• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vibrational Spectroscopic Study of N-[4-[1-Hydroxy-2-[(1-Methyl Ethyl) Amino] Ethyl] Phenyl] Methane Sulfonamide

    2016-06-15 16:39:51BalamuruganSampathkrishnanCharanya
    光譜學與光譜分析 2016年3期

    N. Balamurugan, S. Sampathkrishnan, C. Charanya

    1. Department of Physics, Sri Lakshmi Ammaal Engineering College, Chennai, Tamilnadu, India

    2. Department of Physics, Sri Venkateswara College of Engineering, Sriperumbudur 602105, Tamil Nadu, India

    3. Research Scholar, Department of Physics, Sri Venkateshwara College of Engineering, Sriperumbudur 602105, Tamilnadu, India

    Vibrational Spectroscopic Study of N-[4-[1-Hydroxy-2-[(1-Methyl Ethyl) Amino] Ethyl] Phenyl] Methane Sulfonamide

    N. Balamurugan1*, S. Sampathkrishnan2, C. Charanya3

    1. Department of Physics, Sri Lakshmi Ammaal Engineering College, Chennai, Tamilnadu, India

    2. Department of Physics, Sri Venkateswara College of Engineering, Sriperumbudur 602105, Tamil Nadu, India

    3. Research Scholar, Department of Physics, Sri Venkateshwara College of Engineering, Sriperumbudur 602105, Tamilnadu, India

    The vibrational spectral analysis was carried out by using FT-Raman and FT-IR spectroscopy in the range 4 000~400 and 4 000~400 cm-1respectively, for N-[4-[1-hydroxy-2-[(1-methyl ethyl) amino] ethyl] phenyl] methane sulfonamide (HPAEPMS) molecule. Theoretical calculations were performed by ab initio Density Functional Theory (DFT) method using 6-31G(d,p) basis set. The complete vibrational assignments of wavenumbers were made on the basis of potential energy distribution (PED). The results of the calculations were applied to simulated spectra of the title compound, which show excellent agreement.

    FT-IR; FT-Raman; DFT; Vibrational analysis

    Introduction

    Generic name for N-[4-[1-hydroxy-2-[(1-methyl ethyl) amino] ethyl] phenyl] methane sulfonamide (HPAEPMS) is sotalol. Amides, sulfonamides and their derivatives has been the subject of investigation for many reasons. The Molecular formula for HPAEPMS is C12H20N2O3S. It belongs to C1 point group symmetry and soluble in water. The amides are important constituent of many biologically significant compounds. The chemistry of sulfonamides is of interest as they show distinct physical, chemical and biological properties. The sulfonamide derivatives are known for their numerous pharmacological activities, antibacterial, antitumor, insulin-release stimulation and antithyroid properties[1]. In addition, the unsubstituted aromatic/heterocyclic sulfonamides act as carbonic anhydrase inhibitors[2-3]whereas other types of derivatives show diuretic activity (high-ceiling diuretics or thiadiazinediuretics), hypoglycemic activity and anticancer properties[4]. Although sulfonamides are best known as bacteriostatic[5]and anti-malarial agents[6], there is now a range of drugs, possessing very different pharmacological activities, in which the sulfonamide group is present[7]. Several of these drugs suffer from bioavailability problems or adverse secondary effects[8-9]. Infrared, vibrational, NMR, and DFT investigation of N-[4-[2-[2-[4-(methanesulfonamido) phenoxy] ethyl-methyl-amino] ethyl] phenyl] methanesulfonamide[10].

    In recent years, among the computational methods calculating the electronic structure of molecular systems, DFT methods has been favorite one due to its great accuracy in reproducing the experimental values of molecular geometry, vibrational frequencies, atomic charges, dipole moment, thermodynamical properties etc.[11-15]. DFT calculations are reported to provide excellent vibrational frequencies of organic compounds if the calculated frequencies are scaled to compensate for the approximate treatment of electron correlation, for basis set deficiencies and for the anharmooicity[16-19].

    Literature survey reveals that to the best of our knowledge, no experimental and computational vibrational spectroscopic study free HPAEPMS is published in the literature yet. This inadequacy observed in the literature encouraged us to make this theoretical and experimental vibrational spectroscopic research based on the molecule to give a correct assignment of the fundamental bands experimental FT-IR and FT-Raman spectra on the basis of calculated Total Energy Distribution (TED). Therefore, the present study aims to give a complete description of the molecular geometry, molecular vibrations and electronic features of the present molecule. Besides, frontier molecular orbitals (FMOs) and thermodynamic properties were performed. Thermodynamic properties of the title compound at different temperatures were calculated.

    1 Experimental details

    The compound under investigation namely HPAEPMS is purchased from Sigma-Aldrich chemicals, USA with spectroscopic grade and it was used as such without further purification. The FT-IR spectrum of the compound has been recorded in Perkin-Elmer 180 spectrometer in the range 4 000~400 cm-1. The spectral resolution is ±2 cm-1. The FT-Raman spectrum was also recorded in the same instrument with FRA 106 Raman module equipped with Nd∶YAG laser source operating in the region 100~4 000 cm-1at 1.064 μm line widths with 200 mW powers. The spectra were recorded with scanning speed of 30 cm-1·min-1of spectral width 2 cm-1. The frequencies of all bands are accurate to ±1 cm-1.

    2 Computational details

    The entire calculations were performed at DFT (B3LYP) levels on a Pentium Ⅳ/1.6 GHz personal computer using Gaussian 03W[20]program package, invoking gradient geometry optimization[21]. This geometry was then optimized at DFT level, using basis set constraint 6-31G (d,p). The optimized structural parameters were using in the vibrational frequencies calculations resulting in IR and Raman frequencies together with Intensities and Raman depolarization ratios. The harmonic vibrational frequencies were calculated at the same level the optimized structures and obtained frequencies were scaled by 0.961[22]. It should be noted that Gaussian 03W package does not calculate the Raman intensity. The Raman activities were transformed into Raman intensities using RaInt program[23]by the expression:

    WhereIiis the Raman intensity,Sis the Raman scattering activities,νiis the wave number of normal modes and denotes the wave number of the excitation laser[24].

    3 Results and discussions

    3.1 Molecular geometry

    The molecular structure along with numbering of atoms of HPAEPMS is obtained from Gaussian 03 and GAUSSVIEW programs and is shown in Figure.1. The most optimized structural parameters (bond length and bond angle) calculated by DFT/B3LYP with 6-31G(d,p) are compared with X-ray and electron diffraction experimental data[25]in accordance with the atom numbering scheme given in Figure 1.

    Fig.1 Numbering system adopted in the molecular structure of HPAEPMS

    3.2 Vibrational assignments

    The maximum number of potentially active observable fundamentals of a non-linear molecule, which contains N atoms, is equal to (3N-6) apart from three translational and three rotational degrees of freedom[26]. The present molecule HPAEPMS with 33 atoms and 93 normal modes of vibrations has C1 point group symmetry. The observed and simulated FT-IR and FT-Raman spectra of HPAEPMS are shown in Figures. 2 and 3, respectively. The observed and scaled theoretical frequencies using DFT/B3LYP with 6-31G(d,p) basis set with TED are listed in Table 1. Calculations were made for a free molecule in vacuum, while experiments were performed for solid phase. The vibrational analysis obtained for HPAEPMS with the unscaled B3LYP/6-31G(d,p) force field are generally somewhat greater than the experimental values due to neglect of anharmonicity in real system. These discrepancies can be corrected either by computing anharmonic corrections explicitly or by introducing a scaled field or directly

    Fig.2 Comparative representation of FT-IR spectra for HPAEPMS

    Table 1 The experimental FT-IR, FT-Raman and calculated frequencies using B3LYP/6-31G(p,d),) force field along with their relative intensities, probable assignments and Potential Energy Distribution (PED) of 1-N-[4-[1-hydroxy-2-[(1-methyl ethyl) amino] ethyl] phenyl] methane sulfonamide

    ModesNoObservedfrequencies/cmFT?IRFT?RamanB3LYP/6?31G(d,p)UnscaledScaledIRRamanAssignments(PED)a13450(w)-3522347414 6493 61νNH(98)23444(w)-3588345037 2977 62νNH(98)33371(w)-351933833 6750 88νNH(97)43209(s)-323631111 21142 19νCH(97)5-3080(vw)323431091 0526 14νCH(94)63060(vw)3065(w)318830650 8753 01νCH(92)7--318330610 2970 11νCH(96)83055(w)3051(w)317730555 79117 22νCH(63)93050(w)3050(w)3174305121 2329 62νCH(97)10--3126300554 81113 84νasymCH3(100)113002(w)-3123300229 7650 89νasymCH3(96)12--3117299717 1126 76νasymCH2ofCH3(100)13--3107298731 5449 71νasymCH2ofCH3(100)14--3083296422 2841 54νasymCH2ofCH3(100)15--307729580 37121 68νasymCH2ofCH3(100)162928(m)2930(m)3047293011 69148 67νasymCH2ofCH3(100)172920(m)-3039292125 8461 45νasymCH2ofCH3(100)182850(w)-2987287269 7289 41νsymCH3(100)192800(w)2810(w)2932281993 08163 19Overtone+combination202796(w)-2909279771 1585 87Overtone+combination21--1666160143 50171 54νCC(55)+Ring2symd(16)22-1530(w)163115682 953 22νCC(42)+βCH(30)231490(m)-1552149290 432 19νCC(40)+βNH(16)24-1470(vw)152914702 912 29βCH(78)251460(s)-1525146626 807 35ρCH3(98)261458(w)1458(w)151514570 9721 12ρCH3(98)27--151014527 9011 57ρCH3(98)281440(s)1440150314451 1120 94δdefCH3(110)29--1490143219 806 4δdefCH3(100)301430(vw)1435(w)1488143023 644 86δdefCH3(100)31--147214154 5114 97βCH(64)+νCC(27)32-1410(w)146814121 6612 85ωCH3(75)331396(vs)-1430137518 872 22βCH(74)+νCN(26)34-1365(vs)14241369116 1035 99νasym(SO2)351360(m)-1421136627 609 28νs(SO2)36--1415136059 853 88δdefCH3(100)371345(vs)1340(w)1404134921 158 43νsymSO2(80)38--139013362 396 89Rind def (86)391332(vs)1337(vs)1384133027 328 63νsymSO2(66)+νCC(12)40--1359130711 490 95νasymSO2(66)+νCC(12)41--1358130518 357 71νasymSO2(66)+νCC(12)421300(vs)-13571304112 111 74βCH(12)+νsymSO2(66)43-1285(s)1337128520 192 74βCH(81)+νCN(19)44-1248(m)1303125363 2855 55νCC451222(m)1225(m)1279122965 9033 3νCC46--1247119928 1214 9βCH(47)+νCC(23)471195(w)-1246119823 1230 21βCH(47)+νCC(23)48-1185(vw)121911724 792 53γCH3(89)491160(vs)1211116427 3425 73νsymSO2(44)+νCC(21)501153(vs)1154(m)1208116119 0226 23βCH(45)+νCC(23)

    To Table 1

    511127(m)-1181113612 883 26νCC(28)+νsymSO2(15)+νCS(12)+νCN(11)52--116411199 282 82γCH3(66)53--1148110445 841 43γCH3(60)541092(m)1082(m)11341090262 683 75νasymSO2(50)+βCH(16)55--1117107451 415 7νasymSO2(79)561045(w)1015(m)1088104638 850 97Ringbreathing(630)57995(w)982(m)10379978 960 44γCH(92)58--100796831 245 34γCH(72)59-954(m)99095254 696 88γCH(79)60945(m)98594752 8311 74γCH(83)61--98094211 747 05γCH(80)62935(m)-9749362 240 37γCH(62)63--9649271 574 57γCH(83)64--9539170 423 51γCH(80)65906(m)904(m)94891212 585 71γCH(39)66-9358991 551 29ρSO2(49)+νC?SO2(16)67--88685198 539 24νCO(35)68837(w)-86583231 314 02γCH(33)69-817(m)85682319 066 97γCH(48)70800(m)804(m)83780588 4411 57γCH(45)71--83380110 552 75γCH(45)72779(m)780(m)82178919 1117 27βCCC(19)+τCCCH(14)73740(m)-76974028 146 18βCCC(19)+ρSO2(26)+νCS(15)74--7437149 732 5γCCC(87)+βCN(13)75698(m)-72169376 3210 53γNH(85)+βCN(10)76-665(w)69466811 546 75γNH(26)77-615(w)6466212 525 82τCCCC(23)+νCC(2)78575(vw)576(w)60057658 408 4τRing1asymd(38)79520(w)518(w)54152010 738 97βring(61)+νCC(21)80--50949054 745 03γCCC(44)+ρSO2(26)81475(w)479(w)49347475 219 03γCCC(44)+ρSO2(26)82--4864676 001 2τring(46)83466(w)-48246414 793 48τring(48)84-445(w)4564391 131 45γCCC(64)+ρSO2(27)85420(w)-4384213 540 92βCCC(47)+βCCO(16)86-403(w)4194032 520 18τCCCC(43)87--3883735 450 5βCCN(62)+rSO2(38)88-365(m)36635212 062 53βCCN(60)+rSO2(40)89--3363237 681 46βCCO(47)+βCCC(21)90--3213087 812 55βCOC(28)+βCCC(22)91--301290107 335 62βCOC(38)+βCCC(22)92-280(w)2972862 182 54τCCCC(45)93--2722622 281 11βCSN(16)+νCS(11)+rSO2(39)94--2572470 300 78βCSN(26)+νCS(10)+rSO2(40)95--2472372 852 32βCSN(25)+βCSO(17)96--2292201 540 05βCSN(35)+βCSO(27)97-206(w)2142061 471 14γ(ring?SA+ringSO2)(92)98--2011941 200 56νCS(36)+βCCC((14)+νCN(10)99-186(w)1931861 000 76γ(ring?SA+ringSO2)(80)100--1631560 640 47γ(ring?SA+ringSO2)(82)101-124(vw)1331282 460 57Ringbutterfly(84)102-103(w)1101061 090 84Ringbutterfly(88)103-78(m)92884 520 75τSO2(67)+τC?SA(17)104--50481 562 54τCH3(38)+τRing1symd(10)105--46441 920 72τCH3(74)+τRing1symd(15)

    To Table 1

    106--36351 321 95τSO2(85)107--27261 352 47τSA(93)108--14141 930 74τ(ring+SO2)(99)

    aνsym: symmetric stretching;νasym: asymmetric stretching; symd: symmetric deformation; asymd: asymmetric deformation;β: in-plane-bending;γ: out-of-plane bending;ρ: scissoring;ω: wagging;r: rocking;τ: torsion; SA: sulfonamide; TED: Total energy distribution

    scaling the wavenumbers by proper factor. A tentative assignment is often made on the basis of the unscaled frequencies by assuming the observed frequencies so that they are in the same order as the calculated ones. A better agreement between the computed and experimental frequencies can be obtained by using different scale factors for different regions of vibrations.

    Fig.3 Comparative representation of FT-Raman spectra for HPAEPMS

    3.3 N—H vibration

    The high frequency region above 3 000 cm-1is the characteristic region for the ready identification of C—H, O—H and N—H stretching vibrations. In this region, the bands are not affected appreciably by the nature of substituents[26]. The investigated molecules have NH2group. Hence, in NH2group, one symmetric and one asymmetric N—H stretching vibrations are expected. It is stated that the N—H stretching vibrations occur in the region 3 300~3 500 cm-1[27]. Specifically, the asymmetric NH2stretching vibration appears from 3 420 to 3 500 cm-1and the symmetric NH2stretching is observed in the range 3 340~3 420 cm-1[27]. In this study, the FT-IR bands at 3 450, 3 444 and 3 371 cm-1have been assigned to NH2asymmetric stretching vibrations. The scaled vibrations calculated at 3 474, 3 450 and 3 383 cm-1by B3LYP/6-31G(d,p) method (mode nos. 1 and 3) which are listed in Table 4.2 correspond to asymmetric stretching mode of N—H units with the PED contribution of 98% and 97%, respectively. The N—H out-of-plane bending vibrations are observed at 698 cm-1in FTIR spectra. The bands observed at 665 cm-1in FT-Raman spectra have been assigned to N—H out-of-plane bending vibrations. The experimental values are found to be in good agreement with the theoretical values.

    3.4 C—H vibrations

    The aromatic structures show the presence of C—H stretching vibrations in the region 3 100~3 000 cm-1which is the characteristic region for the ready identification of C—H stretching vibrations. In this region, the bands are not affected appreciably by the nature of substituents[28-29]. The modes (4~9) are due to C—H stretching of hydrogen bonded carbon atoms of phenyl rings. These modes are pure C—H stretching vibrations with a PED contribution nearly 97%. In this study, the CH stretching modes of studied compounds were recorded in both FT-IR and FT-Raman spectra. The corresponding modes were observed at 3 209, 3 060, 3 055 and 3 050 cm-1in FT-IR and FT-Raman spectra were observed 3 080, 3 065, 3 051, and 3 050 cm-1. The scaled vibrations calculated at 3 111, 3 109, 3 065, 3 061, 3 055 and 3 051 cm-1by B3LYP/6-31G(d,p) method. The aromatic C—H in-plane bending modes of benzene and its derivatives are observed in the region 1 300~1 000 cm-1with a weak intensity in the vibrational spectra[29-30]. The C—H out-of-plane bending vibrations occur in the range 1 000~750 cm-1in the aromatic compounds[29-30]. The computations suggest that the expected other bands of C—H in-plane or out-of plane bending vibrations are masked by other strong vibrational modes. The same trend is observed in the title compound.

    3.5 Methyl group vibrations

    The molecule HPAEPMS under consideration possesses one CH3unit which lies in the terminal group of the molecule. For the assignments of CH3group frequencies, nine fundamentals can be associated to CH3group[31]. The C—H stretching in CH3occurs at lower frequencies than those of aromatic ring (3 100~3 000 cm-1). Moreover, the asymmetric stretch is usually at higher wavenumber than the symmetric stretch. Methyl group vibrations are generally referred to as electron-donating substituent in the aromatic ring systems, the antisymmetric C—H stretching mode of CH3is expected around 2 980 cm-1and CH3symmetric stretching is expected at 2 870 cm-1[32]. The first of these results from the antisymmetric stretching of CH3mode in which the two C—H bonds of the methyl group are expanding while the third one is contracting. The second arises from the symmetric stretching in which all the three C—H bonds expand and contract in phase. The CH3symmetric stretching mode is predicted by B3LYP/6-31G(d,p) method at 2 872 cm-1and it shows 100% TED contribution suggesting that it is a pure stretching mode. There is a peak observed at 2 850 cm-1for CH3 stretching vibration in FT-IR.

    For methyl substituted benzene derivatives, the antisymmetric and symmetric deformation vibrations of methyl group normally appear in the region 1 465~1 440 cm-1and 1 390~1 370 cm-1, respectively[33-34]. The band at 1 460, 1 458 and 1 440 cm-1in FT-IR and 1 458 and 1 440 cm-1in FT-Raman are attributed to CH3scissoring vibrations. The wavenumber at 1 410 cm-1in FT-Raman and 1 406 cm-1in FT-IR is assigned to CH3wagging vibration.

    3.6 SO2vibrations

    The asymmetric stretching for the SO2, NH2, NO2, CH2and CH3, etc. has magnitude higher than the symmetric stretching[35-36]. The symmetric and asymmetric SO2stretching vibrations occur in the region 1 125~1 150 cm-1and 1 295~1 360 cm-1, respectively[37]. The intense signals appearing at 1 360, 1 345, 1 332 and 1 300 cm-1(IR) and 1 365, 1 340 and 1 337 cm-1. In the present study, the symmetric SO2stretching vibrations were obtained at 1 127 and 1 092 cm-1in FTIR spectra. The bands observed 1 082 cm-1in FT-Raman spectra were assigned to antisymmetric SO2stretching vibrations. A major coincidence of experimental values with that of literature[38-39]and theoretical results are found for above conclusions. The bending vibrations of O—S—O are also given in Table 1.

    3.7 Ring vibrations

    The ring stretching vibrations are very much important in the spectrum of aromatic compounds and are highly characteristic of the aromatic ring itself. However, empirical assignments of vibrational modes for peaks in the fingerprint region are difficult. Bands between 1 400 and 1 650 cm-1in benzene derivatives are assigned to ring vibrations. In general, the bands are of variable intensity and observed at 1 625~1 590, 1 590~1 575, 1 540~1 470, 1 460~1 430 and 1 380~1 280 cm-1from the frequency ranges given by Varsanyi[40]for the five bands in the fingerprint region. In the present work, the bands with are of different intensity and observed at 1 490, 1 332, 1 222, 1 195, 1 160, 1 153, 1 127 and 520 cm-1in FTIR and 1 530, 1 337, 1 248, 1 225, 1 154, 615 aand 518 cm-1in FT-Raman have been assigned to C—C stretching vibrations. The theoretically calculated values at 1 601, 1 631, 1 492, 1 415, 1 330, 1 307, 1 305, 1 253, 1 229, 1 199, 1 198, 1 164, 1 161 and 621 cm-1by B3LYP/6-31G(d,p) method shows excellent agreement with experimental data. The C—C in-plane and out-of-plane bending vibrations are the modes associated with smaller force constants than the stretching ones, and hence assigned to lower frequencies. The in plane deformations are at higher frequencies than the out-of-plane vibrations. Shimanouchi et al.[41]gave the frequency data for these vibrations for different benzene derivatives as a result of normal coordinate analysis. Although some modes are missing in experimental spectra, however, the calculated CCC in-plane and out-of-plane bending modes are found to be consistent with the recorded spectral values, as can be seen in Table 2.

    4 Conclusion

    FTIR, FT-Raman and DFT quantum chemical calculations studies were performed on HPAEPMS, in order to identify their structural and vibrational features. Several properties were carried out using experimental techniques and tools derived from density functional theory. On the basis of experimental results and TED calculations, assignments of all the fundamental vibrational frequencies were done. A good correlation between the observed and scaled wave number was obtained for the title compound. Scaled results seemed to be in good agreement with experimental ones. We hope our results will be of assistance in the quest of the experimental and theoretical evidence for the HPAEPMS molecule in reaction intermediates, nonlinear optical and photoelectric materials and will also be helpful for the design and synthesis of new materials.

    [1] Maren T H. Ann. Rev. Pharmacol. Toxicol., 1976, 16: 309.

    [2] Supuran C T, Scozzafava A. Curr. Med. Chem. Immunol. Endocrine Metabolic Agents 1, 2001. 61.

    [3] Supuran C T, Scozzafava A, Casini A. Med. Res. Rev., 2003, 23: 146.

    [4] Supuran C T, Scozzafava A. Expert Opin. Ther. Patents, 2002, 12: 217.

    [5] Silverman R B. The Organic Chemistry of Drug Design and Drug Action, Academic, London, 1992.

    [6] Albala D M, Prien E L, Galal H A. J. Endourol., 1994, 8: 401.

    [7] Reynolds J E F(Ed.). Martindale: The Extra Pharmacopoeia, 31st ed., The Royal Pharmaceutical Society, London, 1996.

    [8] Kaur I P, Singh M, Kanwar M. Int. J. Pharm. 2000, 199: 119.

    [9] Famaey J P. Inflamm. Res., 1997, 46: 437.

    [10] OnucCozar, LászlóSzabó, Vasile Chi? , et al. Annals of the Academy of Romanian Scientists Physics Series, 2010, 2: 17.

    [11] Nagabalasubramanian P B, Periandy S. Spectrochim. Acta A, 2010, 77: 1099.

    [12] Govindarajan M, M. Karabacak, A. Suvitha, S. Periandy, Spectrochim. Acta A, 2012, 89: 137.

    [13] Govindarajan M, Karabacak M, Periandy S, et al. Spectrochim. Acta A, 2012, 97: 231.

    [14] Karabacak M, Kurt M, Atac A. J. Phys. Org. Chem., 2009, 22: 321.

    [15] Mehmet Karabacak, Dilek Karag?z, Mustafa Kurt. Spectrochim. Acta A, 2009, 72: 1076.

    [16] Palafox M A, Tardajos G, Martines A G, et al. Chem. Phys., 2007, 340: 17.

    [17] Stephens P J, Devlin F J, Chavalowski C F, et al. J. Phys. Chem., 1994, 98: 11623.

    [18] Devlin F J, Finley J W, Stephens P J, et al. J. Phys. Chem., 1995, 99: 16883.

    [19] Lee S Y, Boo B H. Bull. Korean Chem. Soc., 1996, 17: 754.

    [20] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 03, Revision A.I, Gaussian, Inc., Pittsburgh, PA, 2003.

    [21] Schlegel H B. J. Comput. Chem., 1982, 3: 214.

    [22] Foresman J B, Frisch A. Exploring Chemistry with Electronic Structure Methods,Gaussian Inc., Pittsburgh, 1996.

    [23] Michalska D. Raint Program, Wroclaw University of Technology, 2003.

    [24] Michalska D, Wyokinski R. Chem. Phys. Lett., 2005, 403: 211.

    [25] Sanchez-Camazano M, Sanchez-Martin M J, Vicente M T, et al. Clay Minerals, 1987, 22: 121.

    [26] Silverstein M, Bassler G C, Morril C. Spectroscopic Identification of Organic Compounds, John Wiley, Newyork, 1981.

    [27] Bellamy L J. The Infrared Spectra of Complex Molecules, Vol. 2, Chapman and Hall, London, 1980.

    [28] Chandran A, Mary Y S, Varghese H T, et al. Spectrochim. Acta A, 2011, 79: 1584.

    [29] Rastogi V K, Palafox M A, Tanwar R P, et al. Spectrochim. Acta, 2002, 58A: 1987.

    [30] Roges N P G. A Guide to the Complete Interpretation of the Infrared Spectra of Organic Structures, Wiley, New York, 1994.

    [31] Kalsi P S. Spectroscopy of Organic Compounds, Wiley Eastern Limited, New Delhi, 1993.

    [32] Sajan D, Joe I H, Jayakumar V S. J. Raman Spectrosc., 2005, 37: 508.

    [33] Reddy B V, Rao G R. Vib. Spectrosc., 1994, 6: 231.

    [34] Areanas J F, Tocn I L, Otero J C, et al. J. Mol. Struct., 1997, 410: 443.

    [35] Sebastian S, Sundaraganesan N. Spectrochim. Acta A, 2010, 75: 941.

    [36] Sekino H, Bartlett R J. J. Chem. Phys., 1986, 84: 2726.

    [37] Henriksson J, Saue T, Norman P. J. Chem. Phys., 2008, 128: 105.

    [38] Sun Y X, Hao Q L, Yu Z X, et al. Mol. Phys., 2009, 107: 217.

    [39] Ahmed A B, Feki H, Abid Y, et al. J. Mol. Struct., 2009, 920: 1.

    [40] Varsanyi G. Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Vol. 1/2, Academic Kiado, Budapset, 1973.

    [41] Shimanouchi T, Kakiuti Y, Gamo I. J. Chem. Phys., 1956, 25: 1245.

    O657.3

    A

    2015-08-29; accepted: 2016-01-11

    10.3964/j.issn.1000-0593(2016)03-0880-07

    *Corresponding author email: n_rishibalaa@yahoo.co.in

    亚洲视频免费观看视频| 夜夜夜夜夜久久久久| 狠狠狠狠99中文字幕| 国产精品国产av在线观看| 国产精品久久久av美女十八| ponron亚洲| 999久久久国产精品视频| 18禁国产床啪视频网站| 18禁裸乳无遮挡免费网站照片 | 在线天堂中文资源库| 18禁裸乳无遮挡免费网站照片 | 一边摸一边抽搐一进一小说| 精品一区二区三区四区五区乱码| 午夜日韩欧美国产| 亚洲少妇的诱惑av| 俄罗斯特黄特色一大片| 性欧美人与动物交配| 色综合婷婷激情| 欧美日韩亚洲高清精品| 1024香蕉在线观看| 青草久久国产| xxxhd国产人妻xxx| 三上悠亚av全集在线观看| 中文字幕人妻丝袜一区二区| 母亲3免费完整高清在线观看| 老司机午夜福利在线观看视频| 丝袜美足系列| 免费看a级黄色片| 女性生殖器流出的白浆| 精品熟女少妇八av免费久了| 中文字幕av电影在线播放| 丝袜在线中文字幕| 久久精品人人爽人人爽视色| 女人精品久久久久毛片| 超碰成人久久| 男人舔女人下体高潮全视频| 亚洲aⅴ乱码一区二区在线播放 | 女人爽到高潮嗷嗷叫在线视频| 搡老熟女国产l中国老女人| 久久久久久久久中文| 91九色精品人成在线观看| 老司机深夜福利视频在线观看| 成年版毛片免费区| 变态另类成人亚洲欧美熟女 | 午夜福利一区二区在线看| 91精品三级在线观看| 欧美激情高清一区二区三区| 一夜夜www| 欧美在线一区亚洲| 男人操女人黄网站| 国产成人精品久久二区二区91| 天天添夜夜摸| www.999成人在线观看| 美女高潮到喷水免费观看| 亚洲九九香蕉| 久久人妻熟女aⅴ| 日韩大码丰满熟妇| 精品无人区乱码1区二区| 国产麻豆69| 久久久久久亚洲精品国产蜜桃av| tocl精华| 99久久国产精品久久久| 老司机午夜福利在线观看视频| 波多野结衣一区麻豆| 深夜精品福利| 日本a在线网址| 黄频高清免费视频| 99riav亚洲国产免费| 热99re8久久精品国产| 国产av一区在线观看免费| 伦理电影免费视频| √禁漫天堂资源中文www| 久久 成人 亚洲| 18禁观看日本| 大陆偷拍与自拍| 极品人妻少妇av视频| 91在线观看av| 在线观看一区二区三区| 亚洲五月婷婷丁香| 中文字幕av电影在线播放| 好男人电影高清在线观看| 五月开心婷婷网| 国产成人av教育| 久久久久久久久中文| 久久久久久人人人人人| 中文字幕另类日韩欧美亚洲嫩草| 国产单亲对白刺激| 女同久久另类99精品国产91| 在线免费观看的www视频| 如日韩欧美国产精品一区二区三区| 怎么达到女性高潮| 午夜免费成人在线视频| 老鸭窝网址在线观看| 成人18禁在线播放| 亚洲人成网站在线播放欧美日韩| 岛国视频午夜一区免费看| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频 | 久久青草综合色| 可以在线观看毛片的网站| 久久久久久亚洲精品国产蜜桃av| 日韩欧美在线二视频| 一级毛片女人18水好多| 脱女人内裤的视频| 亚洲av五月六月丁香网| 欧美国产精品va在线观看不卡| 国产免费男女视频| 国产精品99久久99久久久不卡| 国产精品乱码一区二三区的特点 | 国产无遮挡羞羞视频在线观看| 波多野结衣高清无吗| 亚洲成人国产一区在线观看| 国产精品久久久久久人妻精品电影| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久| 欧美人与性动交α欧美软件| 天堂俺去俺来也www色官网| 男女做爰动态图高潮gif福利片 | 91字幕亚洲| 一二三四社区在线视频社区8| 午夜亚洲福利在线播放| 后天国语完整版免费观看| 国产日韩一区二区三区精品不卡| 无限看片的www在线观看| 国产又爽黄色视频| 亚洲一码二码三码区别大吗| 热99re8久久精品国产| 99精品在免费线老司机午夜| 999精品在线视频| av视频免费观看在线观看| 男女床上黄色一级片免费看| 精品高清国产在线一区| 熟女少妇亚洲综合色aaa.| 欧美大码av| 黄色丝袜av网址大全| 亚洲中文日韩欧美视频| 亚洲色图av天堂| 午夜视频精品福利| 波多野结衣高清无吗| 丁香欧美五月| 国产欧美日韩精品亚洲av| 午夜福利免费观看在线| 女性生殖器流出的白浆| 久久久久久久精品吃奶| 一级片免费观看大全| 一区二区三区精品91| 免费在线观看亚洲国产| 午夜精品在线福利| 人人妻人人澡人人看| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美在线观看| 亚洲精品久久午夜乱码| 欧美乱色亚洲激情| 欧美在线黄色| 男人的好看免费观看在线视频 | 国产精品香港三级国产av潘金莲| 大香蕉久久成人网| 久久精品亚洲熟妇少妇任你| 一二三四社区在线视频社区8| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 久久精品影院6| 久久久久久亚洲精品国产蜜桃av| 欧美日韩黄片免| 黄色视频,在线免费观看| 欧美中文综合在线视频| 嫩草影视91久久| 亚洲欧美一区二区三区黑人| 搡老乐熟女国产| 18禁观看日本| 满18在线观看网站| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区激情| 久久久国产成人免费| 韩国av一区二区三区四区| 精品人妻在线不人妻| 欧美乱妇无乱码| 午夜日韩欧美国产| 亚洲一区中文字幕在线| 国产精品九九99| 国产单亲对白刺激| 18禁观看日本| 99国产精品一区二区蜜桃av| 中文字幕高清在线视频| 宅男免费午夜| 精品欧美一区二区三区在线| 欧美+亚洲+日韩+国产| а√天堂www在线а√下载| 国产在线精品亚洲第一网站| 精品国产一区二区三区四区第35| 国产精品美女特级片免费视频播放器 | 婷婷丁香在线五月| 天天躁夜夜躁狠狠躁躁| 黄片大片在线免费观看| 不卡av一区二区三区| 黄片小视频在线播放| 亚洲成a人片在线一区二区| 亚洲欧美日韩另类电影网站| 国产一区二区三区在线臀色熟女 | 黄色视频不卡| 国内久久婷婷六月综合欲色啪| 身体一侧抽搐| 在线观看午夜福利视频| 咕卡用的链子| 老汉色av国产亚洲站长工具| 日韩欧美在线二视频| 天天躁夜夜躁狠狠躁躁| 久久性视频一级片| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| 99久久精品国产亚洲精品| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 日日爽夜夜爽网站| 精品乱码久久久久久99久播| 国产区一区二久久| 中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| 午夜精品久久久久久毛片777| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产毛片av蜜桃av| 91av网站免费观看| 色婷婷av一区二区三区视频| 免费在线观看日本一区| 大型黄色视频在线免费观看| 亚洲av电影在线进入| 99热国产这里只有精品6| 老司机午夜福利在线观看视频| 大码成人一级视频| 欧美久久黑人一区二区| 精品福利观看| 好男人电影高清在线观看| 亚洲第一青青草原| 丝袜美腿诱惑在线| 一区在线观看完整版| 很黄的视频免费| 国产av一区在线观看免费| 国产99久久九九免费精品| 精品国产亚洲在线| 亚洲片人在线观看| 99国产精品一区二区蜜桃av| 精品午夜福利视频在线观看一区| 国产亚洲精品久久久久久毛片| 美女高潮到喷水免费观看| 男女高潮啪啪啪动态图| 亚洲国产看品久久| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看 | 色老头精品视频在线观看| 亚洲精品国产精品久久久不卡| 色尼玛亚洲综合影院| 国产亚洲精品第一综合不卡| 热99re8久久精品国产| 亚洲中文字幕日韩| 久久亚洲真实| 国产精品电影一区二区三区| 久热爱精品视频在线9| 中文字幕色久视频| 人妻丰满熟妇av一区二区三区| 午夜福利影视在线免费观看| 色哟哟哟哟哟哟| 亚洲精品一二三| 最近最新中文字幕大全免费视频| 视频区图区小说| 脱女人内裤的视频| 亚洲三区欧美一区| 午夜免费成人在线视频| 免费高清在线观看日韩| 三级毛片av免费| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院| 久久人人精品亚洲av| 国产成人精品在线电影| 欧美日韩视频精品一区| 国产高清videossex| 波多野结衣高清无吗| 久久九九热精品免费| 欧美激情久久久久久爽电影 | 久久久久久久精品吃奶| 不卡av一区二区三区| 成人免费观看视频高清| 日日爽夜夜爽网站| 日韩三级视频一区二区三区| 91老司机精品| 88av欧美| 亚洲在线自拍视频| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看| 丰满人妻熟妇乱又伦精品不卡| 美女大奶头视频| 操出白浆在线播放| 午夜视频精品福利| 欧美日韩一级在线毛片| 午夜视频精品福利| 在线观看日韩欧美| 久久久久久人人人人人| 国产熟女午夜一区二区三区| 精品国产亚洲在线| 青草久久国产| 国产无遮挡羞羞视频在线观看| 亚洲国产欧美一区二区综合| 美女国产高潮福利片在线看| 亚洲国产精品一区二区三区在线| 欧美国产精品va在线观看不卡| 国产精品自产拍在线观看55亚洲| 国产成人精品久久二区二区免费| 久久久水蜜桃国产精品网| 丰满迷人的少妇在线观看| 男女做爰动态图高潮gif福利片 | 看片在线看免费视频| 日本精品一区二区三区蜜桃| 91老司机精品| 国产精品免费一区二区三区在线| 欧美黄色淫秽网站| 又黄又爽又免费观看的视频| 亚洲国产精品sss在线观看 | 国产精品99久久99久久久不卡| 久久久水蜜桃国产精品网| 18禁裸乳无遮挡免费网站照片 | 精品国产美女av久久久久小说| 麻豆av在线久日| 精品久久久久久久久久免费视频 | 视频区欧美日本亚洲| 性少妇av在线| 久久国产精品人妻蜜桃| 一边摸一边做爽爽视频免费| 国产精品九九99| 校园春色视频在线观看| 国产欧美日韩一区二区三区在线| 99国产精品一区二区蜜桃av| 可以在线观看毛片的网站| 久久亚洲精品不卡| 女人被狂操c到高潮| 色综合婷婷激情| 精品一区二区三卡| 国产成人精品久久二区二区91| 欧美最黄视频在线播放免费 | 视频区欧美日本亚洲| 成人三级做爰电影| 国产熟女xx| 久久中文看片网| 少妇的丰满在线观看| 国产成人欧美| 日本a在线网址| 我的亚洲天堂| 99久久久亚洲精品蜜臀av| 成在线人永久免费视频| 黑人欧美特级aaaaaa片| 在线视频色国产色| 91麻豆精品激情在线观看国产 | 天堂俺去俺来也www色官网| 国产精品自产拍在线观看55亚洲| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区在线不卡| 精品电影一区二区在线| 一夜夜www| 久久国产精品人妻蜜桃| 妹子高潮喷水视频| 久久中文字幕人妻熟女| 别揉我奶头~嗯~啊~动态视频| 久久久久国内视频| 人妻丰满熟妇av一区二区三区| 免费看a级黄色片| 女人高潮潮喷娇喘18禁视频| 国产一区在线观看成人免费| 亚洲国产精品一区二区三区在线| 多毛熟女@视频| 9热在线视频观看99| 日韩欧美三级三区| 精品久久久久久电影网| 激情在线观看视频在线高清| 久久中文看片网| 国产色视频综合| 国产亚洲精品综合一区在线观看 | 久久天堂一区二区三区四区| 老鸭窝网址在线观看| 国产精品野战在线观看 | 久久精品国产99精品国产亚洲性色 | 在线观看午夜福利视频| 午夜免费鲁丝| 男女做爰动态图高潮gif福利片 | 男女之事视频高清在线观看| 精品久久久久久久久久免费视频 | 国产黄色免费在线视频| 成人18禁在线播放| 成熟少妇高潮喷水视频| 人人澡人人妻人| av电影中文网址| 亚洲视频免费观看视频| 日韩av在线大香蕉| av天堂久久9| 国产一区在线观看成人免费| 黄色片一级片一级黄色片| 一区二区三区激情视频| 亚洲精品粉嫩美女一区| 久久久久精品国产欧美久久久| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 欧美日韩黄片免| 久久久久国内视频| 美女国产高潮福利片在线看| 叶爱在线成人免费视频播放| 欧美最黄视频在线播放免费 | 长腿黑丝高跟| 老司机福利观看| 三上悠亚av全集在线观看| 又大又爽又粗| 成人永久免费在线观看视频| 国产成年人精品一区二区 | 精品一品国产午夜福利视频| 精品无人区乱码1区二区| 老熟妇仑乱视频hdxx| 大型av网站在线播放| 看片在线看免费视频| 黄色女人牲交| 极品人妻少妇av视频| www日本在线高清视频| 国产精品久久久久成人av| 成年人免费黄色播放视频| 成人18禁在线播放| 午夜视频精品福利| 男人的好看免费观看在线视频 | 国产三级在线视频| 在线av久久热| 午夜影院日韩av| e午夜精品久久久久久久| 日本免费一区二区三区高清不卡 | 欧美日韩视频精品一区| 九色亚洲精品在线播放| а√天堂www在线а√下载| 色播在线永久视频| 国产欧美日韩精品亚洲av| 国产aⅴ精品一区二区三区波| 亚洲国产毛片av蜜桃av| 国产成人av教育| 一区二区三区激情视频| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 成人免费观看视频高清| 欧美最黄视频在线播放免费 | 中文欧美无线码| 国产精品一区二区精品视频观看| 90打野战视频偷拍视频| 欧美最黄视频在线播放免费 | 欧美日韩福利视频一区二区| 亚洲欧美激情在线| 精品福利永久在线观看| 精品人妻1区二区| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区mp4| 满18在线观看网站| 久久精品亚洲精品国产色婷小说| 少妇裸体淫交视频免费看高清 | 日韩视频一区二区在线观看| 国内久久婷婷六月综合欲色啪| 国产精品久久久av美女十八| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文字幕日韩| 麻豆av在线久日| 又黄又爽又免费观看的视频| 午夜亚洲福利在线播放| 搡老熟女国产l中国老女人| videosex国产| 真人做人爱边吃奶动态| 国产高清激情床上av| 精品日产1卡2卡| 巨乳人妻的诱惑在线观看| 亚洲成a人片在线一区二区| av天堂在线播放| 18禁黄网站禁片午夜丰满| 999精品在线视频| 欧美精品一区二区免费开放| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 手机成人av网站| 国产亚洲精品久久久久5区| 啦啦啦在线免费观看视频4| 黄色视频不卡| 黄片播放在线免费| 国产欧美日韩一区二区三| √禁漫天堂资源中文www| 国产又色又爽无遮挡免费看| 成年女人毛片免费观看观看9| 国产深夜福利视频在线观看| 精品熟女少妇八av免费久了| 女人被躁到高潮嗷嗷叫费观| 超色免费av| av免费在线观看网站| 人成视频在线观看免费观看| 欧美日韩瑟瑟在线播放| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区不卡视频| 国产成人精品在线电影| 一级毛片高清免费大全| 亚洲熟妇熟女久久| xxxhd国产人妻xxx| 黄色视频不卡| 国产精品野战在线观看 | 色综合婷婷激情| 国产免费现黄频在线看| 日日摸夜夜添夜夜添小说| 亚洲熟妇熟女久久| 日日爽夜夜爽网站| av有码第一页| 国产成人免费无遮挡视频| 女生性感内裤真人,穿戴方法视频| 91老司机精品| 十八禁网站免费在线| 亚洲情色 制服丝袜| 岛国视频午夜一区免费看| 亚洲情色 制服丝袜| 亚洲av美国av| 亚洲在线自拍视频| 免费高清视频大片| 国产精品电影一区二区三区| 99在线人妻在线中文字幕| 国产精品电影一区二区三区| 亚洲精品粉嫩美女一区| 久久国产亚洲av麻豆专区| 在线天堂中文资源库| 国产在线精品亚洲第一网站| 日本精品一区二区三区蜜桃| 怎么达到女性高潮| 国产午夜精品久久久久久| 免费一级毛片在线播放高清视频 | 高清黄色对白视频在线免费看| 国产亚洲精品一区二区www| 极品教师在线免费播放| 成人永久免费在线观看视频| 久久人妻熟女aⅴ| 亚洲av五月六月丁香网| av超薄肉色丝袜交足视频| 国产精品一区二区精品视频观看| 午夜福利在线观看吧| 亚洲中文字幕日韩| 欧美乱妇无乱码| 成人av一区二区三区在线看| 免费在线观看黄色视频的| 久久久久久人人人人人| 99久久国产精品久久久| 伊人久久大香线蕉亚洲五| 精品无人区乱码1区二区| 天天躁狠狠躁夜夜躁狠狠躁| 性欧美人与动物交配| 搡老岳熟女国产| 国产成人啪精品午夜网站| av视频免费观看在线观看| 久久影院123| 在线免费观看的www视频| 午夜免费鲁丝| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区免费| 天天添夜夜摸| 国产精品乱码一区二三区的特点 | 久久久久九九精品影院| 国产一区二区三区视频了| 99热国产这里只有精品6| av天堂在线播放| 色综合欧美亚洲国产小说| 久久精品国产亚洲av香蕉五月| 久久国产精品人妻蜜桃| 啦啦啦 在线观看视频| 在线国产一区二区在线| 性色av乱码一区二区三区2| 亚洲一区中文字幕在线| 一边摸一边抽搐一进一小说| 身体一侧抽搐| 日本wwww免费看| 日韩欧美一区二区三区在线观看| 91九色精品人成在线观看| 成人手机av| 日本欧美视频一区| 日日夜夜操网爽| 中亚洲国语对白在线视频| 亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 99国产精品一区二区蜜桃av| 日韩精品青青久久久久久| 国产高清videossex| 久久中文字幕一级| 亚洲成人久久性| 黑人猛操日本美女一级片| 丝袜美腿诱惑在线| 女人被躁到高潮嗷嗷叫费观| 丰满人妻熟妇乱又伦精品不卡| 亚洲九九香蕉| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美在线二视频| 大陆偷拍与自拍| 久久婷婷成人综合色麻豆| 夫妻午夜视频| 日韩欧美免费精品| 欧美一区二区精品小视频在线| 日韩欧美在线二视频| 欧美日韩亚洲综合一区二区三区_| 黄色 视频免费看| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲精品久久久久5区| 国产精品综合久久久久久久免费 | 久久 成人 亚洲| 十八禁人妻一区二区| 美女午夜性视频免费| 精品卡一卡二卡四卡免费| 黄片大片在线免费观看| 久久狼人影院| 精品国产国语对白av| 国产欧美日韩一区二区精品| 国产蜜桃级精品一区二区三区| 韩国av一区二区三区四区| 欧美人与性动交α欧美精品济南到| 日韩欧美一区二区三区在线观看| 国产精品久久久久成人av| 99久久国产精品久久久| 欧美黑人欧美精品刺激|