• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulations of Transonic Flows withFriction and Heat Addition

    2016-05-12 06:03:08WilliamTavernettiMohamedHafez
    關(guān)鍵詞:歐拉聲速摩擦力

    William E. Tavernetti, Mohamed M. Hafez

    (University of California Davis, USA)

    ?

    Simulations of Transonic Flows withFriction and Heat Addition

    William E. Tavernetti*, Mohamed M. Hafez

    (University of California Davis, USA)

    The reactive fluid dynamics of transonic flows in nozzles is an important area of experimental and theoretical research. This paper consists of two parts. In the first part an algorithm for the solution of the Euler Equations in conservative form is discussed which simplifies a generalization of Murman Scheme [1] that is presented in Reference [2]. Chattot’s work is discussed and calculations for flows with shocks are presented. In the second part, transonic flows with friction, heat addition and dissipation is considered. Specific attention is given to detonations with one-step Arrhenius chemistry. A part of this study is to understand the interaction between friction and transonic flow with combustion. The details of the numerical algorithms will be presented along with validation examples from the literature.

    Numerical algorithms, Computational fluid dynamics, Combustion, Euler equations, Friction, Heat, Compressible

    0 Introduction

    Numerical solution of Euler equations in conservative form is discussed in Reference [2] using a generalization of Murman Scheme [1]. In [3], Chattot constructed four operators for subsonic, supersonic, sonic and shock points using eigenvalues and eigenvectors of the Jacobian matrix and the compatibility relations to solve the conservation laws of a perfect gas in a convergent divergent nozzle. In this paper, a simplified scheme is introduced and the calculations for flows with shocks are presented. In the second part of the paper, compressible flow with friction and heat addition is considered followed by steady and unsteady detonation.

    1 Numerical Method

    (1)

    Thepresentnumericalschemeisatwo-stepmethod.Centraldifferenceschemeisusedinthesubsonicregionsandatthesonicpoints,backwarddifferenceisusedinthesupersonicregions,withaspecialshockpointoperatoratshockpoints.Theschemeisconservativealmosteverywhereand,unlike

    Chattot’s calculations, no special sonic point operator is used in this work. The finite difference formulas and their stencils are shown in Figs.1-3.

    1.1 Transonic Flow Examples and Comparison with Lax-Wendroff Method

    A first validation test case shows the sharpness of

    the shock, correct location (x=0.82) and flow through the sonic point, see Fig. 4.

    Examples in 2D for transonic flow over a thin parabolic arc at incidentM= 0.675 andM= 1.4 are in good agreement with Ni’s, who used second order accurate Lax-Wendroff scheme [4]. In Fig. 5 an Oswatitsch-Zeirep singularity at the root of the shock is observed. The present method shows better resolution of this feature and a sharper shock with higher peak than Lax-Wendroff scheme.

    Fig.1 Subsonic/sonic stencil and scheme.

    Fig.2 Supersonic stencil and scheme.

    Fig.3 Shock point stencil and scheme.

    Fig.4 Compressible nozzle flow 1D validation test case.

    In Fig.6, a grid refinement study is shown in the case of flow over a thin parabolic arc.

    Numerical cases for 2D transonic flow over a circular cylinder are also considered. Comparison with the results of 2-step Lax-Wendroff is shown in Fig.7. The numerical results are in good agreement with the literature [5].

    It should be remarked that in the two dimensional calculations, the present scheme is used only in the flow direction, while centered differences, augmented with artificial viscosity, are used for the lateral direction.

    Fig.5 (M∞=0.675) Present vs. 2-step Lax-Wendroff method over thin parabolic arc at different grids.

    Fig.6 Grid refinement study for present method showing representative grids of (121×40), (241×80) and (301×100).

    Fig.7 (M∞=0.5) 2D flow over cylinder, comparison of Lax-Wendroff 2-step to present scheme.

    1.2 Hypersonic Flow

    For a hypersonic flow over a rectangular block is computed for Mach numberM=10. This flow is comparable with the example problem and results published in [6]. In this calculationγ=1.17,the numerical mesh is 88×136 in thexandydirections respectively. Uniform far field boundary conditions are applied , as well as symmetry conditions on the centerline axis. The computational domain is 0≤y≤34. The rectangular body starts atx=18 and the top of the body is aty=12,see Fig.8.

    Fig.8 Hypersonic flow over a rectangular block is computed for M=10, present vs. 2-step Lax-Wendroff method.

    2 Compressible Flows with Friction and Heat Addition

    The Quasi-1D Euler equations with friction and heat addition are given by the conservation laws for mass, momentum and energy respectively:

    (Aρ)t+(Aρu)x=0

    (2)

    (Aρu)+(Aρu2+Ap)x=Axp-f

    (3)

    (AρE)t+(AρuH)x=q

    (4)

    Togetherwiththedefinitions:

    Asteadycompressibleperfectgasinaductofconstantcrosssectionalareaisconsidered.Therearetwopossibilitiestogetfromtheinitiallysupersonicconditiontothefinalsonicflow:byintroductionoftheheatsourceqor the friction sourcef. For compressible duct flows with friction and heat addition, several formulas are available in terms of Mach number, the friction factor and heat addition, see Reference [7]. Examples of choking due to friction and heat addition are calculated with the present scheme, see Fig.9 and the results are in good agreement with those in Reference [7]. Although the calculation is very sensitive to the amount of heat and the shock moves to the right or the left with slight variation of the critical amount, the shock is very sharp, especially when compared with other artificial viscosity methods, for example Lax-Wendroff scheme.

    Fig.9 Compressible duct flow 1D with heat addition (up) and friction (down).

    3 Steady and Unsteady Detonation

    An ordinary differential equation for the species, together with algebraic relations derived from the shock jump conditions gives the steady Zeldovich-Von Nuemann-Doring (ZND) family of solutions to the Euler equations. Although detonations are funda-mentally unstable, the ZND solutions are suitable, in an averaged sense, for many cases. It is shown however by several authors, see for example [8-11], that when solving the Euler equations, the solutions are predicted to be oscillatory and even chaotic for many examples. In general, as the parameterEa, governing the activation energy for the chemical species, is increased, instability increases and the ZND solution becomes less predictive. However, for sufficiently smallEa, the true solution is nearly steady and the correspondence with the ZND solution agrees very well. Detonation in one dimension is governed by the reactive unsteady Euler equations:

    (5)

    (6)

    (7)

    (8)

    (9)

    Wherem,f,qare source terms for mass, friction and heat respectively. The parameterkis a constant factor that relates the reaction and convection rates. The following non-dimensional variables are used:

    (10)

    Hereudenotes axial velocity component andCf,Mis the coefficient of friction and Mach number respectively. In our calculations:

    Q∈[0,50],γ=Cp/Cυ=1.4,Rgas=Cp-Cυ

    Incharacteristiccoordinates,intheabsenceofsourceterms,wearesolvingthesystem:

    (11)

    (12)

    (13)

    (14)

    whereξ=x-st. Initially the shock speedsis given from the ZND theory. Thereafter, the shock speeds=s(t), is corrected for unsteady flow in the characteristic coordinatesξby requiringY=0.5 remain atx=0. LettingLbe a linear operator andNbe the nonlinear reaction operator,w=[ρ,ρu,ρE,ρY],thereactiveEulerEquationscanbewrittencompactlyas:

    (15)

    Inourcomputationanarticialviscositywithε=O(Δx)isaddedtostabilizethesolutionneartheshock.Weuseanimplicitthirdorderupwindingschemeforconservationofmass,momentumandEnergy

    (16)

    Tosolvethisstiffsystem,anIMEXoperatorsplittingmethodforthelinearandnonlineartermsinthespeciesequationisused,byupdatingYfirst implicitly with third order upwinding, then explicitly updating the nonlinear terms.

    (17)

    Severalvalidationcomputationsareperformed,forexamplethesteadystateZNDsolutionwhichisderivedfromthenon-dimensionalizedshock-jumpconditions.Attheshockfrontthefollowingrelationshold:

    (ρu)=1

    (18)

    (19)

    (20)

    DownstreamoftheshockwethensolveanordinarydifferentialequationforthechemicalspeciesY,

    (21)

    (22)

    TheZNDmodelsetupisshowninFig.10.

    HugoniotcurvesforZNDTheoryareshowninFig.11.Asheatisreleased,supersonicflowdeceleratescontinuouslytothesoniccondition,orwecangoalongtheRayleighlinetotheVon-NeumannspikeandthengobackalongthesameRayleighlinetothesoniccondition.

    Fig.10 Sketch of ZND solution.

    SeveralverificationcomputationsareperformedusingthesteadystateZNDsolutionandareinagreementwithresultsreportedin[12].AnexampleshowingseveralZNDtemperatureprofilesforarangeofEavalues is shown in Fig.12.

    Fig.11 Sketch showing C-J detonation as well as strong and weak detonations.

    Fig.12 Several ZND temperature profiles for a range of Ea values.

    The third order upwinding method is compared with several ZND solutions for verification. A representative comparison is shown in Fig.13. The ZND solution is computed starting from the shock front while the Euler equations are integrated across the shock starting upstream with unreacted flow.

    A Chapman-Jouquet detonation following [13] is computed in Fig.14. We compute the shock speed to bes=5.4419 which exactly matches the CJ-shock speed given in [13]. Additional comparisons with steady state computations are in good agreement with the results reported in [12-14].

    The case of friction losses dominating heat transfer effects can sometimes occur when a detonation wave passes through a porous media [14]. In such a case, momentum loss due to friction can be much more influential than heat transfer effects. Following the work of [8] and [11], Fig.15 shows that a source of friction in the momentum equation causes qualitatively the same effect as higherEa.

    Our computations show that friction causes a momentum loss which decreases the peak temperature and local velocity, as shown in Fig.16. Increase in the friction causing reduction in temperature was also reported in [8] and [11].

    The effect of friction on detonation stability is also considered. TreatingEaas a bifurcation parameter, the peak pressure at the Von-Nuemann state is stored for several simulations as a time

    series. The attractor space is then constructed from the local maxima and minima of each time series. Representative examples are shown in Fig.17. In our results, increasing friction causes period doubling for lower values ofEa, this trend is also reported in [8] and [11].

    Fig.13 ZND solution by Algebraic/ODE formulation vs.reactive Euler equations. Notice the scale difference between the upper and lower figures to emphasize the difference between the two solutions.

    Fig.14 Comparison with C-J detonation.

    Fig.15 Ea = 25 (top), Ea = 28 (bottom), γ=1.2 showing a range of Cf coeffcients and transition to instability.

    Fig.16 Ea = 23, γ=1.2, comparing Cf = 0 with Cf=0.004, lower temperature, T, and velocity, u, are observed.

    Fig.17 Von-Neumann peak pressure for Cf = 0 (left), Cf=0.002 (center), Cf = 0.004 (right),γ= 1.2, showing translation and compression of period doubling regions for variable Ea.

    4 Conclusions

    In the present work we have demonstrated a simple scheme for computing transonic flows which can be considered as a generalization of Murman’s four point operator to solve the Euler equations. We have examined several transonic steady compressible 1D flows with friction and heat addition. Unsteady flows with weak dissipation and friction have been considered in the context of detonation theory for several reactive compressible cases. Computations with higher order IMEX schemes is also of interest [15].

    [1]Murman E M. Analysis of embedded shock waves calculated by relaxation methods[J]. AIAA Journal, 1974, 12(5).

    [2]Chattot J J. Computational aerodynamics and fluid dynamics[M]. Springer-Verlag Berlin Heidelberg, New York, 2002.

    [3]Chattot J J. A conservative Box-scheme for the Euler equations[J]. International Journal of Numerical Methods in Fluids, 1999, 31: 149-158.

    [4]Ni R H. A Multiple grid scheme for solving the Euler equations[J]. AIAA Journal, 1982, 20: 1565-1571.

    [5]Hafez Mohamed, Wahba Essam. Inviscid flows over a cylinder

    [J]. Comput. Methods Appl. Mech. Engrg., 2004, 193: 1981-1995.

    [6]Burnstein S Z. Finite-difference calculations for hydrodynamic flows containing discontinuities[J]. Journal of Computational Physics, 1967,2:198-222.

    [7]White F. Fluid mechanics[M]. 6th Edition. McGraw Hill, New York, 2008.

    [8]Dionne J P, Ng H D, Lee J H S. Transient development of friction-induced low-velocity detonations[C]//Proceedings of the Combustion Institute, 2000, 28: 645-651.

    [9]Romick C M, Aslam T D, Powers J M. The effect of diffusion on the dynamics of unsteady detonations[J]. J. Fluid Mech., 2012, 699: 453-464.

    [10]Sow A, Chinnayya A, Hadjadj A. Mean structure of one- dimensional unstable detonations with friction[J]. J. Fluid Mech. 2014, 743: 503-533.

    [11]Zhang F, Lee J H S. Friction-induced oscillatory behaviour of one-dimensional detonations[J]//Proc. R. Soc. Lond. A, 1994, 446: 1926: 87-105.

    [12]Lee J. The detonation phenomenon[M]. Cambridge University Press, New York, 2008.

    [13]Berkenbosch A C. Capturing detonation waves for the reactive Euler Equations[D]. Eindhoven University of Technology, 1995.

    [14]Higgins A. Steady one-dimensional detonations[M]//Zhang F. Shock waves science and technology library, Vol.6, Springer, 2012.

    [15]Ascher U M, Ruuth S J, Wetton B T R. Implicit-explicit methods for time-dependent partial differential equations[J]. SIAM J. Num. Anal. 1995, 32: 797-823.

    0258-1825(2016)02-0175-07

    含摩擦和加熱的跨聲速流動(dòng)數(shù)值模擬研究

    William E. Tavernetti*, Mohamed M. Hafez

    (University of California Davis, USA)

    噴管中跨聲速流動(dòng)的反應(yīng)流體動(dòng)力學(xué)是實(shí)驗(yàn)和理論研究的一個(gè)重要領(lǐng)域。本文主要由兩部分構(gòu)成,在第一部分中對(duì)文獻(xiàn)[2]中的Murman格式[1]的一般形式進(jìn)行了簡(jiǎn)化,得到了守恒形式的歐拉方程,并對(duì)其求解方法進(jìn)行了討論,同時(shí)針對(duì)Chattot等的工作展開(kāi)了分析,并給出了帶激波的流動(dòng)計(jì)算結(jié)果;而文章的第二部分則研究了包含摩擦、加熱以及耗散的跨聲速流動(dòng),并重點(diǎn)關(guān)注了一步Arrhenius化學(xué)反應(yīng)模型下的爆震現(xiàn)象。本文還探究了摩擦力和帶燃燒的跨聲速流動(dòng)之間的相互作用,同時(shí)詳細(xì)給出了新的歐拉方程數(shù)值求解算法并同已有文獻(xiàn)算例進(jìn)行了對(duì)比驗(yàn)證。

    數(shù)值算法;計(jì)算流體力學(xué);燃燒;歐拉方程;摩擦力;加熱;可壓縮

    V211.3

    A doi: 10.7638/kqdlxxb-2016.0008

    *lecturer, Departmant of Mathmatics; etavernetti@ucdavis.edu

    format: Tavernetti W E, Hafez M M. Simulations of transonic flows with friction and heat addition[J]. Acta Aerodynamica Sinica, 2016, 34(2): 175-181.

    10.7638/kqdlxxb-2016.0008. Tavernetti W E, Hafez M M. 含摩擦和加熱的跨聲速流動(dòng)數(shù)值模擬研究(英文)[J]. 空氣動(dòng)力學(xué)學(xué)報(bào), 2016, 34(2): 175-181.

    Received: 2015-12-15; Revised:2016-01-10

    猜你喜歡
    歐拉聲速摩擦力
    歐拉閃電貓
    汽車觀察(2022年12期)2023-01-17 02:20:42
    歐拉魔盒
    精致背后的野性 歐拉好貓GT
    車迷(2022年1期)2022-03-29 00:50:26
    『摩擦力』知識(shí)鞏固
    理順摩擦力
    透析摩擦力
    歐拉的疑惑
    聲速是如何測(cè)定的
    神奇的摩擦力
    跨聲速風(fēng)洞全模顫振試驗(yàn)技術(shù)
    在线播放无遮挡| 爱豆传媒免费全集在线观看| 欧美日韩国产mv在线观看视频 | 大片免费播放器 马上看| 99热全是精品| kizo精华| 午夜福利在线在线| 97在线视频观看| 亚洲四区av| 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| 久久久久精品久久久久真实原创| 一级二级三级毛片免费看| 亚洲成人久久爱视频| 久久久久网色| 大又大粗又爽又黄少妇毛片口| 三级男女做爰猛烈吃奶摸视频| 久久国产乱子免费精品| 91在线精品国自产拍蜜月| 国产精品一二三区在线看| 日韩欧美一区视频在线观看 | 成人性生交大片免费视频hd| 午夜精品一区二区三区免费看| 波野结衣二区三区在线| 免费播放大片免费观看视频在线观看| 久久精品久久精品一区二区三区| 久久久久久久大尺度免费视频| 国产成人一区二区在线| 精品人妻偷拍中文字幕| 久久久久久久午夜电影| a级毛色黄片| 国产成人午夜福利电影在线观看| 人人妻人人澡欧美一区二区| 亚洲av一区综合| 久久久久性生活片| 99re6热这里在线精品视频| 午夜福利在线在线| 两个人视频免费观看高清| 免费看av在线观看网站| 看免费成人av毛片| 精品久久久久久电影网| videossex国产| 亚洲久久久久久中文字幕| 搞女人的毛片| 久久久久精品久久久久真实原创| 能在线免费看毛片的网站| 色尼玛亚洲综合影院| 欧美不卡视频在线免费观看| 久久精品国产自在天天线| 91在线精品国自产拍蜜月| 久久草成人影院| 日日摸夜夜添夜夜添av毛片| 免费观看a级毛片全部| 日韩成人av中文字幕在线观看| 三级国产精品片| 亚洲欧美成人精品一区二区| 美女大奶头视频| 超碰av人人做人人爽久久| 天堂俺去俺来也www色官网 | 综合色av麻豆| 久久草成人影院| 国产一区二区三区综合在线观看 | 1000部很黄的大片| 91久久精品国产一区二区三区| 男人爽女人下面视频在线观看| 日韩欧美国产在线观看| 国产精品一区二区性色av| 亚洲av福利一区| 国内精品宾馆在线| 成人欧美大片| 亚洲真实伦在线观看| 激情 狠狠 欧美| 99热6这里只有精品| 18+在线观看网站| 神马国产精品三级电影在线观看| 午夜亚洲福利在线播放| 亚洲精品一区蜜桃| 人妻夜夜爽99麻豆av| 五月玫瑰六月丁香| 非洲黑人性xxxx精品又粗又长| 午夜视频国产福利| 自拍偷自拍亚洲精品老妇| 欧美性感艳星| 亚洲av不卡在线观看| 白带黄色成豆腐渣| av又黄又爽大尺度在线免费看| 婷婷色综合www| 又黄又爽又刺激的免费视频.| 免费观看av网站的网址| 成人特级av手机在线观看| 人妻系列 视频| 色5月婷婷丁香| av播播在线观看一区| 午夜亚洲福利在线播放| 午夜久久久久精精品| 美女脱内裤让男人舔精品视频| 免费不卡的大黄色大毛片视频在线观看 | 最近中文字幕2019免费版| 国产黄频视频在线观看| 国产精品久久久久久av不卡| 亚洲三级黄色毛片| 亚洲熟女精品中文字幕| 性色avwww在线观看| 十八禁国产超污无遮挡网站| 成人毛片60女人毛片免费| 国产成人福利小说| 久久久久性生活片| 一个人看的www免费观看视频| 99久久精品热视频| 欧美xxxx性猛交bbbb| 国产又色又爽无遮挡免| 成人国产麻豆网| 国产在视频线精品| 国产精品人妻久久久久久| 国产精品福利在线免费观看| 性色avwww在线观看| 欧美97在线视频| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图| 一级av片app| 白带黄色成豆腐渣| 国产一区二区亚洲精品在线观看| 国产乱来视频区| 国产探花极品一区二区| 国产精品av视频在线免费观看| 亚洲精品影视一区二区三区av| 亚洲天堂国产精品一区在线| 国产女主播在线喷水免费视频网站 | 亚洲国产色片| 伊人久久精品亚洲午夜| 国产精品一区二区三区四区久久| 人妻系列 视频| 国内精品一区二区在线观看| 一边亲一边摸免费视频| 久久久久久久大尺度免费视频| .国产精品久久| 亚洲精品乱久久久久久| 成年免费大片在线观看| 老司机影院毛片| 亚洲18禁久久av| 亚洲成人久久爱视频| 欧美人与善性xxx| 亚洲怡红院男人天堂| 国产精品熟女久久久久浪| 人人妻人人看人人澡| 五月伊人婷婷丁香| 午夜日本视频在线| 免费观看无遮挡的男女| 成人一区二区视频在线观看| 国产一区二区在线观看日韩| av女优亚洲男人天堂| 午夜免费观看性视频| 日本与韩国留学比较| 久久精品久久精品一区二区三区| 亚洲三级黄色毛片| 又大又黄又爽视频免费| 毛片女人毛片| 国产伦一二天堂av在线观看| 丰满人妻一区二区三区视频av| 成人性生交大片免费视频hd| 亚洲欧美日韩东京热| 久久久久久久久大av| 中文乱码字字幕精品一区二区三区 | 精华霜和精华液先用哪个| 好男人视频免费观看在线| 欧美97在线视频| 国产黄频视频在线观看| 五月天丁香电影| 国产午夜精品论理片| 久久这里只有精品中国| 51国产日韩欧美| 一个人看视频在线观看www免费| 亚洲国产精品专区欧美| 久久精品久久久久久久性| 白带黄色成豆腐渣| or卡值多少钱| 日韩欧美国产在线观看| 国产 一区精品| 精品久久久精品久久久| 国产欧美日韩精品一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产淫片久久久久久久久| 国产伦在线观看视频一区| 精品久久久久久电影网| 麻豆av噜噜一区二区三区| 国产精品一区二区在线观看99 | 欧美成人午夜免费资源| 亚洲av国产av综合av卡| 97热精品久久久久久| 一级毛片aaaaaa免费看小| 美女大奶头视频| 国产亚洲av嫩草精品影院| 在线播放无遮挡| 精品一区二区免费观看| 久久精品久久久久久久性| 大陆偷拍与自拍| 亚洲精品国产成人久久av| 成人亚洲精品av一区二区| 欧美xxⅹ黑人| 色播亚洲综合网| 国产探花在线观看一区二区| 亚洲欧美成人综合另类久久久| 99久国产av精品国产电影| 久久久久免费精品人妻一区二区| 丰满人妻一区二区三区视频av| 非洲黑人性xxxx精品又粗又长| 少妇高潮的动态图| 国产视频首页在线观看| av在线老鸭窝| 成人国产麻豆网| 水蜜桃什么品种好| 国产av码专区亚洲av| 嫩草影院精品99| 99久久人妻综合| 午夜日本视频在线| 久久久久网色| 欧美区成人在线视频| 久久久精品欧美日韩精品| 日韩欧美国产在线观看| 黄片wwwwww| av女优亚洲男人天堂| 少妇高潮的动态图| 免费大片18禁| 国产在线男女| 亚洲自偷自拍三级| 免费黄网站久久成人精品| 国内少妇人妻偷人精品xxx网站| 日日干狠狠操夜夜爽| 大又大粗又爽又黄少妇毛片口| 亚洲成人中文字幕在线播放| 非洲黑人性xxxx精品又粗又长| 成人亚洲精品一区在线观看 | 久久精品人妻少妇| 午夜福利视频1000在线观看| 99久久九九国产精品国产免费| 精品久久国产蜜桃| 别揉我奶头 嗯啊视频| 午夜福利在线在线| 中文乱码字字幕精品一区二区三区 | 国产精品一及| 午夜福利成人在线免费观看| 国产黄频视频在线观看| 国产黄色视频一区二区在线观看| 九九在线视频观看精品| 色播亚洲综合网| 中文字幕av在线有码专区| 日日撸夜夜添| 亚洲精品乱码久久久v下载方式| 天天躁夜夜躁狠狠久久av| 好男人视频免费观看在线| 亚洲国产日韩欧美精品在线观看| 久久人人爽人人爽人人片va| av黄色大香蕉| 精华霜和精华液先用哪个| 亚洲成人久久爱视频| 久久久久久久久久人人人人人人| 日本爱情动作片www.在线观看| 日韩电影二区| 亚洲自偷自拍三级| 中文在线观看免费www的网站| 亚洲乱码一区二区免费版| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 国产av国产精品国产| 成人欧美大片| 亚洲av成人av| 久久久久久久久久久丰满| 国产av在哪里看| 久久久色成人| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久伊人网av| 国产亚洲一区二区精品| freevideosex欧美| 国产麻豆成人av免费视频| av天堂中文字幕网| 国产成人a∨麻豆精品| 欧美日本视频| 少妇的逼好多水| 亚洲av在线观看美女高潮| 久久99精品国语久久久| 亚洲成人久久爱视频| 你懂的网址亚洲精品在线观看| 免费观看性生交大片5| 午夜免费观看性视频| 最近最新中文字幕免费大全7| 嘟嘟电影网在线观看| 国内少妇人妻偷人精品xxx网站| 97热精品久久久久久| 精品少妇黑人巨大在线播放| 18禁在线播放成人免费| 国产亚洲精品av在线| 少妇的逼好多水| 中文字幕人妻熟人妻熟丝袜美| 久久99蜜桃精品久久| 中文乱码字字幕精品一区二区三区 | 亚洲国产欧美人成| 免费观看精品视频网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91精品国产九色| 亚洲精品日韩在线中文字幕| 久99久视频精品免费| 色网站视频免费| 久久99热这里只频精品6学生| 青春草视频在线免费观看| 九九久久精品国产亚洲av麻豆| 欧美3d第一页| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在| 91精品伊人久久大香线蕉| 99re6热这里在线精品视频| xxx大片免费视频| av线在线观看网站| 亚洲成人中文字幕在线播放| 三级国产精品片| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| 午夜福利在线观看免费完整高清在| 大片免费播放器 马上看| 日本熟妇午夜| 久久综合国产亚洲精品| 亚洲无线观看免费| 嫩草影院精品99| 日韩欧美一区视频在线观看 | 中国美白少妇内射xxxbb| 国产成人福利小说| 久久这里有精品视频免费| 精品午夜福利在线看| 精品亚洲乱码少妇综合久久| 国产成人免费观看mmmm| 国产 一区 欧美 日韩| 日韩不卡一区二区三区视频在线| 成年av动漫网址| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 午夜福利在线在线| 99热6这里只有精品| 色综合色国产| 精品久久久久久久久av| 亚洲丝袜综合中文字幕| 色综合亚洲欧美另类图片| 水蜜桃什么品种好| 成人毛片60女人毛片免费| 国产在视频线精品| 永久网站在线| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| eeuss影院久久| 久久草成人影院| 亚洲成人精品中文字幕电影| 国产一级毛片在线| 美女大奶头视频| 成人鲁丝片一二三区免费| av在线观看视频网站免费| 国产成人aa在线观看| 边亲边吃奶的免费视频| 在线免费十八禁| 日本-黄色视频高清免费观看| 欧美xxxx黑人xx丫x性爽| 少妇高潮的动态图| 国产精品久久视频播放| 国产老妇女一区| 欧美成人一区二区免费高清观看| 亚洲av二区三区四区| 日韩av在线大香蕉| .国产精品久久| 美女内射精品一级片tv| 美女脱内裤让男人舔精品视频| 久久午夜福利片| 成人亚洲精品一区在线观看 | 女人久久www免费人成看片| 99热这里只有精品一区| 爱豆传媒免费全集在线观看| 爱豆传媒免费全集在线观看| or卡值多少钱| 欧美zozozo另类| 99久国产av精品国产电影| 亚洲四区av| 亚洲成人一二三区av| 亚洲精品一区蜜桃| 亚洲国产日韩欧美精品在线观看| 免费av不卡在线播放| 91久久精品电影网| 男人舔女人下体高潮全视频| 床上黄色一级片| 一区二区三区四区激情视频| 久久久色成人| 又爽又黄无遮挡网站| 国产淫语在线视频| 波野结衣二区三区在线| 日日啪夜夜撸| 亚洲国产精品专区欧美| 一区二区三区四区激情视频| 99热6这里只有精品| 日本一本二区三区精品| 白带黄色成豆腐渣| 亚洲精品久久久久久婷婷小说| 精品一区二区免费观看| 在线观看美女被高潮喷水网站| 最近手机中文字幕大全| 亚洲美女搞黄在线观看| 色5月婷婷丁香| 中文天堂在线官网| 日韩欧美三级三区| 欧美xxxx黑人xx丫x性爽| 51国产日韩欧美| 国产一区有黄有色的免费视频 | 精品少妇黑人巨大在线播放| 91久久精品电影网| 国产成年人精品一区二区| 午夜福利视频精品| 成人二区视频| 亚洲人成网站在线观看播放| 国产精品久久久久久久电影| 久久精品夜夜夜夜夜久久蜜豆| 舔av片在线| 亚洲欧美一区二区三区国产| 亚洲人成网站高清观看| 熟女电影av网| 久久99热这里只有精品18| 午夜亚洲福利在线播放| 午夜激情欧美在线| 欧美一级a爱片免费观看看| 夫妻性生交免费视频一级片| 日本色播在线视频| 亚洲av电影在线观看一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| a级毛片免费高清观看在线播放| 97热精品久久久久久| 99久国产av精品| 18+在线观看网站| 午夜福利网站1000一区二区三区| 久久久久久久久大av| 一二三四中文在线观看免费高清| 欧美性感艳星| 大香蕉97超碰在线| 又爽又黄a免费视频| 色综合色国产| eeuss影院久久| 校园人妻丝袜中文字幕| 天堂俺去俺来也www色官网 | 久久精品国产亚洲av涩爱| 国产极品天堂在线| 我要看日韩黄色一级片| 久久人人爽人人片av| 国产在线男女| 在线观看av片永久免费下载| 中文精品一卡2卡3卡4更新| 国产亚洲精品久久久com| 老女人水多毛片| 免费av不卡在线播放| 亚洲怡红院男人天堂| 卡戴珊不雅视频在线播放| 中文字幕亚洲精品专区| 免费大片黄手机在线观看| 亚洲成人中文字幕在线播放| 少妇裸体淫交视频免费看高清| 亚洲人与动物交配视频| 嫩草影院新地址| 午夜福利在线观看吧| 晚上一个人看的免费电影| 亚洲欧美成人精品一区二区| 国产乱人视频| av一本久久久久| 最近的中文字幕免费完整| 日韩一区二区视频免费看| ponron亚洲| 麻豆国产97在线/欧美| 亚洲国产色片| 秋霞伦理黄片| 男人舔奶头视频| 男女国产视频网站| 在线免费观看不下载黄p国产| 午夜视频国产福利| 日韩av在线免费看完整版不卡| 国产精品爽爽va在线观看网站| 2021少妇久久久久久久久久久| 亚洲人成网站高清观看| av在线蜜桃| 麻豆国产97在线/欧美| 最近2019中文字幕mv第一页| 午夜视频国产福利| 中文欧美无线码| 一二三四中文在线观看免费高清| 亚洲久久久久久中文字幕| 国产高清不卡午夜福利| 在线免费观看的www视频| 久久国内精品自在自线图片| 午夜免费观看性视频| 97超视频在线观看视频| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 插阴视频在线观看视频| 亚洲av二区三区四区| 欧美激情在线99| 亚洲无线观看免费| 嫩草影院精品99| 午夜免费观看性视频| 国产黄a三级三级三级人| 一级爰片在线观看| 国产 亚洲一区二区三区 | 午夜激情福利司机影院| 亚洲av日韩在线播放| 亚洲欧美清纯卡通| 一个人看的www免费观看视频| 日本爱情动作片www.在线观看| 在线播放无遮挡| 国产亚洲最大av| 天堂av国产一区二区熟女人妻| xxx大片免费视频| 老师上课跳d突然被开到最大视频| 国产不卡一卡二| 中文字幕制服av| 久久国产乱子免费精品| 一级黄片播放器| 日韩欧美 国产精品| 亚洲精品国产av成人精品| av福利片在线观看| 久久韩国三级中文字幕| 欧美激情久久久久久爽电影| 91在线精品国自产拍蜜月| 18+在线观看网站| 亚洲精品国产成人久久av| 国产伦精品一区二区三区四那| 一级片'在线观看视频| 精品国内亚洲2022精品成人| 亚洲国产欧美在线一区| 亚洲在线观看片| 国产欧美另类精品又又久久亚洲欧美| 精品久久久久久成人av| 日韩不卡一区二区三区视频在线| 精品久久久久久成人av| 日韩精品有码人妻一区| 国产精品蜜桃在线观看| 哪个播放器可以免费观看大片| 亚洲精品中文字幕在线视频 | 人人妻人人澡欧美一区二区| 亚洲国产精品成人久久小说| av天堂中文字幕网| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 69人妻影院| 三级经典国产精品| 国模一区二区三区四区视频| 熟女电影av网| 久久久色成人| 22中文网久久字幕| 狂野欧美白嫩少妇大欣赏| 国内少妇人妻偷人精品xxx网站| 男人爽女人下面视频在线观看| 麻豆久久精品国产亚洲av| 久久久久精品性色| 成人毛片a级毛片在线播放| 亚洲成人久久爱视频| 久久精品人妻少妇| 一级黄片播放器| 日韩欧美精品v在线| 国产精品蜜桃在线观看| 成人国产麻豆网| 中文在线观看免费www的网站| 日韩制服骚丝袜av| 老女人水多毛片| 国产成人精品婷婷| 亚洲av中文字字幕乱码综合| 日韩强制内射视频| 欧美人与善性xxx| 国产黄片视频在线免费观看| 黄色一级大片看看| 国产精品久久视频播放| 一级毛片黄色毛片免费观看视频| 最近手机中文字幕大全| 国产免费一级a男人的天堂| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇| 嘟嘟电影网在线观看| 少妇丰满av| 久久精品国产亚洲av天美| 久久久久久久久大av| 成人美女网站在线观看视频| 国产精品三级大全| 色5月婷婷丁香| 丝袜美腿在线中文| 国产av码专区亚洲av| 久久久久精品性色| 只有这里有精品99| 亚洲精品国产av蜜桃| 精品一区二区免费观看| 亚洲在线观看片| 综合色av麻豆| 成人高潮视频无遮挡免费网站| 女人十人毛片免费观看3o分钟| 色综合色国产| 久久国内精品自在自线图片| 男女啪啪激烈高潮av片| 国产69精品久久久久777片| 少妇被粗大猛烈的视频| 尤物成人国产欧美一区二区三区| 国产男人的电影天堂91| 看黄色毛片网站| 免费观看性生交大片5| 一个人看的www免费观看视频| 男插女下体视频免费在线播放| 日韩欧美 国产精品| 日本黄色片子视频| 欧美日韩精品成人综合77777| 高清在线视频一区二区三区| 国产精品一区二区三区四区久久| 大又大粗又爽又黄少妇毛片口| 国产精品日韩av在线免费观看| 亚洲欧美成人精品一区二区| 国产免费视频播放在线视频 | 日韩欧美精品免费久久| 两个人的视频大全免费|