚洲人成网站在线播| 亚洲成人一二三区av| 国产乱来视频区| 亚洲人与动物交配视频| 国产精品熟女久久久久浪| 欧美成人a在线观看| 免费观看无遮挡的男女| 一区二区三区四区激情视频| 国产黄a三级三级三级人| 日本wwww免费看| 97人妻精品一区二区三区麻豆| 黄片无遮挡物在线观看| 在线观看av片永久免费下载| 亚洲成人av在线免费| 夜夜看夜夜爽夜夜摸| 亚洲,欧美,日韩| 国产高清三级在线| 国产视频内射| 在线免费十八禁| 精品久久久精品久久久| 久久国内精品自在自线图片| 91精品伊人久久大香线蕉| 免费观看无遮挡的男女| 欧美激情在线99| 欧美zozozo另类| 女人十人毛片免费观看3o分钟| 免费观看性生交大片5| 国产亚洲av嫩草精品影院| 色视频www国产| 老师上课跳d突然被开到最大视频| 亚洲在久久综合| 国产成人午夜福利电影在线观看| 国产91av在线免费观看| 尤物成人国产欧美一区二区三区| 啦啦啦韩国在线观看视频| 69人妻影院| 欧美日韩视频高清一区二区三区二| 久久综合国产亚洲精品| 国产黄片视频在线免费观看| 日韩av在线大香蕉| 国语对白做爰xxxⅹ性视频网站| 能在线免费看毛片的网站| 精品久久久精品久久久| 春色校园在线视频观看| 美女内射精品一级片tv| 大片免费播放器 马上看| 一个人观看的视频www高清免费观看| 日韩欧美精品免费久久| 在线观看免费高清a一片| 一夜夜www| 99久国产av精品国产电影| 国内精品宾馆在线| 亚洲精品影视一区二区三区av| 国产精品女同一区二区软件| 国国产精品蜜臀av免费| 日韩三级伦理在线观看| 日韩不卡一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区| 两个人的视频大全免费| 在线天堂最新版资源| 亚洲经典国产精华液单| 伦精品一区二区三区| 少妇的逼水好多| 亚洲在线自拍视频| 人人妻人人看人人澡| 免费少妇av软件| 国产色婷婷99| 99久久精品一区二区三区| 联通29元200g的流量卡| 秋霞伦理黄片| 久久久久久久久久成人| 成人亚洲欧美一区二区av| 精品国产露脸久久av麻豆 | 国产女主播在线喷水免费视频网站 | 亚洲电影在线观看av| 边亲边吃奶的免费视频| 22中文网久久字幕| 国产午夜精品久久久久久一区二区三区| 日韩伦理黄色片| 国产一区亚洲一区在线观看| 国产精品三级大全| 深爱激情五月婷婷| 最近中文字幕高清免费大全6| 最近中文字幕高清免费大全6| 国产高清有码在线观看视频| 日日干狠狠操夜夜爽| 六月丁香七月| av国产久精品久网站免费入址| 性色avwww在线观看| 午夜免费激情av| 国产精品嫩草影院av在线观看| 男人和女人高潮做爰伦理| 久久午夜福利片| 久久午夜福利片| 亚洲精品影视一区二区三区av| 老司机影院成人| 99热全是精品| av在线老鸭窝| 99热这里只有是精品50| 午夜视频国产福利| 成人高潮视频无遮挡免费网站| 精品熟女少妇av免费看| 高清午夜精品一区二区三区| 欧美精品一区二区大全| 亚洲熟女精品中文字幕| 国产 亚洲一区二区三区 | 人人妻人人澡欧美一区二区| 久久国产乱子免费精品| 免费av毛片视频| 噜噜噜噜噜久久久久久91| 久久6这里有精品| 国产精品熟女久久久久浪| 麻豆乱淫一区二区| 99久国产av精品| 老女人水多毛片| 国产色婷婷99| 看免费成人av毛片| 亚洲欧美一区二区三区黑人 | 综合色丁香网| 99久国产av精品国产电影| 亚洲精品国产av蜜桃| 成人一区二区视频在线观看| 欧美+日韩+精品| 插逼视频在线观看| 日韩av在线免费看完整版不卡| 91av网一区二区| 欧美精品国产亚洲| 一级片'在线观看视频| 激情 狠狠 欧美| 亚洲av电影在线观看一区二区三区 | 国产一区二区三区综合在线观看 | 乱码一卡2卡4卡精品| 联通29元200g的流量卡| 亚洲欧美日韩东京热| 免费av不卡在线播放| 男的添女的下面高潮视频| 97人妻精品一区二区三区麻豆| 日韩欧美三级三区| 久久久精品94久久精品| 午夜亚洲福利在线播放| 亚洲国产精品成人综合色| 禁无遮挡网站| 青春草国产在线视频| 欧美高清性xxxxhd video| 国产一区有黄有色的免费视频 | 网址你懂的国产日韩在线| 不卡视频在线观看欧美| 99视频精品全部免费 在线| 精品熟女少妇av免费看| 久久99蜜桃精品久久| 爱豆传媒免费全集在线观看| 一级毛片久久久久久久久女| 久久久久九九精品影院| 国产69精品久久久久777片| 亚洲av成人精品一区久久| 成人综合一区亚洲| 亚洲精华国产精华液的使用体验| av天堂中文字幕网| 日韩av不卡免费在线播放| 九九久久精品国产亚洲av麻豆| 我要看日韩黄色一级片| 性插视频无遮挡在线免费观看| 韩国av在线不卡| 亚洲人成网站高清观看| 亚洲欧美日韩东京热| 精品一区二区三区人妻视频| 国产精品综合久久久久久久免费| 91aial.com中文字幕在线观看| 美女国产视频在线观看| 国产精品爽爽va在线观看网站| 91在线精品国自产拍蜜月| 三级毛片av免费| 免费黄频网站在线观看国产| 精品少妇黑人巨大在线播放| 成人毛片a级毛片在线播放| 3wmmmm亚洲av在线观看| 丰满乱子伦码专区| 一本久久精品| 久久草成人影院| 免费看日本二区| 亚洲av在线观看美女高潮| 尾随美女入室| 国产有黄有色有爽视频| 亚洲国产av新网站| 一个人免费在线观看电影| 水蜜桃什么品种好| 天堂影院成人在线观看| 伦精品一区二区三区| 日韩av不卡免费在线播放| 亚洲一级一片aⅴ在线观看| 亚洲最大成人av| 两个人视频免费观看高清| 禁无遮挡网站| 久久草成人影院| 国产一区有黄有色的免费视频 | 看十八女毛片水多多多| 男女边摸边吃奶| 美女黄网站色视频| 日本爱情动作片www.在线观看| 99热这里只有是精品在线观看| 蜜桃亚洲精品一区二区三区| 日韩电影二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美日韩卡通动漫| 午夜激情欧美在线| 国产91av在线免费观看| 真实男女啪啪啪动态图| 熟妇人妻久久中文字幕3abv| 寂寞人妻少妇视频99o| 国内揄拍国产精品人妻在线| 国产一区二区亚洲精品在线观看| 日韩欧美精品免费久久| 中文字幕人妻熟人妻熟丝袜美| 精品不卡国产一区二区三区| 最近最新中文字幕免费大全7| 欧美激情在线99| 免费看av在线观看网站| 日韩电影二区| 亚洲,欧美,日韩| 国产精品一区二区性色av| 亚洲av.av天堂| 精品久久久久久久末码| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区| 久久久久久九九精品二区国产| 一级片'在线观看视频| 69人妻影院| 水蜜桃什么品种好| 黄色欧美视频在线观看| 波野结衣二区三区在线| 欧美bdsm另类| 两个人视频免费观看高清| 干丝袜人妻中文字幕| 久久久欧美国产精品| 永久免费av网站大全| 国产成年人精品一区二区| 97热精品久久久久久| 青春草国产在线视频| 久久久a久久爽久久v久久| 搞女人的毛片| 国产乱人视频| 伊人久久国产一区二区| 免费观看精品视频网站| 国产成人精品久久久久久| 亚洲av.av天堂| 国产免费视频播放在线视频 | 国产有黄有色有爽视频| av免费观看日本| av在线天堂中文字幕| 99热6这里只有精品| 日韩一区二区视频免费看| 寂寞人妻少妇视频99o| 亚洲精品乱久久久久久| 婷婷色综合www| 久久精品久久久久久久性| 国产一区有黄有色的免费视频 | 亚洲精品日韩在线中文字幕| 久久综合国产亚洲精品| 嘟嘟电影网在线观看| 在线a可以看的网站| 美女国产视频在线观看| 嫩草影院入口| 欧美丝袜亚洲另类| 免费少妇av软件| 国产男女超爽视频在线观看| 少妇丰满av| 亚洲国产精品成人综合色| 女的被弄到高潮叫床怎么办| 国产探花极品一区二区| 国产黄频视频在线观看| 免费看美女性在线毛片视频| 又爽又黄无遮挡网站| 亚洲欧美日韩东京热| 国产一区二区三区av在线| 久久综合国产亚洲精品| 三级国产精品片| 人人妻人人看人人澡| 免费观看在线日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色一级大片看看| 亚洲欧美精品专区久久| 国产综合精华液| 亚洲精品国产av蜜桃| 看十八女毛片水多多多| av免费在线看不卡| 六月丁香七月| 欧美极品一区二区三区四区| 久久久欧美国产精品| 汤姆久久久久久久影院中文字幕 | 午夜爱爱视频在线播放| 精品久久久噜噜| 寂寞人妻少妇视频99o| 99热网站在线观看| 亚洲高清免费不卡视频| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| 国产精品爽爽va在线观看网站| 亚洲精品中文字幕在线视频 | 久久精品国产亚洲网站| 97超碰精品成人国产| 亚洲真实伦在线观看| 日本av手机在线免费观看| 精品亚洲乱码少妇综合久久| av天堂中文字幕网| 亚州av有码| 建设人人有责人人尽责人人享有的 | 精品久久久久久久人妻蜜臀av| 亚洲激情五月婷婷啪啪| 搡老乐熟女国产| 99热全是精品| 天天一区二区日本电影三级| 欧美bdsm另类| 男女视频在线观看网站免费| 亚洲人成网站在线播| 大陆偷拍与自拍| 高清av免费在线| 精品一区二区三区视频在线| 99久久精品一区二区三区| av在线观看视频网站免费| 日本av手机在线免费观看| 亚洲久久久久久中文字幕| 亚洲成色77777| 日本色播在线视频| 欧美成人一区二区免费高清观看| 国产成人精品一,二区| 男人舔奶头视频| 国产av国产精品国产| 国产在视频线在精品| 国产男女超爽视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 2021少妇久久久久久久久久久| 大又大粗又爽又黄少妇毛片口| 91久久精品电影网| 亚洲自偷自拍三级| 人妻少妇偷人精品九色| 小蜜桃在线观看免费完整版高清| 久久久亚洲精品成人影院| 一级二级三级毛片免费看| 免费看日本二区| 伦理电影大哥的女人| 亚洲av.av天堂| 老司机影院成人| 秋霞伦理黄片| 国产黄色免费在线视频| 国产精品女同一区二区软件| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| 在线免费观看的www视频| 成人av在线播放网站| 尾随美女入室| 日韩不卡一区二区三区视频在线| 日韩欧美精品免费久久| 黄色欧美视频在线观看| 神马国产精品三级电影在线观看| 欧美激情在线99| 精品国内亚洲2022精品成人| 亚洲精品久久久久久婷婷小说| 亚洲va在线va天堂va国产| 亚洲精华国产精华液的使用体验| 亚洲熟女精品中文字幕| 亚洲欧美清纯卡通| 久久久久久久久中文| 美女主播在线视频| 六月丁香七月| 日韩电影二区| 美女大奶头视频| 精品久久久久久成人av| 亚洲成人av在线免费| 久久6这里有精品| 看黄色毛片网站| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 中文字幕av成人在线电影| 在线 av 中文字幕| 国产午夜福利久久久久久| 欧美激情在线99| 黄色欧美视频在线观看| 久久国产乱子免费精品| 禁无遮挡网站| 国产成人一区二区在线| 菩萨蛮人人尽说江南好唐韦庄| 久久久久精品性色| 国产一区二区三区综合在线观看 | 国产成人免费观看mmmm| 午夜激情福利司机影院| 国产黄片美女视频| 中国国产av一级| 久久久a久久爽久久v久久| 日韩欧美精品v在线| 亚洲精品国产av成人精品| 国产亚洲精品av在线| 一级毛片 在线播放| 免费在线观看成人毛片| 久久久久久久久久人人人人人人| av一本久久久久| 日韩欧美国产在线观看| 日本午夜av视频| 人妻系列 视频| 免费观看av网站的网址| 激情 狠狠 欧美| 国产伦一二天堂av在线观看| 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 特级一级黄色大片| 日韩大片免费观看网站| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看| 免费观看av网站的网址| 午夜亚洲福利在线播放| 日本一本二区三区精品| 亚洲欧美精品专区久久| 美女cb高潮喷水在线观看| 久久亚洲国产成人精品v| 国产成人91sexporn| 久久人人爽人人片av| 国产精品一区二区在线观看99 | 卡戴珊不雅视频在线播放| 99久久精品一区二区三区| 少妇丰满av| 成人av在线播放网站| 欧美不卡视频在线免费观看| 成人特级av手机在线观看| 99久久人妻综合| 国产黄色免费在线视频| 一级毛片我不卡| 特级一级黄色大片| 国产男人的电影天堂91| 欧美日韩亚洲高清精品| 91久久精品电影网| 男女视频在线观看网站免费| 18+在线观看网站| 婷婷六月久久综合丁香| 久久精品国产亚洲网站| 全区人妻精品视频| 一级毛片久久久久久久久女| 日韩视频在线欧美| 成人国产麻豆网| 久久精品国产亚洲网站| 男的添女的下面高潮视频| 18禁裸乳无遮挡免费网站照片| 不卡视频在线观看欧美| 一级毛片电影观看| 又黄又爽又刺激的免费视频.| 日韩中字成人| 三级国产精品片| 男的添女的下面高潮视频| 亚洲高清免费不卡视频| kizo精华| 日韩欧美三级三区| 亚洲精品456在线播放app| 午夜福利高清视频| 大片免费播放器 马上看| 免费av观看视频| 国产成年人精品一区二区| 国产91av在线免费观看| 国产黄色免费在线视频| 18禁裸乳无遮挡免费网站照片| 人妻制服诱惑在线中文字幕| 国国产精品蜜臀av免费| 高清在线视频一区二区三区| 日韩欧美精品v在线| 国产黄色视频一区二区在线观看| 亚洲电影在线观看av| 国模一区二区三区四区视频| 欧美人与善性xxx| 久久久国产一区二区| 老师上课跳d突然被开到最大视频| 91aial.com中文字幕在线观看| av女优亚洲男人天堂| 国产男女超爽视频在线观看| 少妇裸体淫交视频免费看高清| 免费观看精品视频网站| 99久久中文字幕三级久久日本| 99久国产av精品| 只有这里有精品99| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 超碰av人人做人人爽久久| 欧美变态另类bdsm刘玥| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 亚洲乱码一区二区免费版| 简卡轻食公司| 精品熟女少妇av免费看| 欧美成人一区二区免费高清观看| 国内精品一区二区在线观看| 青青草视频在线视频观看| 国产成人午夜福利电影在线观看| 777米奇影视久久| 尤物成人国产欧美一区二区三区| 久久精品国产自在天天线| 国产69精品久久久久777片| freevideosex欧美| 能在线免费观看的黄片| 国产免费福利视频在线观看| 亚洲婷婷狠狠爱综合网| 免费无遮挡裸体视频| 日日干狠狠操夜夜爽| 国产一区二区三区综合在线观看 | 自拍偷自拍亚洲精品老妇| 99热全是精品| 国产乱人视频| 水蜜桃什么品种好| 亚洲欧美精品自产自拍| 性色avwww在线观看| 美女脱内裤让男人舔精品视频| 欧美成人a在线观看| 国产精品.久久久| 成人午夜高清在线视频| 内射极品少妇av片p| 91久久精品国产一区二区成人| 免费av不卡在线播放| 男插女下体视频免费在线播放| 亚洲国产高清在线一区二区三| 一个人观看的视频www高清免费观看| 国产精品一区二区三区四区免费观看| 日韩成人av中文字幕在线观看| 80岁老熟妇乱子伦牲交| 国产亚洲91精品色在线| 亚洲av成人精品一区久久| 亚洲国产欧美在线一区| 午夜精品一区二区三区免费看| 欧美精品国产亚洲| 大又大粗又爽又黄少妇毛片口| av又黄又爽大尺度在线免费看| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 久久这里有精品视频免费| 激情 狠狠 欧美| 国产成人一区二区在线| 少妇裸体淫交视频免费看高清| 成年女人在线观看亚洲视频 | 亚洲熟女精品中文字幕| 国产精品一二三区在线看| av在线观看视频网站免费| 人妻系列 视频| 国产三级在线视频| 国产视频内射| 国产精品无大码| 亚洲精品中文字幕在线视频 | 在线观看人妻少妇| 日本色播在线视频| 极品教师在线视频| 少妇被粗大猛烈的视频| 亚洲av电影不卡..在线观看| 热99在线观看视频| 乱码一卡2卡4卡精品| 日韩三级伦理在线观看| 精品国内亚洲2022精品成人| 九色成人免费人妻av| 久久久精品免费免费高清| 国产男人的电影天堂91| 秋霞伦理黄片| 最近视频中文字幕2019在线8| 久久久久久久久久成人|