• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupled CFD/RBD Modeling for a BasicFinner Projectile with Control

    2016-05-12 06:03:08KeXiChaoYanYuHuang
    空氣動力學(xué)學(xué)報 2016年2期
    關(guān)鍵詞:外形氣動動力學(xué)

    Ke Xi, Chao Yan, Yu Huang

    (1. Research Institute of navigation and Control Technology, Beijing 100089, China 2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

    ?

    Coupled CFD/RBD Modeling for a BasicFinner Projectile with Control

    Ke Xi1,*, Chao Yan2, Yu Huang2

    (1. Research Institute of navigation and Control Technology, Beijing 100089, China 2. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China)

    This paper introduces the development and application of an advanced time-accurate multidisciplinary technique for the prediction of unsteady aerodynamics and flight dynamics of maneuvering projectiles. The virtual flight simulation of a basic finner projectile has been investigated through coupling solving procedure of unsteady Navier-Stokes equations, rigid-body six degree-of-freedom motion equations and control law. The flow solver uses a finite-volume method based on structure grid with dual time stepping. Additionally, a feedback controller is required for the control surfaces to attain the commanded deflections, and the overset Chimera method is used to simulate relative motions. The predictions show that the gains for the controller must be correctly selected to obtain the proper response. Simulation results show that the virtual flight simulation platform developed here is capable of solving the complicated unsteady flows with moving boundary, has a strong promotion to engineering application.

    Computational Fluid Dynamic, Basic finner, Virtual flight simulation, Unsteady flow, Feedback control

    0 Introduction

    Agility and maneuverability are always the basic requirements of advanced air combat weapons. In order to meet the requirements of future air combat, aircraft design has been pushed towards the expansion of flight envelopes into extreme conditions (high angle of attack) and aggressive maneuvers with high angular rates, involving strongly nonlinear aerodynamic phenomena, when the asymmetric vortical flow would dominate the flow field. The vehicle would typically operate in the post-stall regime of the lifting surfaces. The dynamic and time-dependent effects of the nonlinear flow characteristics, including flow separation, vortex shedding, and vortex lag effects, contribute significantly to the behavior and maneuvering capability of the vehicle. The basis of conventional flight mechanics models is a coefficient based des-cription of the aerodynamics, with the coefficients (stability derivatives) being obtained from experiment or computational fluid dynamics (CFD), and it is incompetent to describe some rather complex aerodynamic phenomena which incorporates significant hysteresis. There is a need

    to develop a high-fidelity model which is able to replicate the actual free flight. In the past 30 years, with the rapid growth of the computational resources, CFD has achieved a significant progress and CFD is considered to be very close to its maturing stage in steady flow computation at designed conditions. The next target of CFD is numerical simulation of maneuvering vehicles through multidisciplinary computations [1].

    In principle CFD can produce the aerodynamic inputs but also, through a coupling procedure with rigid body dynamics (RBD) and control, can simulate a rigid motion response directly. CFD based virtual flight simulation is such a technology which integrates multidisciplinary design method. The basic concept of virtual flight test which originates from wind tunnel is that the vehicle will move freely, the control surfaces will be able to real time control according to the flight control systems demand, and the aerodynamic loading and motion parameters are obtained simultaneously during the simulation. The CFD based virtual flight simulation has the potential to provide detailed fluid dynamic understanding of the unsteady aerodynamics processes involving the maneuvering flight of modern air combat weapon systems. This multidisciplinary design technology will be able to explore the coupling mechanism of the aerodynamics/flight dynamics, resulting in reduced development costs and higher performance weapons.

    A lot of progress has been made recently with the coupled CFD/RBD procedure for prediction of unsteady aerodynamics and flight dynamics of projectiles [2-6]. Control actions and their aerodynamic phenomena have also been extensively studied. The most remarkable subjects are the effect of different actuation schemes, such as jet actuators [7], elastic deformation [8] and motion of control surfaces. Observing independent studies that relate control and RBD to aerodynamics, the natural step is to link them all in a comprehensive, integrated application [9-11]. With the increasing capacity of computers, coupling of CFD with motion dynamics and control can represent an important tool for the design of an aircraft’s geometry and its guidance and control algorithms, as it can be employed to obtain aerodynamic models, evaluate performance during control actions and compute virtual fly-outs.

    With this in mind, this paper presents efforts towards such high-fidelity flight dynamic models. The intention here is not to investigate complex flight mechanics behavior, but to describe the development of a tool which can be used for this purpose. The methodology herein proposed uses CFD to estimate the transient flow field around the vehicle; uses the vehicle’s equations of motion to calculate its movement in 3-dimensional space; and a controller which uses the body’s motion state to command a deflection of its control surfaces. This information is then fed back to the CFD domain to restart a new flow field and advance in the simulation of a fly-out.

    1 Computational Methodology

    1.1 Computational Fluid Dynamics

    In this study, the MI-CFD flow solver was used to compute the flow field around the vehicle. MI-CFD is developed under the leadership of Prof. Yan at Beihang University [12]. MI-CFD is a second-order, cell-centered, finite-volume Navier-Stokes (N-S) flow solver. The complete set of three-dimensional time-dependent Reynolds-Averaged Navier-Stokes (RANS) equations is solved in a time-accurate manner for simulations of unsteady flow fields.

    The conservation form of the 3-D dimensionless, unsteady, compressible, RANS equations in body-fitted coordinates is as follows:

    (1)

    whereQis the vector of conservative variables,F,GandHare the convection flux vectors,FV,GVandHVare the viscous flux vectors,tstands for time,Re∞theReynoldsnumberoffreestream.

    MI-CFDiscapableofusingseveraldifferentfluxschemes,timeschemes,limitersandturbulencemodels.Inthisstudy,theRoe’sFDSschemeisused,aswellastheminmodlimiter.Two-equationshear-stress-transport(SST)turbulencemodelisadoptedforthecomputationofturbulentflows.Dualtime-steppingisusedtoachievethedesiredtime-accuracy.Open-MPparallelstrategyisem-ployedtospeedupcomputation.Thedetailscanbefound,forinstance,inRef.

    [13].

    1.2 Chimera Technique

    The chimera technique, as implemented in MI-CFD, provides the capability to simulate large amplitude control-surface deflections. The overset grid gets rid of the restriction of structured grids’ topology and thus, for arbitrary complex geometries, grids with different topologies can be generated independently. The technique is based on creating overlapping grids to handle a time-dependent relative motion of different geometries. In the overlapping grids concept, there are two major procedures involved in establishing intergrid communications. The first procedure is hole cutting (automatic or manual). For the cases presented in this paper, automatic hole cutting is used. The second procedure is the identification of interpolation stencils, which involves a search of donor cells for all intergrid boundary points. The search algorithm is based on a state-of-the-art alternating digital tree (ADT) data structure [14].The ADT data structure optimizes the search operations to O(lgN/lg2) as opposed to the total number(N) of elements in the computational domain. For the moving multi-body simulation presented in this paper, an efficient method which is known as dynamic overset is used since the overset grid assembly should be performed at every time step.

    1.3 Coupled CFD/RBD/GNC Procedure

    A coupled CFD/RBD procedure is needed for the simulation of virtual fly-out of projectiles. The CFD/RBD simulation combines a rigid six degree-of-freedom (DOF) flight dynamic model with a three dimensional, time-accurate CFD simulation. This combination is formed by allowing the RBD dynamic equations to be integrated forward in time, while the aerodynamic forces and moments are generated by CFD. The reference frames used for the CFD/RBD simulation are the standard inertial and body frames, and are depicted in Fig.1 below. The inertial frame,i, is fixed to the ground, and oriented withyipointingupwards.Thebodyframeisfixedtothecenterofmassoftheprojectile,andisorientedsuchthatxbpointsthroughthenoseoftheprojectileandtheotherunitvectorsformaright-handedsystem.TheprojectileorientationisdefinedbytheuseofEuleranglesinthestandardaerodynamicsequenceofrotations.Thus,therigidbodystatecontaintheinertialprojectilecenterofmasslocation, (x,y,z), the Euler angles, (φ,θ,ψ),thebodyframecomponentsoftheprojectilecenterofmassvelocity(u,v,w), and the body frame components of the projectile angular velocity (p,q,r).

    Fig.1 Reference frame definition.

    The RBD equations used here are the standard equations for the center of mass of a rigid projectile. They are given in the equations below.

    where the forces (Fx,i,Fy,i,Fz,i)andthemoments(Mx,My,Mz)intheaboveequationsrepresentthetotalforcesandmomentsappliedtotheprojectile.Thenonlineardifferentialequationscanbesolvedusingafourth-orderRunger-Kuttamethod.Thedual-EulermethodisusedtoovercomethesingularityofEulerequation[15].

    Forsimulationsofguidedcontrolmaneuvers,acoupledCFD/RBD/GNCprocedurehasbeendevelopedbyintegratingGNCpartintothecoupledCFD/RBDmethod.Theaddedelementofthiscouplingistheguidance,navigation,andcontrolaspect(GNC).TheGNCcapabilityemploysafeedbackcontroller.Asthecontrolalgorithmisnottheprimarybasisofthisresearchasimpleproportional-integral-derivative(PID)controllerisused.PIDcontrollerisalinearcontrollerbasedonthesimpleestimationofthepast,presentandfuturemessage.Duringtheflight,thecontrolofthevehiclecanbeachievedinmanyways,e.g.,withcontrolsurfacesorpulsejets.Inthepresentpaper,onlytheformercontrolmechanismisstudied.

    Fig.2depictstheschematicofthePIDcontroller.αeisthedesiredstate,αtisthereal-timestate,δristhecontrolsurfacedeflection.PIDcontrollerworksviasomefundamentalcontrolelementssuchassummers,comparators,gainsandintegrators.Ithastheform

    (3)

    Wheree(t)=αe-αtisthedeviation,u(t)isthecontrolvariable,Kp,KiandKdarethecontrolgains.

    Fig.2 Schematic of the PID controller.

    InthecoupledCFD/RBD/GNCprocedure,theaerodynamicforcesandmomentsarecomputedateverysingletimestepintheCFDsolverandtransferredtotheRBDparttopredictthenewflightstates.Theflightcontrolsystem(FCS)providesthecontrolvariablesbasedonagivenFCSdesign.TheFCSdesignallowsformodelingofbothcontrolledandprescribedmotions.Thecontrolstrategyusesthevehicle’smotionstatevariablesasfeedback,andmustdefinethedesiredattitudes.Controlalgorithmisworkedtodefinethecommandeddeflectionineachcontrolsurface.TheoutputofRBDstateandthecontrolvariablesaretransferredtotheCFDflowsolverwhichthencomputestheaerodynamicforcesandmomentssubjecttotheseRBDstateandcontrolvariables.

    ThecouplingoftheCFD/RBDprocedureisalooseone.Fig.3illustratesthemethodology,whichcanbesummarizedasfollows:

    Fig.3 Diagram of the coupled process.

    1)Withtheinitialmotionoftheobject,thesteady-stateflowfieldiscomputedthroughCFD.

    2)Aerodynamicforcesandmomentsareobtainedthroughintegration.

    3)RBDmodelissolvedandnumericallyinte-gratedonetimestepforwardtofindthenewmotionstate.

    4)Controlalgorithmisexecutedtodefinethecommandedanglesineachcontrolsurface.

    5)Oversetgridisusedtoaccountforrelativemotionandthedomain’snewboundaryconditionsaredefined.

    6)Dual-time-steppingmethodisusedtoadvancethetimesteptoobtaintheupdatedflowfield.

    7)Returntostep2andrepeatuntildesiredphysicalsimulationtimeisreached.

    2 Computational Model

    The test case for the current simulations is the Basic Finner projectile. The model is a generic missile configuration which consists of a cone-cylinder with four rectangular fins (see Fig.4) [16]. The length of the projectile is 10 calibers and the diameter is 30 mm. The conical nose is 2.84 calibers long and is followed by a 7.16 caliber cylindrical section. Four fins are located on the back end of the projectile. Each fin is one caliber long, and has a thickness of 0.08 calibers. The center of gravity (CG) was located at 5.5 calibers from the nose of the projectile. Table 1 shows the physical properties of the model.

    Fig.4 Schematic of the basic finner.

    A structured overset computational mesh (see Fig.5) was generated for the projectile. In general, most of the grid points are clustered in the boundary-layer, fins, and the wake regions. The boundary layer spacing near the wall was selected in order to achieve ay+value of 1.0. The mesh was generated using the Gridgen V15.17 grid-generation software developed by Pointwise Inc. The main body and four rectangular fins were gridded separately and this significantly reduced the restrictions on grid generation. The grids are then overset with each other using a Chimera method. The total number of grid points in this case is approximately 5 million. This Chimera procedure requires proper transfer of information between the main body mesh and the fins meshes. However, the advantage is that the individual grids are generated only once and the Chimera procedure can then be applied repeatedly as required during motion. There is no need to generate meshes at each time step during the maneuvers.

    Fig.5 Overset grid of the model.

    PhysicalpropertiesCalueLength/m0.3Diameter/m0.03Mass/kg1.58Ixx/(kg·m2)1.92×10-4Iyy,Izz/(kg·m2)9.785×10-3CG(fromnose)/m0.165

    3 Results and Discussion

    This paper pursues the high-fidelity assessment of the flight dynamics. Therefor a virtual flight simulation platform coupling CFD and RBD including control surface motion capabilities was developed. Demonstration of the coupled CFD/RBD technique has been achieved using an angle of attack control maneuver. The intention here is not to investigate complex flight mechanics behavior, but to describe the development of the tool, so we are only dealing with longitudinal motion. Besides, the translational motion is constrained.

    Typically, a solution obtained in the steady-state mode serves as the starting solution for the coupled CFD/RBD run. The coupled run starts to deflect the fins in accordance with the control law or the controller. CFD results are obtained in a time-accurate manner.

    For the computations presented here, the initial state of the projectile is fixed at zero degrees angle of attack, a height of 10 km and a flight velocity of Mach 2. The initial deflection angle of the elevator is supposed to be zero degree. The initial conditions represent the initial state of the projectile prior to a commanded maneuver.

    3.1 Open-loop Simulations

    Generally, the flying qualities include both controllability and stability. First we simulate the open-loop response of the projectile for different types of rudder control laws. We can have a comprehensive knowledge of the dynamic characteristics of the projectile from these simulations. After data are acquired, parameter identification techniques can be applied to the motion history to extract aerodynamic coefficients.

    Given the four rudder control laws:

    δe(t)=5°,t≥0

    (4)

    (5)

    (6)

    (7)

    Formula(4)through(7)eachstandsforastep-rudder,adoubletrudder,atrapezoidalrudderandaharmonicrudder.Fig.6showsthecontrolsurfacesdeflectionsandpitchanglehistoriesoftheprojectileopen-loopsimulations.Thesimulationtimetakesonly1.5seconds.

    TheequationofmotionfortheopenloopsimulationscanbewrittenasshowninEq.(8).

    (8)

    Thesecond-ordercharacteristicequationis

    (9)

    Eq.(8)reflectstheinherentdynamicbehaviorsoftheprojectile.TherighthandsideofEq.(8)whichstandsfortheroleoftheflightcontrolsystemwillchangethedynamicbehaviorsoftheprojectile.Whentherighthandsideisnotzero,namely,theflightcontrolsystemtakeseffect,theautonomoussystemchangesintonon-autonomoussystem.Thedynamicbehavioroftheprojectileisdeterminedbytheinherentcharacteristicsandcontrolsystemtogether.

    (a) Step-rudder

    (b) Doublet rudder

    (c) Trapezoidal rudder

    (d) Harmonic rudderFig.6 The response to different types of rudder deflections.

    Forthestep-rudder,theanalyticalsolutionofthegoverningequation(Eq.(8))canbewrittenas:

    (10)

    Where

    αtrim=-Cmδeδe/Cmα

    (11)

    Itusuallytakestheovershoot,peaktime,transitiontimeandoscillationfrequencytoassessthedynamicquality.Ingeneral,gooddynamicqualityrequiresnoobviousovershootoroscillationintransitionprocess,andtheprojectilequicklyreachesthedesiredstate.

    Fig.6(a)showstheresponseofastep-rudder,whichrepresentsanextremecasewhenthevehicleisundergoingrapidmaneuverandtherudderanglerateisinfinity.Fig.6(b)showstheresponseofadoubletrudder,whichrepresentstheinstantaneousinterferencethevehicleencountered.Fig.6(c)showstheresponseofatrapezoidalrudder,whichrepresentsaslowmaneuvering.Ascanbeseenfromthefigure,theovershootisobviouslylessthanthatofstep-rudder.Fig.6(d)showstheresponseofaharmonicrudder,whichrepresentstheidealizedrepeatedmodificationprocess.Allthecomputationsindicateabothstaticallyanddynamicallystableconfiguration.Fromthesesimulations,wecanobtainthekeyfeaturesoftheprojectilesoastobepreparedfortheclosedloopsimulation.

    3.2 Closed-loop Simulations

    For a actual flight, the autopilot or flight control system will send control commands according to the flight state in real time, to make the vehicle stabilize in scheduled trajectory or maneuver to the desired state. Therefore, a feedback controller is needed. A simple proportional derivative control law is used for feedback control.

    The elevator deflection angle is given by the equation below.

    δe(t)=Kp(αd-α(t))+

    (12)

    ThecontrolgainsKp,KiandKdarechosenexperimentallytoobtainadesirabletimeresponseofthesystem.

    Inreality,thecontrolfinsarelimitedinbandwidth.Assumethatthecontrolfinsreceivecontrolsignalseverytruddertime. And the physical time step used in CFD calculations is far less thantrudder. Again suppose that the deflections of the control surfaces are continuous and smooth duringtruddertime, rather than a step rudder. The smooth formula is as follows:

    δ(t)=Δδ·(10λ3-15λ4+6λ5)

    λ=t/trudder-int(t/trudder)∈[0, 1]

    (13)

    WhereΔδis the total deflection angle duringtruddertime.

    Based on PID controller, a closed-loop angle tracking system was constituted to simulate a commanded maneuver.

    The control command was that the projectile maneuvered from the initial state to five degrees angle of attack, and stabilized in this position.

    The equation of motion for the closed-loop simulation is the same as Eq.(8), butδeisdeterminedasshowninEq.(12).

    SubstitutingEq.(12)intoEq.(8)yields

    (14)

    AsEq.(14)explicitlyhasthetimevariable,itbecomesanon-autonomoussystem.Thedynamiccharacteristicofthevehicleisdeterminednotonlybytheinherentpropertiesbutalsobythecontrolsystem.Forthestaticallyordynamicallyunstablevehicle,thecontrolgainscanbeadjustedtomakethevehiclestable.

    Thesignificantbenefitofthecoupledapproachisthattheinstantaneousaerodynamicforceandmomentarecomputedtodeterminetheresponseoftheprojectile.Thepredictedaerodynamicloadincludesalltherelevantinstantaneouseffects,includingcontrolsurfacesdeflections,deflectionrate,wakeandallotherinterferenceeffects.Asthesimulationresultsaresensitivetothecontrolgains,theparametricstudiesneedtobeperformedtodecidetheoptimalchoice.

    Fig.7showstheresponsesfordifferentparameters.Theparametersarelistedontopofthefigures.Ontheleftsidearethetimehistoriesofangleofattack(blacksolidline)andelevatordeflectionangles(reddashdottedline),andtherightsideisthepitchrateversusangleofattack.Kp,Kdandtruddervary from case to case. The integral gain is not important since the system contains little steady state error, so the integral gain maintains as a constant.

    As shown in Fig.7, initially the angle of attack is zero, starts to increase with the deflections of control surfaces. Under the effect of the controller, the system brakes in advance to prevent overshoot. The pitch rate begins to reduce while the angle of attack continues to increase. Finally, the projectile reaches the desired state after several adjustments. The phase portrait shows a stable spiral point structure. In general, good dynamic quality requires no significant overshoot or oscillation, and short transition time. We can compare the results of case A with case B to find how the derivative gain affects the dynamic behavior of the projectile. In the two cases, all the parameters are same exceptKd. We can find that the overshoot for case B (with smallerKd) is a little larger than the one for case A, and the maximum pitch rate follows the same tendency. In fact, the derivative gain helps the system brake in advance to prevent overshoot, and it works like damping coefficient, and it’s related to dynamic stability derivative. Also we can compare the results of case C with case D to find how the proportional gain affects the dynamic behavior of the projectile. From the two cases, we can find that the overshoot for case C (with largerKp) is a little larger than the one for case D, and the maximum pitch rate follows the same tendency. Besides, the transition time is a little longer for case C. The proportional gain is related to steerage. The speed of response can be faster by increasing the proportional gain, but the response can also be oscillatory or even diverge if the proportional gain is too large. From the results of case A and D, we can find that the overshoot is almost the same for the two cases, but the maximum pitch rate of case A is larger than that of case D. Obviously, larger pitch rate would be needed to reach the state in shorter time. But it is not a good idea to choose a value close to the natural frequency, or it will cause oscillation or even divergence.

    Fig.7 The responses for different parameters, angle of attack and elevator deflections histories, pitch rate vs. angle of attack.

    Fig.8 shows the computed pitching moments as a function of time. Results obtained from all four cases are compared to each other. The maximum moment shows similar behavior with the maximum pitch rate.

    To demonstrate the capability of the platform for the prediction of high angle of attack conditions, a new simula-tion is conducted. The new control command is that when the projectile reached five degrees angle of attack, and stabilized, then maneuvers to fifteen degrees angle of attack, and stabilized in the new position.

    Fig.9 shows the responses of the projectile under new command. Fig.10 shows the phase portrait. As can be seen from the figures, high frequency oscillation appears when the projectile maneuvers from five degrees angle of attack to fifteen degrees angle of attack. This is probably caused by the nonlinear characteristic of the flow field due to the vortices flow at high angle of attack.

    Fig.8 Computed aerodynamics pitching moments as a function of time.

    Fig.9 The responses under new command.

    4 Conclusion and Future Work

    This paper describes the development and application of a time-accurate coupled CFD/RBD multidisciplinary technique for prediction of un-steady aerodynamics and flight dynamics of maneu-vering projectiles.

    Using this multidisciplinary approach, the time-dependent response of the Basic Finner projectile has been simulated. Simulation results show that the virtual flight simulation platform is capable of solving the complicated unsteady flows with moving boundary, can provide the data for the unsteady aerodynamic modeling, indicate the stability of aircraft and test flight control law, has a strong applicability to engineering application. Work is

    currently on-going to simulate the full degrees of freedom of the virtual fly-out.

    [1]Salas M D. Digital Flight: The last CFD aeronautical grand challenge[J]. Journal of Scientific Computing, 2006, 28(2/3): 479-505.

    [2]Schütte A, Einarsson G, Raichle A, et al. Prediction of the unsteady behavior of maneuvering aircraft by CFD aerodynamic, flight-mechanic and aeroelastic coupling[R]. NATO RTO-MP-AVT-123-P-11,2005.

    [3]Morton S A, Eymann T A, Lamberson S, et al. Relative motion simulations using an overset multimesh paradigm with Kestrel v3. AIAA 2012-0712[R]. Reston: AIAA, 2012.

    [4]Sahu J. Virtual fly-out simulations of a spinning projectile from subsonic to supersonic speeds. AIAA 2011-3026[R]. Reston: AIAA, 2011.

    [5]Prewitt N C, Belk D M, Shyy W. Parallel computing of overset grids for aerodynamic problems with moving objects[J]. Progress in Aerospace Sciences, 2000, 36: 117-176.

    [6]Xi K, Ma L J, Yan C, et al. Numerical simulation of three-store ripple release using overset structured grid[J]. Physics of Gases, 2012, 7(4) : 75-79 (in Chinese).

    [7]Jee S K, Lopez O D, Muse J, et al. Flow simulation of a controlled airfoil with synthetic jet actuators. AIAA 2009-3673[R]. Reston: AIAA, 2009.

    [8]Michler A. Aircraft control surface deflection using RBF-based mesh deformation[J]. International Journal of Numerical Methods in Engineering, 2011, 88(10): 986-1007.

    [9]Xi K, Yuan W, Yan C, et al. Virtual flight numerical simulation of the Basic Finner projectile with closed loop[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(3): 634-642 (in Chinese).

    [10]Camargo J, Lopez O, Lleras N O. A computational tool for unsteady aerodynamic flow simulations coupled with rigid body dynamics and control. AIAA 2012-3034[R]. Reston: AIAA, 2012.

    [11]Sahu J, Costello M, Montavo C. Development and application of multidisciplinary coupled computational techniques for projectile aero dynamics[C]//ICCFD7-4504, 2012.

    [12]Fan J J, Yan C. Enhancement and application of overset grid assembly[J]. Chinese Journal of Aeronautics, 2010, 23: 631-638.

    [13]Krist S L, Biedron R T, Rumsey C L. CFL3D User’s Manual[R]. NASA/TM-1998-208444, 1998.

    [14]Bonet J, Peraire J. An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems[J]. International Journal of Numerical Methods in Engineering, 1991, 31: 1-17.

    [15]Huang X Q. The dual-Euler method for overcoming the singularity of Euler Equation[J]. Flight Dynamics, 1994, 12(4): 28-37. (in Chinese).

    [16]Dupuis A D, Hathaway W. Aeroballistic range tests of the basic finner reference projectile at supersonic velocities. DREV-TM-9703[R]. Valcartier, Canada: Defense Research Establishment, 1997.

    0258-1825(2016)02-0182-08

    帶反饋控制的基本帶翼外形的耦合氣動/運動數(shù)值模擬研究

    席 柯1,*, 閻 超2, 黃 宇2

    (1. 中國兵器工業(yè)導(dǎo)航與控制技術(shù)研究所, 北京 100089; 2. 北京航空航天大學(xué) 航空科學(xué)與工程學(xué)院, 北京 100191)

    介紹了一種先進(jìn)的、時間精度的多學(xué)科數(shù)值模擬平臺的開發(fā)和應(yīng)用,該平臺可用于預(yù)測飛行器機動過程中的非定常氣動特性和飛行力學(xué)特性。通過耦合求解非定常Navier-Stokes方程、剛體動力學(xué)方程及控制律,對基本帶翼外形進(jìn)行了虛擬飛行數(shù)值模擬研究。求解器采用基于結(jié)構(gòu)網(wǎng)格的有限體積法,時間方法采用雙時間步方法。使用反饋控制器獲得舵偏控制指令,重疊網(wǎng)格方法用來模擬物體間的相對運動。模擬結(jié)果顯示控制器的增益必須正確選擇才能獲得正確的響應(yīng)。仿真結(jié)果表明本文發(fā)展的虛擬飛行數(shù)值模擬方法能夠預(yù)測包含動邊界的復(fù)雜非定常流動,具有較強的工程適用性。

    計算流體力學(xué);基本帶翼外形;虛擬飛行;非定常流動;反饋控制

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0005

    *Research Assistant; cauchy86@163.com

    format: Xi K, Yan C, Huang Y. Coupled CFD/RBD modeling for a basic finner projectile with control[J]. Acta Aerodynamica Sinica, 2016, 34(2): 182-189.

    10.7638/kqdlxxb-2016.0005. 席柯, 閻超, 黃宇. 帶反饋控制的基本帶翼外形的耦合氣動/運動數(shù)值模擬研究(英文)[J]. 空氣動力學(xué)學(xué)報, 2016, 34(2): 182-189.

    Received: 2015-12-15; Revised:2016-02-10

    猜你喜歡
    外形氣動動力學(xué)
    中寰氣動執(zhí)行機構(gòu)
    《空氣動力學(xué)學(xué)報》征稿簡則
    比外形,都不同
    基于NACA0030的波紋狀翼型氣動特性探索
    基于反饋線性化的RLV氣動控制一體化設(shè)計
    論袁牧之“外形的演技”
    足趾移植再造手指術(shù)后外形的整形
    基于隨機-動力學(xué)模型的非均勻推移質(zhì)擴散
    TNAE的合成和熱分解動力學(xué)
    C36團簇生長動力學(xué)及自由能
    計算物理(2014年2期)2014-03-11 17:01:51
    熟妇人妻不卡中文字幕| 晚上一个人看的免费电影| 成人一区二区视频在线观看| 在线天堂最新版资源| 3wmmmm亚洲av在线观看| 人人妻人人添人人爽欧美一区卜 | av线在线观看网站| 国产白丝娇喘喷水9色精品| 亚洲精品自拍成人| 狂野欧美激情性xxxx在线观看| 2021少妇久久久久久久久久久| 欧美 日韩 精品 国产| kizo精华| 日韩av在线免费看完整版不卡| 免费不卡的大黄色大毛片视频在线观看| 在线观看免费高清a一片| 天堂俺去俺来也www色官网| 男人添女人高潮全过程视频| 午夜福利网站1000一区二区三区| 国产男女内射视频| av不卡在线播放| 久久精品国产亚洲av天美| 国产又色又爽无遮挡免| 久久久久久九九精品二区国产| 爱豆传媒免费全集在线观看| 日韩亚洲欧美综合| 一个人免费看片子| 我的老师免费观看完整版| 中国三级夫妇交换| 五月天丁香电影| 亚洲人成网站高清观看| 亚洲av日韩在线播放| 美女国产视频在线观看| 美女cb高潮喷水在线观看| 99久久人妻综合| 国产精品一区二区三区四区免费观看| 日本wwww免费看| 久久精品久久精品一区二区三区| 中文字幕亚洲精品专区| 亚洲av二区三区四区| 五月伊人婷婷丁香| 18禁在线无遮挡免费观看视频| 嘟嘟电影网在线观看| 久久亚洲国产成人精品v| 男女边摸边吃奶| 大码成人一级视频| 国产美女午夜福利| 人人妻人人看人人澡| 亚洲av欧美aⅴ国产| 又粗又硬又长又爽又黄的视频| 亚洲综合精品二区| 久久久久久久久久久丰满| 黄色一级大片看看| 日韩精品有码人妻一区| 久久韩国三级中文字幕| 国产欧美日韩一区二区三区在线 | 精品一区二区三卡| 亚洲精品自拍成人| 免费观看性生交大片5| 啦啦啦啦在线视频资源| 亚洲色图av天堂| 日韩伦理黄色片| 久久久久久久精品精品| 老熟女久久久| 永久网站在线| av一本久久久久| 日韩 亚洲 欧美在线| 久久婷婷青草| 91aial.com中文字幕在线观看| 青春草亚洲视频在线观看| 最近2019中文字幕mv第一页| 国产成人午夜福利电影在线观看| 欧美最新免费一区二区三区| 免费人妻精品一区二区三区视频| 美女国产视频在线观看| 久久6这里有精品| 99热6这里只有精品| 成人午夜精彩视频在线观看| 日本与韩国留学比较| 欧美一区二区亚洲| 午夜精品国产一区二区电影| 老司机影院毛片| 亚洲综合色惰| 春色校园在线视频观看| 国产午夜精品一二区理论片| 亚洲天堂av无毛| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| av福利片在线观看| 一级片'在线观看视频| 久久久久网色| 日韩一区二区视频免费看| 精品人妻偷拍中文字幕| 噜噜噜噜噜久久久久久91| 日韩一区二区三区影片| 国产在线免费精品| 久久99热这里只有精品18| 亚洲国产最新在线播放| 日韩一区二区视频免费看| 午夜日本视频在线| 一二三四中文在线观看免费高清| 在线亚洲精品国产二区图片欧美 | 精品一区二区三区视频在线| av国产久精品久网站免费入址| 秋霞在线观看毛片| 尤物成人国产欧美一区二区三区| 亚洲av不卡在线观看| a级一级毛片免费在线观看| 国产毛片在线视频| 成人高潮视频无遮挡免费网站| 国产高清不卡午夜福利| 国产精品国产三级专区第一集| 深夜a级毛片| 久久久久久久久大av| 夫妻午夜视频| 国产精品精品国产色婷婷| 嫩草影院入口| 久久久色成人| 国产精品久久久久久精品古装| 高清在线视频一区二区三区| 不卡视频在线观看欧美| 精品熟女少妇av免费看| 欧美亚洲 丝袜 人妻 在线| 午夜福利网站1000一区二区三区| 少妇丰满av| 97在线视频观看| 99热全是精品| 网址你懂的国产日韩在线| 色婷婷av一区二区三区视频| 国产精品99久久99久久久不卡 | 国产精品一及| 水蜜桃什么品种好| 欧美激情极品国产一区二区三区 | 老师上课跳d突然被开到最大视频| 亚洲第一区二区三区不卡| 一级a做视频免费观看| 少妇 在线观看| 伦精品一区二区三区| 国产一区二区在线观看日韩| 亚洲国产色片| 伦精品一区二区三区| 少妇被粗大猛烈的视频| 成年人午夜在线观看视频| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 成人影院久久| 又爽又黄a免费视频| 我的老师免费观看完整版| 在线观看国产h片| 天堂俺去俺来也www色官网| 大香蕉久久网| 一本色道久久久久久精品综合| 久久国内精品自在自线图片| 亚洲无线观看免费| 日本vs欧美在线观看视频 | 精品亚洲成a人片在线观看 | 蜜桃亚洲精品一区二区三区| 寂寞人妻少妇视频99o| 激情 狠狠 欧美| 亚洲人成网站在线播| 国产av码专区亚洲av| 国产亚洲午夜精品一区二区久久| 国产91av在线免费观看| 欧美精品人与动牲交sv欧美| 久久精品久久精品一区二区三区| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 一本一本综合久久| 日韩国内少妇激情av| 久久久久久伊人网av| av女优亚洲男人天堂| 日日摸夜夜添夜夜添av毛片| 亚洲一级一片aⅴ在线观看| 少妇 在线观看| 国产精品一区二区三区四区免费观看| a级毛片免费高清观看在线播放| 国产精品伦人一区二区| 男女免费视频国产| 日本爱情动作片www.在线观看| 国产大屁股一区二区在线视频| 日韩人妻高清精品专区| 最后的刺客免费高清国语| 精品视频人人做人人爽| 黄片无遮挡物在线观看| 欧美zozozo另类| 中文在线观看免费www的网站| 男女边摸边吃奶| 国产成人免费无遮挡视频| 成人综合一区亚洲| 亚洲美女视频黄频| 狂野欧美激情性bbbbbb| 人体艺术视频欧美日本| 少妇裸体淫交视频免费看高清| 久久精品国产a三级三级三级| 边亲边吃奶的免费视频| 欧美成人一区二区免费高清观看| 亚洲性久久影院| 少妇人妻久久综合中文| 在线免费观看不下载黄p国产| 久久鲁丝午夜福利片| 美女国产视频在线观看| 香蕉精品网在线| 身体一侧抽搐| 男男h啪啪无遮挡| 亚洲三级黄色毛片| 日韩中字成人| 国产精品国产三级国产专区5o| 亚洲色图av天堂| 日韩av免费高清视频| 亚洲国产成人一精品久久久| 久久久午夜欧美精品| 99久久综合免费| 99久久精品一区二区三区| 最黄视频免费看| 99久久精品国产国产毛片| 亚洲国产精品999| 精品一区二区免费观看| 久久综合国产亚洲精品| 亚洲欧美中文字幕日韩二区| 午夜免费男女啪啪视频观看| 国产真实伦视频高清在线观看| av在线蜜桃| 久久亚洲国产成人精品v| 深夜a级毛片| 午夜福利视频精品| 久久精品国产a三级三级三级| 网址你懂的国产日韩在线| 一本色道久久久久久精品综合| a 毛片基地| 欧美日本视频| av网站免费在线观看视频| 高清av免费在线| 99久国产av精品国产电影| 日韩一区二区视频免费看| 日日啪夜夜撸| 亚洲精品久久午夜乱码| 国产高清有码在线观看视频| 久久综合国产亚洲精品| 韩国高清视频一区二区三区| 欧美高清成人免费视频www| 精品熟女少妇av免费看| 国产男女内射视频| 久久久色成人| 男女无遮挡免费网站观看| 欧美区成人在线视频| 26uuu在线亚洲综合色| 丰满乱子伦码专区| 久久久久精品性色| 亚洲精品乱码久久久v下载方式| 欧美激情国产日韩精品一区| 国产真实伦视频高清在线观看| 久久影院123| 热99国产精品久久久久久7| av在线老鸭窝| 亚洲av二区三区四区| 亚洲天堂av无毛| 国产精品精品国产色婷婷| 51国产日韩欧美| 丝袜喷水一区| h日本视频在线播放| 欧美日韩精品成人综合77777| 一区二区三区四区激情视频| 精品人妻熟女av久视频| 亚洲av中文字字幕乱码综合| 国产熟女欧美一区二区| 国内揄拍国产精品人妻在线| 成人亚洲精品一区在线观看 | av卡一久久| 日本欧美视频一区| av在线蜜桃| 草草在线视频免费看| 在线观看美女被高潮喷水网站| 国产老妇伦熟女老妇高清| 国产爽快片一区二区三区| 人妻 亚洲 视频| 国产欧美亚洲国产| 亚洲一区二区三区欧美精品| 亚洲综合色惰| 美女xxoo啪啪120秒动态图| 午夜福利影视在线免费观看| 啦啦啦啦在线视频资源| 国产色婷婷99| 欧美激情极品国产一区二区三区 | 午夜福利在线观看免费完整高清在| 精品人妻视频免费看| 日韩av免费高清视频| 亚洲欧美日韩卡通动漫| 欧美精品亚洲一区二区| 亚洲人成网站在线观看播放| 自拍偷自拍亚洲精品老妇| 一区二区三区乱码不卡18| 秋霞伦理黄片| 最黄视频免费看| 国产 精品1| 女性生殖器流出的白浆| 男女国产视频网站| av线在线观看网站| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| 老师上课跳d突然被开到最大视频| 日韩人妻高清精品专区| 麻豆国产97在线/欧美| 国产精品久久久久久精品古装| 不卡视频在线观看欧美| 亚洲欧美成人综合另类久久久| 国模一区二区三区四区视频| 在线观看人妻少妇| 亚洲欧美精品自产自拍| 各种免费的搞黄视频| 亚洲,一卡二卡三卡| 高清毛片免费看| 久久久久久久久久人人人人人人| 少妇人妻久久综合中文| 日韩免费高清中文字幕av| 久久婷婷青草| 在线观看免费日韩欧美大片 | 成人亚洲精品一区在线观看 | 国产亚洲精品久久久com| 亚洲无线观看免费| 99九九线精品视频在线观看视频| 亚洲av中文字字幕乱码综合| 亚洲内射少妇av| 18禁动态无遮挡网站| 国产精品一区二区性色av| 青青草视频在线视频观看| 亚洲欧美清纯卡通| 免费看av在线观看网站| 亚洲精品国产av成人精品| 久热这里只有精品99| 国产午夜精品久久久久久一区二区三区| 美女cb高潮喷水在线观看| 色综合色国产| 精品久久国产蜜桃| 成年av动漫网址| 午夜福利在线在线| 国产免费视频播放在线视频| 国产高清三级在线| 免费人妻精品一区二区三区视频| 国产免费一区二区三区四区乱码| 中国美白少妇内射xxxbb| 亚洲精品色激情综合| 纯流量卡能插随身wifi吗| 欧美精品一区二区大全| 欧美日韩国产mv在线观看视频 | 高清日韩中文字幕在线| 欧美日韩亚洲高清精品| 男女免费视频国产| 欧美成人一区二区免费高清观看| 在线精品无人区一区二区三 | 精品久久久噜噜| 少妇人妻 视频| 国产无遮挡羞羞视频在线观看| 高清午夜精品一区二区三区| 久久精品久久精品一区二区三区| 亚洲av中文字字幕乱码综合| 亚州av有码| 午夜老司机福利剧场| 亚洲,欧美,日韩| 国产国拍精品亚洲av在线观看| 特大巨黑吊av在线直播| 制服丝袜香蕉在线| 精品久久久久久久末码| 国产探花极品一区二区| 色婷婷av一区二区三区视频| 韩国av在线不卡| 夜夜看夜夜爽夜夜摸| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 日韩伦理黄色片| 97精品久久久久久久久久精品| 日韩国内少妇激情av| 精品午夜福利在线看| 韩国高清视频一区二区三区| 免费观看av网站的网址| 午夜免费鲁丝| 亚洲国产毛片av蜜桃av| 午夜福利高清视频| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 视频区图区小说| 免费在线观看成人毛片| 一级毛片黄色毛片免费观看视频| 综合色丁香网| 男女无遮挡免费网站观看| 视频区图区小说| 麻豆精品久久久久久蜜桃| 成年美女黄网站色视频大全免费 | 国产高潮美女av| 国产免费视频播放在线视频| 日韩成人伦理影院| 国产男人的电影天堂91| 亚洲不卡免费看| 亚洲精品久久久久久婷婷小说| 水蜜桃什么品种好| 中文字幕av成人在线电影| 人妻少妇偷人精品九色| 亚洲激情五月婷婷啪啪| 免费在线观看成人毛片| 日本午夜av视频| 国产v大片淫在线免费观看| 美女主播在线视频| 99久久人妻综合| 99热国产这里只有精品6| 高清毛片免费看| 亚洲av男天堂| 青春草视频在线免费观看| 亚洲欧洲日产国产| 国产精品人妻久久久久久| 伦理电影免费视频| 夜夜爽夜夜爽视频| 久久久精品94久久精品| 亚洲国产精品999| 免费大片18禁| 免费大片黄手机在线观看| 91久久精品国产一区二区成人| 国产精品一区二区三区四区免费观看| 午夜老司机福利剧场| 肉色欧美久久久久久久蜜桃| 大香蕉97超碰在线| 中文天堂在线官网| 国产亚洲一区二区精品| 在线观看一区二区三区| 精品亚洲成国产av| 亚洲av福利一区| 成人一区二区视频在线观看| 99九九线精品视频在线观看视频| 欧美激情极品国产一区二区三区 | 国产成人精品久久久久久| 国产在视频线精品| 一个人看的www免费观看视频| 嫩草影院新地址| 久久av网站| 九九在线视频观看精品| 一级a做视频免费观看| 国产在线一区二区三区精| www.色视频.com| 国产乱来视频区| 日产精品乱码卡一卡2卡三| 国产精品99久久99久久久不卡 | 校园人妻丝袜中文字幕| 人人妻人人看人人澡| 国产成人免费观看mmmm| 免费黄网站久久成人精品| 久久精品国产亚洲av涩爱| 国产白丝娇喘喷水9色精品| 久久青草综合色| 中文资源天堂在线| 97在线视频观看| 亚洲第一av免费看| 最近最新中文字幕免费大全7| 欧美成人午夜免费资源| 免费播放大片免费观看视频在线观看| 欧美成人精品欧美一级黄| av国产免费在线观看| 欧美日韩亚洲高清精品| 欧美bdsm另类| 91精品国产九色| 亚洲熟女精品中文字幕| 99热这里只有是精品在线观看| 亚洲激情五月婷婷啪啪| 国产中年淑女户外野战色| 日韩av不卡免费在线播放| 国产精品99久久99久久久不卡 | 在线观看免费高清a一片| 亚洲欧美日韩东京热| 亚洲色图综合在线观看| 色综合色国产| 99久久综合免费| 伦理电影大哥的女人| 国产成人a∨麻豆精品| 国产探花极品一区二区| 大片电影免费在线观看免费| 老女人水多毛片| 最新中文字幕久久久久| 天堂俺去俺来也www色官网| 欧美区成人在线视频| 欧美成人一区二区免费高清观看| 成人亚洲欧美一区二区av| 美女福利国产在线 | 免费高清在线观看视频在线观看| 日本一二三区视频观看| 伦理电影大哥的女人| 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 我要看日韩黄色一级片| 国产又色又爽无遮挡免| 一级毛片电影观看| 日本欧美视频一区| 黑人高潮一二区| 新久久久久国产一级毛片| 国产精品秋霞免费鲁丝片| 欧美成人午夜免费资源| 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| av免费观看日本| 99热全是精品| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 交换朋友夫妻互换小说| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| 亚洲人与动物交配视频| 久久久亚洲精品成人影院| 欧美xxxx性猛交bbbb| 亚洲精品亚洲一区二区| 99热6这里只有精品| 免费高清在线观看视频在线观看| 久久久久性生活片| 在线观看免费日韩欧美大片 | 偷拍熟女少妇极品色| 久久国产精品大桥未久av | 日韩一区二区视频免费看| 亚洲精品久久午夜乱码| 亚洲第一区二区三区不卡| 国产视频内射| 久久久成人免费电影| 国产伦精品一区二区三区四那| av在线播放精品| 国产免费福利视频在线观看| 婷婷色av中文字幕| 最近最新中文字幕免费大全7| 国产又色又爽无遮挡免| 欧美xxxx黑人xx丫x性爽| 在线观看av片永久免费下载| 美女视频免费永久观看网站| xxx大片免费视频| 在线精品无人区一区二区三 | 亚洲真实伦在线观看| 精品亚洲乱码少妇综合久久| 日韩强制内射视频| 欧美日韩综合久久久久久| 少妇 在线观看| 搡女人真爽免费视频火全软件| 国产色爽女视频免费观看| 国产精品精品国产色婷婷| 人体艺术视频欧美日本| 建设人人有责人人尽责人人享有的 | 免费不卡的大黄色大毛片视频在线观看| 赤兔流量卡办理| 亚洲成人手机| 亚洲av国产av综合av卡| 又爽又黄a免费视频| 国产精品一区二区在线不卡| 精品酒店卫生间| 精品一区二区三区视频在线| 日韩伦理黄色片| 精品一品国产午夜福利视频| 少妇猛男粗大的猛烈进出视频| 欧美精品人与动牲交sv欧美| 熟妇人妻不卡中文字幕| 麻豆国产97在线/欧美| 国产精品.久久久| 最近2019中文字幕mv第一页| 日韩制服骚丝袜av| 亚洲精品一二三| 18禁裸乳无遮挡免费网站照片| 国产黄频视频在线观看| 99热这里只有是精品50| 色视频在线一区二区三区| 大话2 男鬼变身卡| 国产欧美日韩一区二区三区在线 | 亚洲国产精品专区欧美| 亚洲人成网站在线观看播放| 欧美日韩国产mv在线观看视频 | 高清在线视频一区二区三区| 青春草亚洲视频在线观看| 国产精品久久久久久久电影| 色视频www国产| 欧美bdsm另类| 丝袜喷水一区| 精品国产三级普通话版| 2018国产大陆天天弄谢| 国产中年淑女户外野战色| freevideosex欧美| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 纯流量卡能插随身wifi吗| 亚洲av国产av综合av卡| 久久久久网色| 成人毛片60女人毛片免费| 国产精品熟女久久久久浪| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区免费毛片| 欧美老熟妇乱子伦牲交| 激情 狠狠 欧美| 国产精品不卡视频一区二区| 久久ye,这里只有精品| 亚洲精华国产精华液的使用体验| 噜噜噜噜噜久久久久久91| 午夜免费男女啪啪视频观看| 精品一区在线观看国产| 日韩在线高清观看一区二区三区| 成人影院久久| 亚洲无线观看免费| 在线观看美女被高潮喷水网站| 久久久久久久久久成人| 黄色怎么调成土黄色| 日韩国内少妇激情av| 久久97久久精品| 不卡视频在线观看欧美| 亚洲,一卡二卡三卡| 女人久久www免费人成看片| 午夜福利视频精品| 国产男女超爽视频在线观看| 国产片特级美女逼逼视频| 国产精品国产三级专区第一集| 精品99又大又爽又粗少妇毛片| 99热网站在线观看| 夜夜爽夜夜爽视频| av一本久久久久| 亚洲经典国产精华液单| 丝袜脚勾引网站| 亚洲天堂av无毛| av在线老鸭窝| 噜噜噜噜噜久久久久久91|