宋亞麗,鄧 靖,馮 嬌,馬曉雁,李青松
(1.浙江科技學(xué)院建筑工程學(xué)院,浙江 杭州 310023;2.浙江工業(yè)大學(xué)建筑工程學(xué)院,浙江 杭州 310014;3.廈門理工學(xué)院水資源環(huán)境研究所,福建 廈門 361005)
?
色譜-質(zhì)譜聯(lián)用法識別飲用水中新型含氮消毒副產(chǎn)物氯代亞胺
宋亞麗1,鄧靖2,馮嬌2,馬曉雁2,李青松3
(1.浙江科技學(xué)院建筑工程學(xué)院,浙江 杭州310023;2.浙江工業(yè)大學(xué)建筑工程學(xué)院,浙江 杭州310014;3.廈門理工學(xué)院水資源環(huán)境研究所,福建 廈門361005)
近年來,以氨基酸為前體物的含氮氯代消毒副產(chǎn)物成為飲用水安全保障研究領(lǐng)域的熱點(diǎn)問題,其中氯代亞胺是具有嗅味特征的含氮消毒副產(chǎn)物,化學(xué)結(jié)構(gòu)為R-CH=NCl。本研究基于氣相色譜-質(zhì)譜(GC/MS)法和高效液相色譜-質(zhì)譜(HPLC/MS)法,鑒定識別了源于苯丙氨酸(phenylalanine, Phe)等氯代亞胺類消毒副產(chǎn)物;通過GC/MS譜圖對其他未知消毒副產(chǎn)物進(jìn)行定性分析,解析了苯丙氨酸氯消毒過程的轉(zhuǎn)化規(guī)律。結(jié)果表明:在氯化過程中,纈氨酸(valine, Val)可生成異丙基氯代亞胺(isobutyrochloraldimine)副產(chǎn)物;苯丙氨酸可生成氯代苯乙亞胺(chlorophenylacetaldimine)、苯乙醛(phenylacetaldehyde)和二苯基吡啶(2,6-diphenylpyridine)等副產(chǎn)物;其反應(yīng)途徑為Phe與氯反應(yīng)進(jìn)行一氯取代和二氯取代生成氯代Phe和二氯代Phe,二氯代Phe能分解生成氯代苯乙亞胺類物質(zhì)。采用液液萃取-HPLC分離提純氯代苯乙亞胺,以GC/MS定量分析飲用水中氯代亞胺類消毒副產(chǎn)物的含量水平。結(jié)果發(fā)現(xiàn),在某城市4座水廠的出廠水中均檢出氯代苯乙亞胺,濃度為5.03~11.26 μg/L。這說明原水中存在氨基酸類溶解性有機(jī)氮時(shí),消毒過程會產(chǎn)生氯代亞胺類消毒副產(chǎn)物,導(dǎo)致飲用水存在此類消毒副產(chǎn)物的污染風(fēng)險(xiǎn)。
飲用水;氨基酸;含氮消毒副產(chǎn)物;異丙基氯代亞胺;氯代苯乙亞胺
人類生產(chǎn)、生活過程中排放廢物的增多,引起水源中污染物種類激增,導(dǎo)致水源的污染愈演愈烈。由于制水工藝控制有機(jī)污染能力有限,飲用水中消毒副產(chǎn)物(disinfection by-products, DBPs)的檢出種類越來越多。目前確定的DBPs只是冰山一角,且多以含碳天然有機(jī)物為前體物進(jìn)行因果溯源和定性。但實(shí)際上,水中含氮有機(jī)物也是有機(jī)污染的重要組成部分,且含氮DBPs(nitrogen disinfection byproducts, N-DBPs)與C-DBPs在結(jié)構(gòu)和特性上明顯不同。含氮有機(jī)物中的氨基酸是最常見的天然有機(jī)物,Hagedorm等[1]調(diào)查表明,地表水中可溶性含氮有機(jī)物中的氨基酸可達(dá)75%。氨基酸作為DBPs前體物的一種,在消毒過程中產(chǎn)生的副產(chǎn)物更為復(fù)雜,毒性更強(qiáng),諸如鹵乙腈(haloacetonitriles, HANs)、鹵代硝基甲烷(halonitromethanes, HNMs)、亞硝胺(nitrosamines)、鹵代乙酰胺(haloacetamides, HAcAms)等[2-8]。水體富營養(yǎng)化加劇,各地藻華爆發(fā),由此引發(fā)的生物源性氨基酸釋放,以及城市污水排放等外源性輸入是水環(huán)境中氨基酸的主要來源。
目前,我國水廠普遍采用氯系氧化劑作為消毒劑,在氯殺菌的同時(shí)可與原水中天然存在的有機(jī)物和環(huán)境污染有機(jī)物反應(yīng)產(chǎn)生多種氯代消毒副產(chǎn)物,其中有些副產(chǎn)物具有生物毒性,有些副產(chǎn)物具有降低水質(zhì)的特性(如產(chǎn)生嗅味等)。Froese等[9-10]闡明了飲用水經(jīng)氯消毒后,水中存在的多種氨基酸可產(chǎn)生多種短鏈醛;除此之外,在高Cl/N的氯化條件下,氨基酸還可能成為另外一類嗅味消毒副產(chǎn)物——N-氯代亞胺(N-chloroaldimine, R-CH=NCl)的前體物。從結(jié)構(gòu)上看,N-氯代亞胺的碳氮雙鍵為極性不飽和鍵,比碳氧雙鍵難斷裂,因此亞胺的活性低于相應(yīng)的醛酮,但在亞胺氮原子上連接的吸電子取代基可增強(qiáng)碳氮雙鍵的親電性。與氯胺相比,N-氯代亞胺可穩(wěn)定存在于自來水中,其半衰期與環(huán)境溫度有關(guān),20 ℃時(shí)的半衰期為50 h,15 ℃時(shí)的半衰期為幾百小時(shí),這使其足以穩(wěn)定存在并到達(dá)管網(wǎng)末稍[11]。
作為氯消毒副產(chǎn)物,N-氯代亞胺的研究起源于污水處理過程[11]。隨著水源中含氮有機(jī)物污染的日益嚴(yán)重,F(xiàn)reuze和Brosillon等[12-14]對氯代亞胺的研究從污水消毒副產(chǎn)物領(lǐng)域轉(zhuǎn)移到飲用水領(lǐng)域?,F(xiàn)已報(bào)道的文章均以配水試驗(yàn)為主,探討了氨基酸為前體物時(shí)此類含氮氯消毒副產(chǎn)物的產(chǎn)生,而關(guān)于飲用水消毒副產(chǎn)物N-氯代亞胺的研究尚未見報(bào)道。
本研究擬采用氣相色譜-質(zhì)譜(GC/MS)聯(lián)用技術(shù)分析氨基酸氯化過程中的消毒副產(chǎn)物,結(jié)合高效液相色譜(HPLC)分離提純,液液萃取-GC/MS對苯丙氨酸主要消毒副產(chǎn)物苯乙亞胺進(jìn)行定量分析,考察飲用水氯代亞胺類消毒副產(chǎn)物的污染現(xiàn)狀,以進(jìn)一步補(bǔ)充飲用水氯消毒風(fēng)險(xiǎn)的相關(guān)內(nèi)容,為解決供水安全問題提供技術(shù)支持。
1.1儀器
TSQ MS高效液相色譜-質(zhì)譜聯(lián)用儀,配有Luna C18毛細(xì)管柱(150 mm×2.1 mm×5 μm)和Focus-DSQ Ⅱ氣相色譜-質(zhì)譜聯(lián)用儀:均為美國Thermo Scientific公司產(chǎn)品;GC-2014 GC-ECD氣相色譜儀,RTX-5MS毛細(xì)管柱(30 m×0.25 mm×0.25 μm),RTX-5毛細(xì)管柱(30 m×0.25 mm×0.25 μm):均為日本Shimadu公司產(chǎn)品;N-EVAP-111氮吹儀:美國Organomation公司產(chǎn)品;Nanopure超純水器:美國Barnstead公司產(chǎn)品。
1.2試劑及材料
纈氨酸(99%)、苯丙氨酸(98.5%)、甲醇(99.9%,色譜純)、乙腈(99.9%,色譜純)、氯仿(99.8%,色譜純)、無水硫酸鈉(99.0%):美國Fisher Scientific公司產(chǎn)品;氯酸鈉(8.25%):美國Clorox公司產(chǎn)品;磷酸氫鉀(98.0%)、磷酸二氫鉀(98.0%):美國Alfa Aesar公司產(chǎn)品;實(shí)驗(yàn)用水:18 MΩ·cm超純水。實(shí)驗(yàn)所用玻璃器皿均經(jīng)超聲并以去離子水洗滌,烘干備用。
1.3實(shí)驗(yàn)條件
1.3.1GC/MS條件進(jìn)樣口溫度150 ℃,不分流進(jìn)樣;升溫程序:初始溫度30 ℃,保持10 min,以5 ℃/min升溫至100 ℃,保持10 min,以10 ℃/min升溫至150 ℃,保持2 min。質(zhì)譜接口溫度250 ℃,EI源,離子源溫度280 ℃,全掃描模式,質(zhì)量掃描范圍m/z25~300。
1.3.2HPLC/MS條件流動相:純水+1%甲酸(A),乙腈+1%甲酸(B);梯度洗脫程序:0~10 min、95%A(5%B),10~15 min、5%A(95%B),16~20 min、95%A(5%B)。電噴霧離子化電離源(ESI),噴霧電壓3 000 V,離子傳輸毛細(xì)管溫度350 ℃,鞘氣壓力207 kPa,質(zhì)量掃描范圍m/z100~1 500,掃描時(shí)間0.3 s。
1.4實(shí)驗(yàn)步驟
采用次氯酸鈉作為消毒劑,氯消毒實(shí)驗(yàn)前確定有效氯濃度。所有的氨基酸氯化反應(yīng)均在250 mL容量瓶中進(jìn)行,反應(yīng)物的氯氮比為2.0,反應(yīng)溶液均采用磷酸鹽緩沖溶液調(diào)節(jié)pH為7.0,置于冰水浴中攪拌反應(yīng)10 min。反應(yīng)后的混合液經(jīng)氯仿萃取,無水硫酸鈉干燥后進(jìn)行GC/MS和HPLC/MS分析。
2.1纈氨酸氯代消毒副產(chǎn)物分析及生成途徑
Brosillon等[14]通過頂空-氣質(zhì)聯(lián)用確定了纈氨酸(valine, Val)、亮氨酸(leucine, Leu)、異亮氨酸(isoleucine, Ile)、苯丙氨酸(phenylalanine, Phe)等氯化副產(chǎn)物,闡明了Val可產(chǎn)生N-氯代異丁基亞胺。本實(shí)驗(yàn)將纈氨酸(1.17 g)與次氯酸(有效氯濃度0.02 mol/L)于100 mL緩沖液中反應(yīng)10 min,反應(yīng)混合液經(jīng)氯仿提純,GC/MS進(jìn)樣分析,可確定產(chǎn)物氯代異丁基亞胺(chloroisobutaldimine)的保留時(shí)間為9.46 min,其色譜圖示于圖1。由于C=N鍵相對于R-C和N—Cl穩(wěn)定,電子轟擊分子過程中容易導(dǎo)致C=N兩側(cè)R-C和N—Cl的斷裂,從而形成氯代異丁基亞胺特征碎片m/z70和m/z43,其質(zhì)譜圖示于圖2。
圖1 纈氨酸氯代消毒副產(chǎn)物色譜圖Fig.1 Chromatogram of chlorinated by-product originated form valine
2.2氯代苯乙亞胺的鑒定與生成途徑分析
圖2 氯代異丁基亞胺質(zhì)譜圖Fig.2 Spectrum of chloroisobutaldimine
苯丙氨酸(phenylalanine, Phe)的消毒副產(chǎn)物主要有3種,其色譜圖示于圖3a。物質(zhì)1的保留時(shí)間為8.90 min,與GC/MS質(zhì)譜庫中苯乙醛(phenylacetaldehyde)的標(biāo)準(zhǔn)質(zhì)譜圖一致,因此確定該物質(zhì)為苯乙醛,其質(zhì)譜結(jié)構(gòu)示于圖4a。物質(zhì)2的保留時(shí)間為10.75 min,根據(jù)文獻(xiàn)[3]描述應(yīng)為氯代苯乙亞胺(chlorophenylacetaldimine),但經(jīng)NIST標(biāo)準(zhǔn)圖庫檢索,結(jié)果卻為苯乙腈(phenylacetonitrile)。為進(jìn)一步鑒別該物質(zhì),進(jìn)行了苯乙腈標(biāo)準(zhǔn)品GC/MS分析對比和Phe氯消毒副產(chǎn)物HPLC/MS分析。苯乙腈標(biāo)準(zhǔn)品的色譜圖示于圖3b,其保留時(shí)間為20.04 min,與圖3a中消毒副產(chǎn)物2的保留時(shí)間不同,但副產(chǎn)物2與苯乙腈具有類似的質(zhì)譜圖(相似度低于20%),在電子轟擊條件下可產(chǎn)生相似的碎片。為了進(jìn)一步鑒定識別副產(chǎn)物2,將Phe消毒副產(chǎn)物經(jīng)HPLC/MS分析,結(jié)果示于圖5。由圖5可知,在m/z153.00~155.00掃描范圍內(nèi),保留時(shí)間為15.716 min的物質(zhì)峰明顯增大,且在該峰的質(zhì)譜圖中,m/z153.99∶m/z155.97=3∶1,說明該物質(zhì)中含氯原子,且該分子質(zhì)量與氯代苯乙亞胺(chlorophenylacetaldimine)相符。結(jié)合GC/MS分析結(jié)果,確定消毒副產(chǎn)物2為氯代苯乙亞胺。物質(zhì)3的保留時(shí)間為23.86 min,經(jīng)檢索為2,6-二苯基吡啶(2, 6-diphenylpyridine),其質(zhì)譜結(jié)構(gòu)示于圖4c。
Phe與氯的反應(yīng)過程復(fù)雜,涉及取代、水解、縮合等反應(yīng),典型的反應(yīng)路徑示于圖6。Phe與氯反應(yīng)首先生成氯胺類物質(zhì),當(dāng)Cl/N較低時(shí),發(fā)生水解反應(yīng),生成醛類物質(zhì);當(dāng)Cl/N較高時(shí),氯胺可進(jìn)一步被氯化,經(jīng)縮合等反應(yīng)生成腈、氯代亞胺。苯乙醛的生成途徑有兩種:一種是氯代Phe在HClO的作用下分解脫去HCl和CO2生成亞胺中間體,進(jìn)一步水解得到苯乙醛;另一種是由二氯代Phe分解脫去HCl和CO2生成亞胺中間體,最終生成苯乙醛。二氯代Phe在HClO的作用下分解脫去HCl和CO2生成亞胺中間體N-氯代苯乙亞胺,中間體在HClO的作用下可進(jìn)一步生成含氰基的苯乙腈(phenylacetonitrile)。Panzella等[8]研究表明:Phe與NaClO反應(yīng)除生成常見的醛、腈和氯代亞胺類副產(chǎn)物外,還可生成吡啶類物質(zhì);與Phe同為芳香族氨基酸的酪氨酸(Tyr)與NaClO發(fā)生齊齊巴賓(chichibabin)縮合反應(yīng)可生成3,5 -二(4-羥基苯基)吡啶。
圖3 Phe氯消毒副產(chǎn)物(a)及苯乙腈標(biāo)準(zhǔn)品(b)的色譜圖Fig.3 Chromatogram comparison of phenylacetonitrile (standard) (a) and chlorinated byproducts (b) of phenylalanine
圖4 Phe氯消毒主要副產(chǎn)物的質(zhì)譜圖Fig.4 Spectrums of main byproducts of phenylalanine
注:a.總離子流色譜圖;b.選擇離子掃描色譜圖;c.質(zhì)譜圖圖5 消毒副產(chǎn)物2的HPLC/MS分析結(jié)果Fig.5 Chromatograms of disinfection byproducts 2 by HPLC/MS
圖6 Phe氯化產(chǎn)物反應(yīng)途徑[15-18] Fig.6 Hypothesized formation pathways of chlorinated byproducts from phenylalanine[15-18]
2.3南方某市自來水中氯代苯乙亞胺的檢測
GC條件:柱溫40 ℃;進(jìn)樣口溫度150 ℃;升溫程序:初始溫度40 ℃,保持5 min,以10 ℃/min升至200 ℃,保持5 min;接口溫度250 ℃;ECD檢測器溫度300 ℃;氯代苯乙亞胺出峰時(shí)間13.58 min。
將氨基酸氯化提純制得的7.07 g/L氯代苯乙亞胺標(biāo)樣直接溶于1 mL甲醇,制得氯代苯乙亞胺儲備液。采用純水稀釋配制46.2~770 μg/L一系列梯度濃度標(biāo)準(zhǔn)溶液,取100 mL各標(biāo)準(zhǔn)溶液,加入2 mL正己烷,以1 500 r/min液液萃取15 min,靜置,取上層有機(jī)相。有機(jī)相萃取液采用GC-ECD檢測,以濃度為橫坐標(biāo),峰面積為縱坐標(biāo),繪制標(biāo)準(zhǔn)曲線,線性相關(guān)系數(shù)R2為0.995 6,檢測限為2.5 μg/L。2015年8月取南方某市多個(gè)飲用水廠的出廠水,液液萃取進(jìn)行水樣富集預(yù)處理,用GC-ECD檢測實(shí)際水樣中氯代苯乙亞胺濃度,結(jié)果列于表1。
南方某市4座水廠以地表河流為水源,水處理工藝各不相同,但供水前均進(jìn)行加氯消毒。以4座飲用水廠為考察目標(biāo),調(diào)查了出廠水中氯代苯乙亞胺的存在水平,水廠2和水廠4的水樣檢測色譜圖示于圖7。結(jié)果表明,由于地表水源暴露及接納污染,原水有機(jī)污染指標(biāo)相對較高,出廠水中均檢出氯代苯乙亞胺,含量水平為5.03~11.26 μg/L,相對于其他含氮氯系消毒副產(chǎn)物而言[19-21],存在含量偏高的現(xiàn)象。
表1 某市水廠出廠水中氯代苯乙亞胺含量
圖7 某水廠出廠水中氯代苯乙亞胺色譜圖Fig.7 Chromatogram of chlorophenylacetaldimine in finished water of certain waterworks
本研究建立了水環(huán)境中含氮消毒副產(chǎn)物的GC/MS及HPLC/MS分析方法,鑒定并分析了以氨基酸為前體物的氯代亞胺類消毒副產(chǎn)物。氨基酸為前體物的新型氯代亞胺類含氮消毒副產(chǎn)物,包括纈氨酸氯化生成的異丙基氯代亞胺副產(chǎn)物,苯丙氨酸氯化生成的氯代苯乙亞胺。通過分析南方某市水廠的出廠水,檢出的氯代苯乙亞胺濃度為5.03~11.26 μg/L,說明國內(nèi)供水系統(tǒng)中存在氯代亞胺類消毒副產(chǎn)物污染。有關(guān)氯代亞胺類消毒副產(chǎn)物的嗅味、毒性等特征還需進(jìn)一步研究。
[1]FRANK H, PATRICK S, PETER W, et al. Export of dissolved organic carbon and nitrogen from gleysol dominated catchments-the significance of water flow paths[J]. Biogeochemistry, 2000, 50(2): 137-161.
[2]MARK M G, ELIZABETH W D, McCALLA K, et al. Haloacetonitrilesvs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?[J] Environmental Science and Technology, 2007, 41(2): 645-651.
[3]CHU W H, GAO N Y, DENG Y, et al. Precursors of dichloroacetamide, an emerging nitrogenous DBP formed during chlorination or chloramination[J]. Environmental Science and Technology, 2010, 44(10): 3 908-3 912.
[4]CHU W H, GAO N Y, DENG Y, et al. Formation of nitrogenous disinfection by-products from pre-chloramination[J]. Chemosphere, 2011, 85(7): 1 187-1 191.
[5]YANG L Y, KIM D, UZUN H, et al. Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis[J]. Chemosphere, 2015, 121: 84-91.
[6]YANG X, SHEN Q Q, GUO W H, et al. Precursors and nitrogen origins of trichloronitromethane and dichloroacetonitrile during chlorination/chloramination[J]. Chemosphere, 2012, 88(1): 25-32.
[7]YANG X, CHII S, PAUL W. Factors affecting formation of haloacetonitriles, haloketones, chloropicrin and cyanogen halides during chloramination[J]. Water Research, 2007, 41(6): 1 193-1 200.
[8]YU Y, RECKHOW D A. Kinetic analysis of haloacetonitrile stability in drinking waters[J]. Environmental Science and Technology, 2015, 49(18): 11 028-11 036.
[9]FROSES K L, WOLANSKI A, HRUDEY S E. Factors governing odorous aldehyde formation as disinfection by-products in drinking water[J]. Water Research, 1999, 33(6): 1 355-1 364.
[11]INGRID F, STéPHEN B, DORINE H, et al. Odorous products of the chlorination of phenylalanine in water: Formation, evolution, and quantification[J]. Environmental Science and Technology, 2004, 38(15): 4 134-4 139.
[12]INGRID F, STPHEN B, ALAIN L, et al. Effect of chlorination on the formation of odorous disinfection by-products[J]. Water Research, 2005, 39(12): 2 636-2 642.
[13]INGRID F, STéPHEN B, JéRéMY A, et al. Impact of UV-irradiation on the formation of odorous chloroaldimines in drinking water[J]. Chemosphere, 2006, 63(10): 1 660-1 666.
[14]STEPHAN B, MARGUERITE L, EMILIE R, et al. Analysis and occurrence of odorous disinfection by-products from chlorination of amino acids in three different drinking water treatment plants and corresponding distribution networks[J]. Chemosphere, 2009, 77(8): 1 035-1 042.
[15]劉蕓, 付榮恕. 氨基酸氯化消毒副產(chǎn)物的生成機(jī)理研究[J]. 山東林業(yè)科技,2010,40(1):86-88.
LIU Yun, FU Rongshu. Formation and mechanism of by-products during amino acids chlorination[J]. Journal of Shandong Forestry Science and Technology, 2010, 40(1): 86-88(in Chinese).
[16]CONYERS B, SCULLY F E. N-chloroaldimines. 3. chlorination of phenylalanine in model solutions and in a wastewater[J]. Environmental Science and Technology, 1993, 27(2): 261-266.
[17]WU Q Y, HU H Y, ZHAO X, et al. Characterization and identification of antiestrogenic products of phenylalanine chlorination[J]. Water Research, 2010, 44(12): 3 625-3 634.
[18]PANZELLA L, DI DONATO P, COMES S, et al. Remarkable chichibabin-type cyclotrimerisation of 3-nitrotyrosine, tyrosine and phenylalanine to 3, 5-diphenylpyridine derivatives induced by hypochlorous acid[J]. Tetrahedron Letters, 2005, 46(38): 6 457-6 460.
[19]KRASNER S W, WEINBERG H S, RICHARDSON S D, et al. Occurrence of a new generation of disinfection by-products[J]. Environmental Science and Technology, 2006, 40(23): 7 175-7 185.
[20]GOSLAN E H, KRASNER S W, VILLANUEVA C M, et al. Disinfection by-product occurrence in selected European waters[J]. Joural of Water Supply Research and Technology-AQUA, 2014, 63(5): 379-390.
[21]BOND T, HUANG J, TEMPLETON M R, et al. Occurrence and control of nitrogenous disinfection by-products in drinking water-A review[J]. Water Research, 2011, 45(15): 4 341-4 354.
Indentification of New Nitrogenous Disinfection By-products Chlorophenylacetaldmine in Drinking Water by Chromatogram Coupled with Spectrum
SONG Ya-li1, DENG Jing2, FENG Jiao2, MA Xiao-yan2, LI Qing-song3
(1.SchoolofCivilEnginneeringandArchitecture,ZhejiangUniversityofScienceandTechnology,Hangzhou310023,China; 2.CollegeofCivilEngineeringandArchitecture,ZhejiangUniversityofTechnology,Hangzhou310014,China; 3.WaterResourcesandEnvironmentalInstitute,XiamenUniversityofTechnology,Xiamen361005,China)
Nitrogenous disinfection byproducts (N-DBP) in drinking water attract more and more attention, among which chloraldimines are one kind of off-flavor N-DBP generated from different kinds of amino acids, posing the general chemical structure as R-CH=NCl. Based on GC/MS and HPLC/MS, chloroaldmines originated from valine and phenylalanine were identified. The other unknown by-products of phenylalanine were identified by GC/MS and the transformation pathway of phenylalanine was proposed. The results show that chlorination of valine (Val) can induce isobutyrochloraldimine, while phenylalanine (Phe) can induce chlorophenylacetaldimine, phenylacetaldehyde and 2, 6-diphenylpyridine. Phe reacts with chlorine to produce chlorophenylalanine and dichlorophenylalanine, which can decompose and transform to phenylacetaldehyde. Dichlorophenylalanine can also produce N-chlorophenylacetaldimine. HPLC coupled with liquid-liquid extraction was emplyed to purify chlorophenylacetaldimine, and GC/MS was used to determine the concentration. Occurrence of chlorophenylacetaldimine was measured, and the concentration ranged from 5.03-11.26 μg/L in four drinking water treatment plants of a certain city. Results show that the contamination risk of chloroaldmine exists in drinking water.
drinking water; amino acid; nitrogenous disinfection byproducts; isobutyrochloraldimine; chlorophenylacetaldimine
2015-09-22;
2015-12-21
國家自然科學(xué)基金項(xiàng)目(51208468,51378446);浙江省自然科學(xué)基金項(xiàng)目(LY16E080007);浙江省環(huán)境科學(xué)與工程重中之重開放基金(20130307);江蘇省環(huán)境工程重點(diǎn)實(shí)驗(yàn)室開放基金(Zd131202)資助
宋亞麗(1974—),女(漢族),吉林人,副教授,從事飲用水微量有機(jī)污染控制研究。E-mail: yali_song@sina.com
馬曉雁(1978—),女(漢族),山東人,副教授,從事飲用水安全保障技術(shù)研究。E-mail: mayaner620@163.com
O657.63
A
1004-2997(2016)02-0156-07
10.7538/zpxb.2016.37.02.0156