• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectral Analysis of Interaction between Human Telomeric G-Quadruplex and Liliflorin A, the First Lignan Derivative Interacted with G-Quadruplex DNA

    2016-06-15 16:39:04LIUTingtingZHOUShuangJIAQianlanWANGWenshuYANXiaoqianZHANGWenhaoWANGShuaiqiJIAOYuguo
    光譜學(xué)與光譜分析 2016年3期
    關(guān)鍵詞:紫玉蘭中央民族大學(xué)端粒

    LIU Ting-ting, ZHOU Shuang, JIA Qian-lan, WANG Wen-shu,2*,YAN Xiao-qian, ZHANG Wen-hao, WANG Shuai-qi, JIAO Yu-guo

    1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

    2. Beijing Engineering Research Center of Food Environment and Health, Minzu University of China, Beijing 100081, China

    3. Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China

    Spectral Analysis of Interaction between Human Telomeric G-Quadruplex and Liliflorin A, the First Lignan Derivative Interacted with G-Quadruplex DNA

    LIU Ting-ting1, ZHOU Shuang1, JIA Qian-lan1, WANG Wen-shu1,2*,YAN Xiao-qian1, ZHANG Wen-hao3, WANG Shuai-qi1, JIAO Yu-guo1

    1. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China

    2. Beijing Engineering Research Center of Food Environment and Health, Minzu University of China, Beijing 100081, China

    3. Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China

    Human telomeric G-quadruplex is a four-stranded structure folded by guanines (G) via Hoogsteen hydrogen bonding. The ligands which stabilize the G-quadruplex are often telomerase inhibitors and may become antitumor agents. Here, the interaction between a lignan derivative liliflorin A and human telomeric sequence dGGG(TTAGGG)3G-quadruplex HTG21 were examined by CD, FRET, and NMR spectroscopic methods. In addition, Molecular Docking was used to study the binding of liliflorin A to dTAGGG(TTAGGG)3G-quadruplex HTG23. The CD data showed that liliflorin A enhanced HTG21Tm. TheTmvalue of G-quadruplex was enhanced 3.2 ℃ by 4.0 μmol·L-1liliflorin A in FRET. The NMR spectra of HTG21 showed vivid alteration after reacting with liliflorin A in 3 hours. Molecular Docking suggested liliflorin A bound to the wide groove of HTG23 at G9, G10, G16 and G17. Liliflorin A was the first lignan derivative that could stabilize HTG21 selectively and provided a new candidate for antitumor drug design targeting on human telomeric G-quadruplex.

    Liliflorin A; G-quadruplex; Human telomere; Spectral analysis; Interaction

    Introduction

    In the process of screening bioactive compounds, spectral analysis could give straightforward, vivid and sensitive information for chemical reactions between ligand and biomacromolecule which makes the screening fast and efficiently. Guanine-rich DNA sequencesinvivo, such as telomeric DNA sequence Tel21, Tel26 and oncogene promoter regions (c-myc,bcl-2, or c-kit), can form G-quadruplex via Hoogsteen hydrogen bonding, which plays an important role in many significant bioprocesses[1]. Telomerase is a cancer-specific reverse transcriptase activated in 80%~90% of tumors, and expressed in very low levels or almost undetectable in normal cells[2]. It is reported that when telomeric DNA sequence formed G-quadruplex, it becomes insensitive to the elongation by the telomerase, which is a significant biological process for cells to proliferate[3]. Thus, ligands binding to and stabilizing telomeric G-quadruplex could inhibit the activity of telomerase and induce apoptosis of tumors[4].

    However, the low selectivity of the reported ligands over duplex DNA and other DNA folded structures lead to their various bioactivities and inevitable side effects, when they were evaluated as antitumor leads. Accordingly, screening new ligands with high selectivity on human telomeric G-quadruplex is deemed to be an attractive tactic for developing effective antitumor leads[5].

    In our previous research, a new lignan named liliflorin A was extracted fromMagnolialilifloraDesr. (Magnoliaceae), and it relieved DNA damages induced by UVB irradiation in rat lymphocyte cells in SCGE assay[6]. It is reported that UVB-irradiation may cause a selective excitation of guanine followed by its oxidative decomposition in the telomeric structure[7]. Thus, it is deduced by us that liliflorin A might interact with G-quadruplex in the telomeric structure, leading to its protective effect in SCGE, which is the motivation of our present study. Herein, due to their sensitivity and efficiency, CD spectra were carried out to investigate whether liliflorin A could stabilize human telomeric G-quadruplex: HTG21 {dGGG(TTAGGG)3}. Furthermore, a series of FRET were recorded to examine the selective binding toward HTG21, the results of which were confirmed by NMR experiments. Finally, Docking was performed to check how and where liliflorin A could interact with HTG23 {dTAGGG(TTAGGG)3} as a confirmation of the spectral analysis. As a result, liliflorin A is the first lignan isolated from plants which can stabilize HTG21 selectively, compared with not only the hairpin loop structure nucleotide F10T, but also the two G-quadruplex formed by oncogene promoter regions sequences c-mycand c-kit. It is a good candidate for antitumor drug design targeting human telomeric G-quadruplex.

    1 Materials and methods

    1.1 Reagents

    DNA (HTG21: 5’-G3(T2AG3)3-3’; F21T: 5’-FAM-G3(T2AG3)3-TAMRA-3’; c-myc2345: 5’-TGAG3TG4-AG3TG4A2-3’; F-myc-T: 5’-FAM-GAG3TG4AG3TG4A2G-TAMRA-3’; c-kit: 5’-AG3AG3CGCTG3AG2AG3-3’; F-kit1: 5’-FAM-G3AG3CGCTG3AG2AG3-TAMRA-3’; ds26: 5’-CA2TCG2ATCGA2T2CGATC2GAT2G-3’; F10T: 5’-FAM-TATAGCTATA-HEG-TATAGCTATA-TAMRA-3’) were purchased from Shanghai Sangon Biotechnology Co. (Shanghai, China), purified by PAGE.

    Liliflorin A was abstracted fromMagnolialiliifloraDesr. in our laboratory[6]. Berberine and Quercetin were obtained from National Institute for Food and Drug Control (Beijing, China) and were used without further purification. Deuteriumoxide (D2O) was obtained from Sigma-Aldrich Chemical Co. (Germany). Dimethyl sulfoxide (DMSO) was purchased from Sigma Co. (USA). KCl, NaCl, KH2PO4and K2HPO4were of all analytical reagent grades purchased from Beijing Chem. Co. Tris was purchased from Cambridge Isotope Laboratories, Inc.

    1.2 Sample preparation

    Liliflorin A, Berberine and Quercetin were initially dissolved as a 50.0 μmol·L-1stock solution in DMSO. The oligomer DNA was heated at 95.0 ℃ for 5 minutes, then slowly cooled to room temperature, and incubated at 4.0 ℃ for 6 hours at least. The ligand-DNA complex were formed by adding small aliquots of compound from 50.0 μmol·L-1solution into the DNA samples in CD and FRET experiments. The solution was equilibrated at room temperature for 24.0 hours before measurements. Final analysis of the CD and FRET data were carried out by Origin 8.0 (OriginLab Corp.).

    1.3 CD experiments

    The oligomer DNA (HTG21) at a final concentration of 5.0 μmol·L-1was diluted in 10.0 mmol·L-1Tris-HCl buffer (containing 100.0 mmol·L-1NaCl, pH 7.4) to be tested by CD experiments. Experiment was performed at 25.0 ℃ using a Pistar π-180 spectropolarimeter. The scan of the buffer alone was used as the background, which was subtracted from the average scan for each sample. A quartz cuvette with 4 mm path length was used for the spectra recorded over a wavelength range of 230~450 at 1 nm bandwidth, 1 nm step size, and 0.5 s time per point. The CD spectrum data were obtained from 230 to 450 nm[8]. CD-melting experiments were taken at 295 nm and at intervals of 5.0 ℃ over the range 10.0~90.0 ℃, with a constant temperature being maintained for 1s prior to each reading to ensure a stable value[9]. The final data were the average of three measurements.

    1.4 FRET experiments

    Fluorescence melting curves were determined using a real-time PCR machine (MYIQ2, Bio-rad, USA), with 0.2 μmol·L-1of labeled oligomer DNA (F21T, F10T, F-myc-T, F-kit1) in the 10.0 mmol·L-1Tris-HCl buffer (pH 7.4) containing 60.0 mmol·L-1KCl of a total reaction volume of 20 μL. Fluorescence readings with excitation at 470 nm and detection at 530 nm were taken at intervals of 1.0 ℃ over the range 37.0~99.0 ℃, with a constant temperature being maintained for 30 s prior to each reading to ensure a stable value[9]. As the competitor, a series of double-stranded (ds26) concentration was used by a competitive FRET-melting experiment.

    1.5 NMR experiments

    The oligonucleotides (HTG21, c-myc2345 and c-kit) were dissolved in 80% phosphate buffer solution (20.0 mmol·L-1KH2PO4/K2HPO4, 70.0 mmol·L-1KCl, 90%H2O/10% D2O, pH 7.4) and 20% DMSO-d6. The known concentration of (0.01 mmol·L-1) Dimethyl-2-silapentane-5-sulfonate (DSS) was used as internal reference. The concentrations of each G-quadruplex recorded in the NMR samples were 1.0 mmol·L-1. As the NMR experiments required relatively high concentration of compounds (1.0 mmol·L-1), but the compounds were insoluble in water at such high concentration, thus, 20% DMSO has been added to enhance the solubility of the compound. Liliflorin A was first dissolved in DMSO-d6 as 200.0 mmol·L-1stock solution. The ligand-quadruplex complex was formed by adding small aliquots of compound from 200.0 mmol·L-1solution into the G-quadruplex samples (HTG21, c-myc2345 and c-kit). The molar ratio of [ligand]/[G-quadruplex] was 1∶1 in the NMR experiments. The solution was equilibrated at room temperature for 24 hours before measurements.1H-NMR spectra of the ligand-quadruplex complex were recorded every one hour.

    NMR experiments were performed on a Bruker AVANCE 600 spectrometer equipped with a 5 mm BBI probe capable of delivering z-field gradients. The1H-NMR spectra were recorded by the standard Bruker pulse program p3919gp that applies 3-9-19 pulses with gradients for water suppression, 2.0 s relaxation delay, 64 K data points, 16 ppm spectrum width, 128 scans. All NMR experiments were carried out at 298 K.

    1.6 Docking experiments

    Calculations were carried out using DockingServer (http://www.dockingserver.com). Gasteiger partial charges were added to the ligand atoms. Non-polar hydrogen atoms were merged, and rotatable bonds were defined. Docking calculations were carried out on untitled protein model. Essential hydrogen atoms, Kollman united atom type charges, and solvation parameters were added with the aid of AutoDock tools[10]. The crystal structure of the telomeric G-quadruplex (PDB ID 2JSM) HTG23 was used as an initial model to study the interaction between the liliflorin A and telomeric DNA. Ligand structures were constructed in Chemdraw.

    2 Results and discussion

    2.1 Liliflorin A stable human telomeric G-quadruplex HTG21: dGGG(TTAGGG)3in Na+solution

    Circular dichroism, CD, is a useful technique to gain information about G-quadruplex DNA. It is also used to monitor the thermal melting and the kinetics of the formation of G-quadruplex[11]. The temperature, at which the G-quadruplex folded structure decomposed into the DNA unfold strand is called the melting temperature (Tm) that can be used to judge the stability of G-quadruplex structure. If ligands bind to and strengthen G-quadruplex structure, theTmvalue of G-quadruplex will be enhanced. By analyzing the melting curves shifts at the sensitive wavelength in the CD spectrum, G-quadruplexTmcan be calculated and used to estimate the stability of complex of ligand binding to G-quadruplex.

    HTG21 is reported to form different topological structures in different monovalent cation buffers. In Na+solution, a basket-type structure is formed[12], whereas a mixture of hybrid-1 and hybrid-2 type structures are formed in K+solution[13]. Due to its simplicity, a basket-ball structure was firstly chosen by us to observe if liliflorin A could stabilize HTG21 by CD spectrum. Berberine and Quercetin[14]were used as positive controls. The change of the absorption at 295 nm in the CD spectrum, a typical signal corresponding to HTG21 in Na+was recorded. The concentration of all the compounds was changed gradually from 0.0 to 200.0 μmol·L-1respectively. The data showed that theTmvalue of HTG21 was enhanced in accordance to the incensement of Liliflorin A concentration. The highestTmwas observed at 72.53 ℃ under the concentration of 75.0 μmol·L-1liliflorin A. Compared with theTmvalue of HTG21 only in Na+solution, the ΔTmwas 1.94 ℃. In addition, liliflorin A showed comparative ability on enhancing HTG21Tm, compared to berberine and quercetin at the same concentration (Table 1).

    Table 1 The melting temperatures of treated HTG21 (5.0 μmol·L-1strand concentration) after reacting with compounds in a series of concentrations in 10.0 mmol·L-1Tris-HCl buffer and 100 mmol·L-1NaCl at 25.0 ℃

    concentrations/(μmol·L-1)TmvalueofHTG21/℃aLiliflorinABerberineQuercetin070 5970 5970 5925 069 8071 0770 3650 070 1071 8671 0575 072 5372 4772 17100 072 3772 5272 79200 072 5371 7073 90

    a: All results are expressed as mean ±SE for all groups (n=3)

    Due to the higher potassium concentration within the cell, G-quadruplex structures in the presence of K+is more relevant biologically than those topological structures in Na+[15]. Thus, K+solution was used in all the later experiments.

    2.2 Liliflorin A selectively stabilize human telomeric G-quadruplex in FRET-melting

    Because of its sensitivity and flexibility, fluorescence resonance energy transfer (FRET) is widely used to investigate conformational changes of G-quadruplexes, and also becomes very popular to study the interaction between ligands and G-quadruplex[16]. The melting curve could be described through the normalized fluorescent quenching vs temperature plotting though FRET-melting experiment, due to a large difference between the fluorescence properties of the folded and unfolded doubly labeled oligonucleotides. By the analysis of the fluctuation of the melting curve under the heating process, theTmcan be given to evaluate the stability of complex of ligand binding to G-quadruplex. In the experiment, HTG21 is labeled with a FAM (fluorescent donor) on the 5’ end and a TAMRA (fluorescent acceptor) on the 3’ end. This doubly labeled oligomer was called F21T.

    2.2.1 Concentration-dependent experiment of interaction between Liliflorin A and F21T

    The melting temperature of F21T in Tris-HCl buffer containing of 60.0 mmol·L-1K+was deeply studied under a series of Liliflorin A concentration. Under the concentration ranging from 1.0 to 4.0 μmol·L-1, the melting curve of F21T indicated a high temperature shift gradually [Fig.1(a)], and the calculated ΔTmwas 0.26, 1.07, 1.61 and 3.22 ℃ respectively. The enhancement ofTmstopped as Liliflorin A concentration increased to 5.0 and 6.0 μmol·L-1[Fig.1(b)]. The data showed that Liliflorin A interacted with F21T, and stabilized the G-quadruplex in a concentration-dependent manner. The highestTm69.93 ℃ appeared at 4.0 μmol·L-1.

    Fig.1 FRET experiment was carried in 10.0 mmol·L-1Tris-HCl buffer and 60.0 mmol·L-1KCl

    (a): Melting curves of F21T (0.2 μmol·L-1) in the presence of liliflorin A in various concentrations. Curves with normalized FAM fluorescence to a 0-1 range; (b): ΔTmof F21T in the presence of liliflorin A in 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 μmol·L-1respectively

    2.2.2 Competitive FRET-melting experiment

    To further prove the binding ability of liliflorin A to F21T, a competitive FRET-melting experiment was studied, in which the excess of unlabeled 26-bp duplex-DNA (ds26) was added to the mixture system of 0.2 μmol·L-1F21T and 4.0 μmol·L-1liliflorin A. As a result, little change of the ΔTmcould be recorded (Fig.2), even when the concentration of ds26 reached 10.0 μmol·L-1, indicating that the duplex-DNA ds26 had no influence on the interaction between F21T and liliflorin A.

    Fig.2 Melting curves of the mixture of 0.2 μmol·L-1F21T and 4.0 μmol·L-1liliflorin A in 3.0 and 10.0 μmol·L-1ds26 respectively in 10.0 mmol·L-1Tris-HCl buffer and 60.0 mmol·L-1KCl

    2.2.3 Interaction between liliflorin A and F10T by FRET-melting experiment

    F10T, was another folded structure of nucleic acids which differed from G-quadruplex in having the hairpin loop structure. In FRET-melting experiment, although liliflorin A with concentration at 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 μmol·L-1was added into the mixture of F10T respectively, ΔTmof F10T remained unchanged, indicating that no interaction between liliflorin A and the hairpin loop F10T [Fig.3(a)].

    2.2.4 Interaction of liliflorin A between F-myc-T and F-kit1 G-quadruplex by FRET-melting experiment

    The other two G-quadruplexes found in the promoter regions ofmycandkitgenes were also studied by FRET-melting experiment[17]. F-myc-T and F-kit1, corresponding to the doubly labeled sequences were used respectively. ΔTmof both of the G-quadruplex were almost 0 in all the experiments, showing that the thermal stabilization of the G-quadruplex formed by c-kitsequence and c-mycsequence were not influenced, due to little interaction between liliflorin A and G-quadruplex [Fig.3(b) and (c)].

    2.3 Interactions between liliflorin A and HTG21, c-myc2345 and c-kitG-quadruplex in the NMR experiments

    Nuclear magnetic resonance spectroscopy (NMR) is an essential tool in the study of G-quadruplex nucleic acids. Imino protons atδ10~12 ppm in1H-NMR spectrum corresponding to guanine imino protons in G-tetrad formation[18]were characteristic signals for G-quadrplex. Changes in the chemical shift values of the relevant imino protons could be observed upon interaction between ligand and G-quadruplex. Depending on the types of the changes, the binding mode and the strength of the binding between the ligand and G-quadruplex can be proposed[5, 19].

    Fig.3 Melting curves of 0.2 μmol·L-1(a) F10T, (b) F-myc-T, (c) F-kit1 in the presence of liliflorin A at 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0 μmol·L-1respectively in 10.0 mmol·L-1Tris-HCl buffer and 60.0 mmol·L-1KCl

    To verify the selective interaction between liliflorin A and HTG21 observed in FRET,1H-NMR experiments were performed. There were more than 12 guanine imino protons signals atδ10~12 ppm in the1H-NMR of HTG21 G-quadruplex, indicating a mixture of conformations in K+solution[13]. After the addition of liliflorin A into HTG21 solution, the1H-NMR spectra of the mixture was recorded every one hour. It can be observed that five peaks became broad and shifted upfield [Fig.4(a) and Fig.5] gradually from 1 to 3 hours, whereas, no more changes appeared after 3 hours, showing that liliflorin A bound to HTG21 in 3 hours. Moreover, there were not any changes in1H-NMR spectra of the mixture of liliflorin A and c-myc2345 or c-kitG-quadruplex [Fig.4(b) and (c)], suggesting no interaction between liliflorin A and c-myc2345 or c-kitG-quadruplex.

    Fig.41H-NMR spectra of 1.0 mmol·L-1(a) HTG21, (b) c-myc2345, (c) c-kitG-quadruplex after reacting with 1 mmol·L-1liliflorin A ina: 0 h,b: 1 h,c: 2 h,d: 3 h, ande: 4 h in 80% phosphate buffer (20.0 mmol·L-1KH2PO4/K2HPO4, 70.0 mmol·L-1KCl, 90%H2O/10% D2O, pH 7.4) and 20% DMSO at 298 K

    2.4 Molecular Docking

    There has been an increasing interest in using docking method to carry out efficient and robust docking calculations of promising drug candidates[20]. Docking Server is a website that handles all aspects of molecular docking from ligand and bio-macromolecules set-up, provides full control on the setting of specific parameters of ligand and bio-macromolecules set up and docking calculations. Here, human telomere sequence dTAGGG(TTAGGG)3Tel23 was chosen as the G-quadruplex model[21](2JSM in PDB). The two more bases than Tel21 reinforce the G-quadruplex of Tel23, thus its structure model of HTG23 can be found in PDB.

    Fig.5 The chemical shifts’ changes of the five guanine imino protons in HTG21 after reacting with liliflorin A for 3 hours

    According to the results from Docking, liliflorin A binds to HTG23 in 1∶1 binding stoichiometry (Fig.6). The inhibi-

    Fig.6 Hypothetical molecular models showing the interactions of liliflorin A with human telemoric G-quadruplex Tel23 (PDB ID: 2JSM). The loop of G-quadruplex is shown in cartoon, and G-tetrad is shown in sticks, while liliflorin A was represented with the red sticks

    tion constant (Ki) is 387.40 μmol·L-1and the free energy of binding is -4.65 kcal·mol-1(Table 2). Moreover, the docking results indicated that liliflorin A binds to HTG23 at G9, G10, G16 and G17 (Fig.6). The calculation results confirmed the interaction between liliflorin A and HTG21 observed by spectroscopic experiments.

    Table 2 Binding energies obtained from docking of liliflorin A to HTG23 in the rank of five calculating

    3 Conclusions

    Here, an efficient screening of natural products which can interact with G-quadruplex by spectroscopic methods was reported. The results of CD, FRET and NMR spectra, as well as the results of Molecular Docking were summarized, and the following conclusions can be drawn:

    (1) In CD experiments, compared with berberine and quecertin, the melting temperature of HTG21 in sodium salt buffers was enhanced, indicating liliflorin A interacted with HTG21 and stabilized the G-quadruplex.

    (2) In FRET experiments, HTG21Tmpresented variation with the same trend of liliflorin A concentration, the highest ΔTmwas 3.2 ℃ at 4.0 μmol·L-1. In the competitive circumstance, double strings DNA ds26 had no influence on the ΔTmof HTG21. Furthermore, theTmof F10T and G-quadruplex formed by c-mycand c-kitsequence presented little fluctuation regardless of liliflorin A’s existence, indicating the selectivity of liliflorin A toward HTG21.

    (3) In NMR experiments, the spectra of HTG21 showed vivid alteration after reacting with liliflorin A in 3 hours. No changes were observed in those spectra of c-myc2345 and c-kitsequence in 3 hours. This phenomenon verified the better selectivity of liliflorin A toward HTG21.

    (4) In Molecular Docking, the results suggested liliflorin A binds to HTG23 at G9, G10, G16 and G17,which were located on wide groove at the first and second G-tetrad planes.

    Collectively, liliflorin A, isolated fromM.lilifloraby us, was reported here as the first lignan derivative, which presented a new type of ligand of G-quadruplex, and may generate a new candidate for antitumor drug design targeting on human telomeric G-quadruplex.

    [1] Maizels N. Nat. Struct. Mol. Bio., 2006, 13: 1055.

    [2] Shay J W, Bacchetti S. Eur. J. Cancer, 1997, 33: 787.

    [3] Healy K C. Oncol. Res., 1995, 7: 121.

    [4] Cosconati S, Marinelli L, Trotta R, et al. J. Am. Chem. Soc., 2009, 131: 16336.

    [5] Haudecoeur R, Stefan L, Denat F, et al. J. Am. Chem. Soc., 2013, 135: 550.

    [6] Wang W S, Lan X C, Wu H B, et al. Planta. Med., 2012, 78: 141.

    [7] Kawai K, Fujitsuka M, Majima T. Chem. Commun., 2005, 1476.

    [8] Li Z, Tan J H, He J H, et al. Eur. J. Med. Chem., 2012, 47: 299.

    [9] Ma Y, Ou T M, Hou J Q, et al. Bioorg. Med. Chem., 2008, 16: 7582.

    [10] Morris G M, Goodsell D S, Halliday R S, et al. J. Comput. Chem., 1998, 19: 1639.

    [11] Paramasivan S, Rujan I, Bolton P H. Methods, 2007, 43(4): 324.

    [12] Ambrus A, Chen D, Dai J X, et al. Nucleic Acids Res., 2006, 34(9): 2723.

    [13] Dai J X, Carver M, Punchihewa C, et al. Nucleic Acids Res., 2007, 35(15): 4927.

    [14] Bhadra K, Kumar G S. Biochim. Biophys. Acta, 2011, 1810: 485.

    [15] Redon S, Bombard S, Elizondo-Riojas M A, et al. Nucleic. Acids. Res., 2003, 31: 1605.

    [17] Dash J, Shirude P S, Hsu S D, et al. J. Am. Chem. Soc., 2008, 130(47): 15950.

    [18] Da Silva M W. Methods, 2007, 43: 264.

    [19] Mita H, Ohyama T, Tanaka Y, et al. Biochem., 2006, 45(22): 67652.

    [20] Sponer J, Spackova N. Methods, 2007, 43: 278.

    [21] Phan A T, Kuryavyi V, Luu K N, et al. Nucleic. Acids. Res., 2007, 35(19): 6517.

    O657.3

    A

    紫玉蘭素A與人端粒G-四鏈體相互作用的光譜學(xué)研究,第一個(gè)木脂素類衍生物與G-四鏈體相互作用

    劉婷婷1, 周 爽1, 賈千瀾1, 王文蜀1,2*, 閆曉倩1, 張文浩3, 王帥旗1, 焦玉國(guó)1

    1. 中央民族大學(xué)生命與環(huán)境科學(xué)學(xué)院, 北京 100081

    2. 中央民族大學(xué), 北京市食品環(huán)境與健康工程研究中心, 北京 100081

    3. 清華大學(xué), 生物醫(yī)學(xué)測(cè)試中心, 北京 100084

    人端粒G-四鏈體結(jié)構(gòu)是指端粒末端富含鳥嘌呤(G)的DNA 序列在一價(jià)陽(yáng)離子(如K+和Na+)誘導(dǎo)下通過(guò)G堿基間Hoogsteen氫鍵連接形成的DNA二級(jí)結(jié)構(gòu)。 能夠穩(wěn)定端粒G-四鏈體的配體通常為端粒酶抑制劑, 其可能成為抗腫瘤藥物。 應(yīng)用CD, FRET, NMR光譜方法第一次較全面地研究了一種木脂素衍生物, 紫玉蘭素A (liliflorin A)與人端粒序列dGGG(TTAGGG)3G-四鏈體HTG21的相互作用, 采用分子對(duì)接技術(shù)進(jìn)一步研究紫玉蘭素A與人端粒序列dTAGGG(TTAGGG)3G-四鏈體HTG23的結(jié)合位點(diǎn)。 CD實(shí)驗(yàn)數(shù)據(jù)表明紫玉蘭素A提高HTG21解鏈溫度, FRET實(shí)驗(yàn)測(cè)得4.0 μmol·L-1紫玉蘭素A可以將HTG21穩(wěn)定溫度提高3.2 ℃。 NMR實(shí)驗(yàn)結(jié)果表明, 加入紫玉蘭素A三小時(shí)后HTG21核磁譜圖出現(xiàn)明顯變化。 分子對(duì)接結(jié)果表明紫玉蘭素A結(jié)合到HTG23較寬溝槽上, 結(jié)合位點(diǎn)為G9, G10, G16和G17。 紫玉蘭素A是第一個(gè)能夠選擇性穩(wěn)定人端粒G-四鏈體HTG21的木脂素類衍生物配體。 實(shí)驗(yàn)結(jié)果為以人端粒G-四鏈體為靶點(diǎn)的抗腫瘤藥物設(shè)計(jì)提供了新型候選化合物。

    紫玉蘭素A; G-四鏈體; 人端粒; 光譜分析; 相互作用

    2015-05-08,

    2015-11-02)

    2015-05-08; accepted: 2015-11-02

    The National Natural Science Foundation of China (31200260), The First-class University and the First-rate Discipline Construction Projects of Minzu University of China (YLDX01013, 2015MDTD08C), together with 111 Project (B08044), The National College Students’ innovation and entrepreneurship training program (GCCX 2014110017, GCCX 2015110012)

    10.3964/j.issn.1000-0593(2016)03-0896-07

    Biography: LIU Ting-ting, (1987—), Doctoral Candidate of College Life and Environmental Sciences, Minzu University of China e-mail: liutingting1204@163.com *Corresponding author e-mail: wangws@muc.edu.cn

    *通訊聯(lián)系人

    猜你喜歡
    紫玉蘭中央民族大學(xué)端粒
    中央民族大學(xué)
    玉蘭初開
    紫玉蘭
    西湖(2019年6期)2019-06-11 03:03:08
    端粒蛋白復(fù)合物shelterin的結(jié)構(gòu)及功能研究進(jìn)展
    紫玉蘭和二喬玉蘭花部形態(tài)的變異研究
    我讀懂了紫玉蘭
    ??? ?? ??? ??? ‘? ??’?????? ????
    抑癌基因P53新解讀:可保護(hù)端粒
    健康管理(2016年2期)2016-05-30 21:36:03
    40—65歲是健身黃金期
    鹽酸阿霉素與人端粒DNA相互作用的電化學(xué)研究
    a在线观看视频网站| 在线看三级毛片| 亚洲精品久久成人aⅴ小说| 一a级毛片在线观看| 亚洲国产精品999在线| 国产精品久久久久久精品电影| 久久婷婷成人综合色麻豆| 亚洲色图av天堂| 99久久99久久久精品蜜桃| 99热这里只有是精品50| 人妻久久中文字幕网| 男插女下体视频免费在线播放| 一边摸一边抽搐一进一小说| 午夜成年电影在线免费观看| 欧美日韩精品网址| 国产欧美日韩一区二区三| 人成视频在线观看免费观看| 国产成人av教育| 国产av一区在线观看免费| 欧美不卡视频在线免费观看 | 日本精品一区二区三区蜜桃| 又大又爽又粗| 亚洲精品国产一区二区精华液| 熟妇人妻久久中文字幕3abv| 99re在线观看精品视频| 欧美黑人巨大hd| 精品午夜福利视频在线观看一区| 国产伦在线观看视频一区| 99国产极品粉嫩在线观看| 欧美一区二区国产精品久久精品 | 欧美不卡视频在线免费观看 | 国产精品一区二区免费欧美| 久久久久久免费高清国产稀缺| 丰满的人妻完整版| 国产av又大| 欧美久久黑人一区二区| 我的老师免费观看完整版| 黄片小视频在线播放| 欧美成人一区二区免费高清观看 | 免费观看精品视频网站| 一区二区三区高清视频在线| 欧美一区二区国产精品久久精品 | 精品一区二区三区视频在线观看免费| 免费在线观看完整版高清| 在线观看午夜福利视频| 99热这里只有是精品50| 999久久久国产精品视频| 亚洲熟妇中文字幕五十中出| 亚洲成人久久爱视频| 国产精品电影一区二区三区| 18禁观看日本| 国产精品日韩av在线免费观看| 国产精品精品国产色婷婷| 日韩大码丰满熟妇| 国产激情久久老熟女| 久久久精品大字幕| 国产三级中文精品| 一夜夜www| 免费看日本二区| 国产免费男女视频| 久久精品aⅴ一区二区三区四区| 国产成人精品久久二区二区91| 两人在一起打扑克的视频| 欧美日本视频| 午夜a级毛片| 男女视频在线观看网站免费 | 久久精品影院6| 久久久国产成人免费| 国产99久久九九免费精品| 99久久久亚洲精品蜜臀av| 一二三四社区在线视频社区8| 青草久久国产| 欧美一级a爱片免费观看看 | svipshipincom国产片| 国语自产精品视频在线第100页| 草草在线视频免费看| av视频在线观看入口| 国产激情久久老熟女| 精品福利观看| 国产欧美日韩一区二区三| a级毛片在线看网站| www.熟女人妻精品国产| 中文亚洲av片在线观看爽| 欧美黄色片欧美黄色片| 午夜老司机福利片| 亚洲国产精品合色在线| 久久精品国产清高在天天线| 亚洲五月婷婷丁香| 成人精品一区二区免费| 欧美在线黄色| 久久性视频一级片| 亚洲欧美日韩高清在线视频| 久久精品人妻少妇| 欧美成人性av电影在线观看| 久久国产精品人妻蜜桃| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女| 精品日产1卡2卡| 亚洲 欧美一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 亚洲最大成人中文| 日日爽夜夜爽网站| 12—13女人毛片做爰片一| 他把我摸到了高潮在线观看| 一个人免费在线观看电影 | 亚洲精品粉嫩美女一区| 男女视频在线观看网站免费 | 国产精品影院久久| 久久久久久大精品| 亚洲成av人片免费观看| 中文字幕久久专区| 亚洲电影在线观看av| 黄片小视频在线播放| 亚洲国产精品成人综合色| 欧美一级毛片孕妇| 好看av亚洲va欧美ⅴa在| 全区人妻精品视频| 国产在线观看jvid| 日韩欧美三级三区| 国产精品日韩av在线免费观看| av在线天堂中文字幕| 亚洲国产欧美一区二区综合| bbb黄色大片| 级片在线观看| 一二三四在线观看免费中文在| 国产私拍福利视频在线观看| 老司机午夜十八禁免费视频| 亚洲va日本ⅴa欧美va伊人久久| 草草在线视频免费看| 给我免费播放毛片高清在线观看| 黑人操中国人逼视频| 丁香欧美五月| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 麻豆久久精品国产亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 欧美另类亚洲清纯唯美| 熟女电影av网| 听说在线观看完整版免费高清| 可以免费在线观看a视频的电影网站| 激情在线观看视频在线高清| 国产午夜精品久久久久久| 亚洲免费av在线视频| 777久久人妻少妇嫩草av网站| 88av欧美| 亚洲欧美精品综合久久99| 曰老女人黄片| 欧美一区二区国产精品久久精品 | 亚洲 国产 在线| 一个人免费在线观看电影 | 亚洲电影在线观看av| 九九热线精品视视频播放| 精品欧美一区二区三区在线| 9191精品国产免费久久| 大型黄色视频在线免费观看| 一a级毛片在线观看| 国产av麻豆久久久久久久| 又黄又粗又硬又大视频| 变态另类成人亚洲欧美熟女| 男人舔奶头视频| 精华霜和精华液先用哪个| 黄片小视频在线播放| 色av中文字幕| 亚洲国产中文字幕在线视频| 欧美 亚洲 国产 日韩一| 亚洲国产高清在线一区二区三| 人人妻,人人澡人人爽秒播| 国内毛片毛片毛片毛片毛片| 级片在线观看| 在线视频色国产色| 后天国语完整版免费观看| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 欧美色欧美亚洲另类二区| 老司机在亚洲福利影院| 午夜福利免费观看在线| 日本三级黄在线观看| 日韩欧美 国产精品| 男女之事视频高清在线观看| 日日摸夜夜添夜夜添小说| 神马国产精品三级电影在线观看 | 国产亚洲精品av在线| 久久亚洲精品不卡| 夜夜夜夜夜久久久久| 久热爱精品视频在线9| 19禁男女啪啪无遮挡网站| 人妻久久中文字幕网| 色哟哟哟哟哟哟| 免费观看人在逋| 欧美大码av| 国产三级中文精品| 两性夫妻黄色片| 中文资源天堂在线| 亚洲av成人av| 老司机午夜福利在线观看视频| 久久香蕉精品热| a级毛片a级免费在线| 国产精品 欧美亚洲| 午夜视频精品福利| 免费人成视频x8x8入口观看| 国产探花在线观看一区二区| 亚洲美女视频黄频| 国产亚洲欧美98| 久久精品91蜜桃| 欧美性猛交╳xxx乱大交人| 国产av一区在线观看免费| 日韩精品青青久久久久久| 中亚洲国语对白在线视频| 真人做人爱边吃奶动态| 亚洲精品一区av在线观看| 国模一区二区三区四区视频 | 人人妻人人澡欧美一区二区| 99精品久久久久人妻精品| 国产精品一区二区三区四区免费观看 | 国语自产精品视频在线第100页| 国产一区二区在线av高清观看| 人妻久久中文字幕网| ponron亚洲| 国产精品久久久久久人妻精品电影| 50天的宝宝边吃奶边哭怎么回事| 少妇被粗大的猛进出69影院| 又爽又黄无遮挡网站| 不卡一级毛片| 日本 欧美在线| 亚洲av成人一区二区三| 亚洲av成人av| 最近最新中文字幕大全电影3| 999久久久国产精品视频| 亚洲国产欧美一区二区综合| 亚洲va日本ⅴa欧美va伊人久久| 哪里可以看免费的av片| 亚洲国产精品久久男人天堂| 美女大奶头视频| 国产欧美日韩一区二区精品| 777久久人妻少妇嫩草av网站| 中文字幕熟女人妻在线| 精品国产乱子伦一区二区三区| 国产精品久久久av美女十八| 老司机午夜十八禁免费视频| 午夜福利高清视频| 一本一本综合久久| 又紧又爽又黄一区二区| 亚洲av第一区精品v没综合| 亚洲 欧美一区二区三区| 国产精品av视频在线免费观看| 黄色片一级片一级黄色片| 国产精品免费视频内射| 欧美zozozo另类| 天堂av国产一区二区熟女人妻 | 欧美成人免费av一区二区三区| 一区二区三区激情视频| 88av欧美| 国模一区二区三区四区视频 | 久久久久九九精品影院| 欧美3d第一页| 久久 成人 亚洲| 曰老女人黄片| 美女午夜性视频免费| 两性夫妻黄色片| 国产成人啪精品午夜网站| 国产在线精品亚洲第一网站| 国产激情欧美一区二区| 12—13女人毛片做爰片一| 男人舔女人的私密视频| 国产又色又爽无遮挡免费看| 亚洲aⅴ乱码一区二区在线播放 | 好男人电影高清在线观看| 久久精品影院6| 欧美日韩一级在线毛片| 人人妻人人看人人澡| 欧美av亚洲av综合av国产av| 欧美成人一区二区免费高清观看 | 搡老熟女国产l中国老女人| 18禁观看日本| 夜夜爽天天搞| 黄色片一级片一级黄色片| www日本在线高清视频| 亚洲18禁久久av| 欧美色欧美亚洲另类二区| www日本在线高清视频| 欧美午夜高清在线| 99热6这里只有精品| 国产熟女xx| 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 搞女人的毛片| 88av欧美| 欧美黄色淫秽网站| 婷婷亚洲欧美| 亚洲精品色激情综合| 成年女人毛片免费观看观看9| 精品一区二区三区视频在线观看免费| 一二三四社区在线视频社区8| 无人区码免费观看不卡| 亚洲欧美精品综合一区二区三区| 午夜a级毛片| 国产真实乱freesex| 国产乱人伦免费视频| 日本精品一区二区三区蜜桃| 午夜激情福利司机影院| 国产精品国产高清国产av| 琪琪午夜伦伦电影理论片6080| 久久久久精品国产欧美久久久| 麻豆久久精品国产亚洲av| а√天堂www在线а√下载| 男女那种视频在线观看| 97人妻精品一区二区三区麻豆| 国产亚洲精品久久久久5区| 欧美另类亚洲清纯唯美| 日本成人三级电影网站| 免费电影在线观看免费观看| 在线观看日韩欧美| 中文资源天堂在线| 欧美午夜高清在线| 国产日本99.免费观看| 欧美性长视频在线观看| 国产伦人伦偷精品视频| 亚洲av成人一区二区三| 欧美日韩中文字幕国产精品一区二区三区| 天堂av国产一区二区熟女人妻 | 亚洲avbb在线观看| avwww免费| 成人国语在线视频| 国产野战对白在线观看| 女人被狂操c到高潮| av天堂在线播放| 三级毛片av免费| 午夜视频精品福利| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 免费在线观看黄色视频的| 免费在线观看影片大全网站| 真人一进一出gif抽搐免费| 午夜两性在线视频| 1024视频免费在线观看| 黑人巨大精品欧美一区二区mp4| 欧美黑人巨大hd| 国产精品一区二区三区四区免费观看 | av中文乱码字幕在线| 黄色片一级片一级黄色片| 一区二区三区高清视频在线| 一进一出抽搐动态| 97碰自拍视频| xxxwww97欧美| 村上凉子中文字幕在线| 欧美3d第一页| 五月伊人婷婷丁香| 亚洲国产中文字幕在线视频| 色综合亚洲欧美另类图片| 亚洲avbb在线观看| 少妇被粗大的猛进出69影院| 国产又黄又爽又无遮挡在线| 免费电影在线观看免费观看| 精品久久久久久久久久免费视频| 亚洲熟妇中文字幕五十中出| 一级毛片精品| 亚洲av日韩精品久久久久久密| 久久 成人 亚洲| 国产一区二区在线av高清观看| 99精品在免费线老司机午夜| 琪琪午夜伦伦电影理论片6080| 一级毛片精品| 舔av片在线| 中文字幕av在线有码专区| 色综合站精品国产| 看黄色毛片网站| 九九热线精品视视频播放| 麻豆一二三区av精品| 麻豆国产97在线/欧美 | 长腿黑丝高跟| 脱女人内裤的视频| videosex国产| 国产成+人综合+亚洲专区| 露出奶头的视频| 波多野结衣巨乳人妻| 亚洲中文av在线| 一级毛片高清免费大全| 亚洲性夜色夜夜综合| 中文字幕久久专区| 91成年电影在线观看| 人人妻人人看人人澡| 露出奶头的视频| 91在线观看av| 欧美成人性av电影在线观看| 久热爱精品视频在线9| 免费看十八禁软件| 999精品在线视频| 欧美色视频一区免费| 免费在线观看影片大全网站| 狂野欧美白嫩少妇大欣赏| 国产精品影院久久| 亚洲第一欧美日韩一区二区三区| 男人舔女人下体高潮全视频| 黄色丝袜av网址大全| 亚洲,欧美精品.| 91老司机精品| av有码第一页| 欧美乱色亚洲激情| 母亲3免费完整高清在线观看| 变态另类成人亚洲欧美熟女| 欧美成狂野欧美在线观看| 我的老师免费观看完整版| 在线观看日韩欧美| 欧美日本亚洲视频在线播放| 欧美一级毛片孕妇| 国产精品久久久久久精品电影| 最近最新中文字幕大全电影3| 男女床上黄色一级片免费看| 亚洲av中文字字幕乱码综合| av在线天堂中文字幕| 日韩国内少妇激情av| 亚洲aⅴ乱码一区二区在线播放 | 精品一区二区三区四区五区乱码| 亚洲国产精品sss在线观看| 老司机福利观看| 国产精品av视频在线免费观看| 亚洲天堂国产精品一区在线| 床上黄色一级片| 男男h啪啪无遮挡| 俄罗斯特黄特色一大片| 日韩精品中文字幕看吧| 午夜免费激情av| 不卡一级毛片| 国产日本99.免费观看| 亚洲国产精品sss在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产主播在线观看一区二区| 亚洲人成网站高清观看| 午夜福利免费观看在线| 国产精品乱码一区二三区的特点| 中国美女看黄片| 国产一区二区三区视频了| bbb黄色大片| 无遮挡黄片免费观看| 美女扒开内裤让男人捅视频| 美女黄网站色视频| 不卡一级毛片| 97超级碰碰碰精品色视频在线观看| 搡老岳熟女国产| 丰满人妻熟妇乱又伦精品不卡| 美女黄网站色视频| 中文字幕高清在线视频| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| 一本久久中文字幕| 97碰自拍视频| 欧美极品一区二区三区四区| 欧美黄色片欧美黄色片| 日韩欧美在线乱码| 亚洲黑人精品在线| 久热爱精品视频在线9| 人妻丰满熟妇av一区二区三区| 岛国视频午夜一区免费看| 国产1区2区3区精品| 香蕉丝袜av| 老司机在亚洲福利影院| 制服诱惑二区| 国产三级在线视频| 日本在线视频免费播放| 九色成人免费人妻av| 国产午夜精品论理片| 男女视频在线观看网站免费 | 国产精品亚洲av一区麻豆| 久久亚洲精品不卡| 欧美最黄视频在线播放免费| 欧美日韩乱码在线| 国产亚洲精品久久久久久毛片| 麻豆国产av国片精品| 免费看a级黄色片| 成人三级做爰电影| 亚洲,欧美精品.| 成人精品一区二区免费| av视频在线观看入口| 久久香蕉精品热| 欧美日韩一级在线毛片| 一级a爱片免费观看的视频| 亚洲天堂国产精品一区在线| 午夜福利免费观看在线| 国产乱人伦免费视频| 真人一进一出gif抽搐免费| 亚洲真实伦在线观看| www.精华液| 免费高清视频大片| 亚洲自偷自拍图片 自拍| 在线观看午夜福利视频| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说| 91麻豆精品激情在线观看国产| 窝窝影院91人妻| 18禁美女被吸乳视频| 日韩中文字幕欧美一区二区| 日本撒尿小便嘘嘘汇集6| av欧美777| 一级毛片女人18水好多| 91av网站免费观看| 夜夜看夜夜爽夜夜摸| 99热6这里只有精品| 久久亚洲精品不卡| 丁香六月欧美| cao死你这个sao货| 国产高清视频在线播放一区| 91麻豆av在线| 亚洲av成人av| 天天一区二区日本电影三级| 久久九九热精品免费| 日韩欧美国产一区二区入口| 美女扒开内裤让男人捅视频| 黄色视频不卡| 欧美激情久久久久久爽电影| 久9热在线精品视频| 成人三级黄色视频| 淫妇啪啪啪对白视频| 精品国产乱码久久久久久男人| 女同久久另类99精品国产91| 免费在线观看成人毛片| 久久婷婷人人爽人人干人人爱| 国产激情欧美一区二区| 国产成人精品久久二区二区91| 日本黄大片高清| 又爽又黄无遮挡网站| 精品乱码久久久久久99久播| 国产伦一二天堂av在线观看| 久久性视频一级片| 欧美av亚洲av综合av国产av| 夜夜躁狠狠躁天天躁| 18禁美女被吸乳视频| 亚洲一区二区三区色噜噜| 欧美中文日本在线观看视频| 亚洲18禁久久av| 老司机深夜福利视频在线观看| 毛片女人毛片| 国内少妇人妻偷人精品xxx网站 | 欧美极品一区二区三区四区| 亚洲国产中文字幕在线视频| 999久久久国产精品视频| 一进一出抽搐动态| 午夜免费成人在线视频| 桃色一区二区三区在线观看| 日韩成人在线观看一区二区三区| 欧美中文日本在线观看视频| www日本黄色视频网| 色av中文字幕| 国产蜜桃级精品一区二区三区| 亚洲天堂国产精品一区在线| 欧美黄色片欧美黄色片| 欧美一级a爱片免费观看看 | 欧美另类亚洲清纯唯美| 草草在线视频免费看| 国产成人精品久久二区二区免费| 国产精品久久视频播放| 亚洲真实伦在线观看| 九色国产91popny在线| 少妇裸体淫交视频免费看高清 | 中亚洲国语对白在线视频| 97碰自拍视频| 91大片在线观看| 久久中文字幕人妻熟女| 国产一级毛片七仙女欲春2| 久久久久国产一级毛片高清牌| 亚洲熟妇熟女久久| 婷婷精品国产亚洲av| x7x7x7水蜜桃| 亚洲av美国av| 欧美精品啪啪一区二区三区| 成人av在线播放网站| 国产不卡一卡二| 精品高清国产在线一区| 俺也久久电影网| 亚洲欧美日韩无卡精品| 99精品在免费线老司机午夜| a级毛片在线看网站| 国产av在哪里看| 亚洲av成人精品一区久久| av视频在线观看入口| 91字幕亚洲| 级片在线观看| 国产亚洲精品久久久久5区| 每晚都被弄得嗷嗷叫到高潮| 亚洲avbb在线观看| 久久久精品欧美日韩精品| 午夜两性在线视频| 精品欧美一区二区三区在线| 久久久久久久午夜电影| 又紧又爽又黄一区二区| 少妇的丰满在线观看| 亚洲精品粉嫩美女一区| 变态另类成人亚洲欧美熟女| 欧美黄色淫秽网站| 变态另类丝袜制服| 又紧又爽又黄一区二区| www国产在线视频色| 国产一区二区在线av高清观看| 三级男女做爰猛烈吃奶摸视频| 国产69精品久久久久777片 | 无人区码免费观看不卡| 亚洲,欧美精品.| 色老头精品视频在线观看| 免费在线观看成人毛片| 国产精品一区二区三区四区久久| 欧美日韩精品网址| 亚洲免费av在线视频| 床上黄色一级片| 欧美成人午夜精品| 精品日产1卡2卡| 久久久精品欧美日韩精品| 三级国产精品欧美在线观看 | 午夜两性在线视频| 老司机福利观看| 久久久精品欧美日韩精品| 亚洲一区二区三区色噜噜| 日本在线视频免费播放| 制服丝袜大香蕉在线| 国内少妇人妻偷人精品xxx网站 | 我的老师免费观看完整版| 亚洲第一电影网av|