• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      運(yùn)動(dòng)對(duì)骨代謝信號(hào)通路影響的研究進(jìn)展①

      2016-01-30 01:47:07仝曉陽(yáng)張玲莉郭健民元宇鄒軍
      關(guān)鍵詞:骨細(xì)胞成骨細(xì)胞分化

      仝曉陽(yáng),張玲莉,郭健民,元宇,鄒軍

      運(yùn)動(dòng)對(duì)骨代謝信號(hào)通路影響的研究進(jìn)展①

      仝曉陽(yáng)1,張玲莉1,郭健民1,元宇1,鄒軍2

      運(yùn)動(dòng)調(diào)控骨代謝的過程十分復(fù)雜,涉及多條信號(hào)通路。大量離體研究表明,機(jī)械應(yīng)力通過W nt、骨形態(tài)發(fā)生蛋白(BMP)及骨保護(hù)素(OPG)/核因子κB受體活化因子配體(RANKL)/核因子κB受體活化因子(RANK)等骨代謝信號(hào)通路對(duì)骨代謝進(jìn)行調(diào)控,其強(qiáng)度、頻率等均會(huì)對(duì)骨組織細(xì)胞產(chǎn)生不同的影響。眾多在體實(shí)驗(yàn)也證實(shí),運(yùn)動(dòng)通過調(diào)節(jié)相關(guān)骨代謝信號(hào)通路的關(guān)鍵因子進(jìn)一步影響骨代謝。本文主要闡述運(yùn)動(dòng)對(duì)骨代謝信號(hào)通路的影響及其作用機(jī)制。

      運(yùn)動(dòng);機(jī)械應(yīng)力;骨代謝信號(hào)通路;綜述

      [本文著錄格式]仝曉陽(yáng),張玲莉,郭健民,等.運(yùn)動(dòng)對(duì)骨代謝信號(hào)通路影響的研究進(jìn)展[J].中國(guó)康復(fù)理論與實(shí)踐,2016,22 (12):1425-1429.

      CITED AS:Tong XY,Zhang LL,Guo JM,etal.Advance in exercise forbonemetabolism pathways(review)[J].Zhongguo Kangfu Lilun Yu Shijian,2016,22(12):1425-1429.

      由成骨細(xì)胞主導(dǎo)的骨形成和破骨細(xì)胞主導(dǎo)的骨吸收構(gòu)成骨代謝的主要環(huán)節(jié)[1]。骨代謝的平衡受多條信號(hào)通路調(diào)控,各條通路之間協(xié)同作用,互相影響。大量研究表明,Wnt及骨形態(tài)發(fā)生蛋白(bonemorphogenetic protein,BMP)信號(hào)通路是調(diào)控骨形成的主要通路,而骨保護(hù)素(osteoprotegerin,OPG)/核因子κB受體活化因子配體(receptor activatorof NF-κB ligand,RANKL)/核因子κB受體活化因子(receptor activator of NF-κB,RANK)信號(hào)通路則調(diào)控骨吸收[2]。

      運(yùn)動(dòng)是維持骨代謝平衡的重要因素之一,在骨形成和骨吸收過程中發(fā)揮著重要的調(diào)控作用。機(jī)械刺激的缺乏將引起骨代謝紊亂、骨量流失,最終導(dǎo)致骨質(zhì)疏松。大量研究報(bào)道,缺乏機(jī)械刺激,如石膏固定、長(zhǎng)期臥床休息,失重或微重力環(huán)境,將導(dǎo)致顯著的骨量丟失[3-4]。機(jī)械應(yīng)力(如剪切力、牽張力、壓力等)對(duì)間充質(zhì)干細(xì)胞以及成骨細(xì)胞的增殖及分化有著積極的影響,可促進(jìn)骨形成[5-6]。眾多的動(dòng)物實(shí)驗(yàn)也表明,適宜的運(yùn)動(dòng)負(fù)荷促進(jìn)骨形成,抑制骨吸收,進(jìn)而提高骨密度,起到防治骨質(zhì)疏松的作用[7]。因此,本文對(duì)近年來運(yùn)動(dòng)對(duì)骨代謝信號(hào)通路的影響進(jìn)行歸納總結(jié),旨在為骨質(zhì)疏松的運(yùn)動(dòng)防治提供理論依據(jù)。

      1 W nt信號(hào)通路

      Wnt信號(hào)通路主要分為經(jīng)典Wnt信號(hào)通路和非經(jīng)典Wnt信號(hào)通路。前者需要通過β-catenin介導(dǎo)信號(hào)通路(W nt/β-catenin通路),而后者不需要通過Wnt/β-catenin通路,分為Wnt/鈣離子(Wnt/Ca2+)通路和Wnt細(xì)胞極性(planar cell polarity)通路。骨細(xì)胞中,W nt信號(hào)通路主要影響骨髓間充質(zhì)干細(xì)胞(bonemarrow mesenchymal stem cells,BMSCs)及成骨細(xì)胞增殖和分化[8-9]。經(jīng)典Wnt信號(hào)通路在BMSCs定向分化中占據(jù)著重要的作用,并且β-catenin是Wnt信號(hào)轉(zhuǎn)導(dǎo)通路中的核心因子,能促進(jìn)成骨細(xì)胞的增值和分化[10-11]。

      有研究表明,體內(nèi)及體外機(jī)械應(yīng)力刺激都能夠促進(jìn)β-catenin蛋白的表達(dá),進(jìn)一步激活Wnt/β-catenin信號(hào)通路,并且該信號(hào)通路的激活可提高成骨細(xì)胞對(duì)機(jī)械應(yīng)力刺激的敏感性[12]。楊念恩等研究發(fā)現(xiàn),跑臺(tái)和游泳能夠顯著增強(qiáng)生長(zhǎng)期小鼠的骨密度,特別是跑臺(tái)運(yùn)動(dòng)能夠通過提高內(nèi)源性甲狀旁腺素和雌激素濃度,促進(jìn)經(jīng)典Wnt信號(hào)通路受體蛋白Lrp5的基因表達(dá)和效應(yīng)蛋白β-catenin蛋白表達(dá),提高骨礦含量[13]。

      機(jī)械刺激可以激活β-catenin,抑制過氧化物酶增殖激活受體γ2(peroxisome proliferator-activated receptorsγ2,PPARγ2)的表達(dá),進(jìn)而抑制成脂分化。Case等對(duì)C57BL/6小鼠的BMSCs進(jìn)行2%的牽張力干預(yù),發(fā)現(xiàn)牽張應(yīng)力通過抑制糖原合成酶激酶3β(glycogen synthase kinase-3β,GSK3β)上調(diào)β-catenin的表達(dá),從而激活W nt信號(hào)傳導(dǎo)通路[14]。細(xì)胞內(nèi)GSK 3β能與活化軸蛋白(Axin)和結(jié)腸腺瘤樣息肉病蛋白(adenomatous polyposis coli, APC)形成復(fù)合物而使β-catenin處于失活狀態(tài),從而阻斷Wnt信號(hào)通路的傳導(dǎo)[15]。Norvell等的研究也發(fā)現(xiàn),流體剪切力可通過調(diào)節(jié)GSK3β及β-catenin的表達(dá)激活Wnt/β-catenin信號(hào)通路,從而促進(jìn)成骨細(xì)胞的分化[16]。Case等研究發(fā)現(xiàn),適宜的機(jī)械刺激可以上調(diào)β-catenin信號(hào),并使可調(diào)節(jié)成骨細(xì)胞分化和增殖的靶基因Wnt誘導(dǎo)分泌蛋白1(Wnt1 inducible-signaling pathway,W ISP1)和環(huán)氧酶(cyclooxygenase,COX)2的釋放增加,進(jìn)一步促進(jìn)成年小鼠BMSCs向成骨分化[17-18]。

      Zhong等對(duì)MC3T3-E1成骨細(xì)胞系分別進(jìn)行拉伸和壓力刺激,在施加應(yīng)力1 h、3 h、5 h后檢測(cè)Wnt10b和Lrp5的基因表達(dá),結(jié)果發(fā)現(xiàn)Wnt10b、Lrp5mRNA表達(dá)增加,其中壓力刺激的效果更佳[5]。陳熙等分別采用3%、6%、12%的形變幅度的正弦波,0.5 Hz的頻率,時(shí)間分別為2 h、4 h、8 h,對(duì)MC3T3-E1成骨細(xì)胞系進(jìn)行牽張應(yīng)力干預(yù),結(jié)果發(fā)現(xiàn),3%和6%強(qiáng)度牽張干預(yù)后,成骨細(xì)胞堿性磷酸酶(alkaline phosphates, ALP)活性升高,骨鈣蛋白(osteocalcin,OC)、Runt相關(guān)轉(zhuǎn)錄因子 2(Runt-related transcription factor 2,Runx2)、 Osterix、W nt1、β-catenin m RNA表達(dá)升高,而DKK-1m RNA表達(dá)下降,且干預(yù)4 h后升高幅度最大[19]。Tu等通過對(duì)轉(zhuǎn)基因小鼠的研究證實(shí),機(jī)械負(fù)荷作用可以通過下調(diào)骨硬化蛋白(sclerostin, SOST)的基因表達(dá),調(diào)節(jié)Wnt信號(hào)通路影響骨生成[20]。M orse也報(bào)道,適宜的機(jī)械應(yīng)力刺激可通過SOST通路促進(jìn)骨形成,調(diào)節(jié)骨代謝[21]。

      綜上所述,適宜的機(jī)械應(yīng)力刺激不僅可以上調(diào)β-catenin、Lrp5、Wnt10b的表達(dá),還可以下調(diào)SOST、DKK-1的表達(dá),進(jìn)而通過激活Wnt信號(hào)通路促進(jìn)成骨細(xì)胞的增殖及分化。

      2 BMP信號(hào)通路

      BMP是一類具有類似結(jié)構(gòu)的高度保守的功能蛋白,屬于轉(zhuǎn)化生長(zhǎng)因子(transform ing grow th factor,TGF)-β家族成員,其功能廣泛,能夠促進(jìn)成骨細(xì)胞的增殖及分化,并且在BMSCs分化、增殖為成骨細(xì)胞的過程中起著中樞性作用,主要通過Smads依賴性(BMP/Smads信號(hào)通路)和非Smads依賴性(MAPK信號(hào)通路)兩條途徑其發(fā)揮生物學(xué)作用[22]。

      大量研究報(bào)道,機(jī)械應(yīng)力刺激可以激活BMP/Smads信號(hào)通路,促進(jìn)骨形成,抑制骨吸收,進(jìn)而調(diào)節(jié)骨代謝。Wang等研究發(fā)現(xiàn),機(jī)械牽拉應(yīng)力刺激可能是通過下調(diào)Smurf1的表達(dá)來促進(jìn)Smad蛋白聚集,從而激活BMP/Smads信號(hào)傳導(dǎo)通路促進(jìn)成骨細(xì)胞分化[23]。

      Smad1/5/8是BMP信號(hào)通路上的信號(hào)轉(zhuǎn)導(dǎo)蛋白,是調(diào)節(jié)成骨細(xì)胞分化的重要因子。Kido等研究發(fā)現(xiàn),流體剪切力能夠誘導(dǎo)小鼠原代成骨細(xì)胞BMP受體表達(dá)進(jìn)而調(diào)節(jié)Smad1/5,上調(diào)IL-11的表達(dá),促進(jìn)成骨細(xì)胞的分化[24]。Rath使用強(qiáng)度為10%、頻率為1 Hz的機(jī)械應(yīng)力對(duì)成骨細(xì)胞干預(yù),結(jié)果發(fā)現(xiàn)機(jī)械應(yīng)力可能是通過BMP受體I激活BMP信號(hào)通路中Smad1/5/8,進(jìn)而上調(diào)成骨因子Runx2mRNA表達(dá)[25]。

      機(jī)械刺激還可通過BMP/Smads信號(hào)通路作用于細(xì)胞外基質(zhì)(extracellularmatrix,ECM),增加BMP-2、BMP-4水平,并提高ECM骨誘導(dǎo)蛋白的能力。Guo等對(duì)MC3T3-E1成骨細(xì)胞系進(jìn)行機(jī)械牽張刺激,移除細(xì)胞后并檢測(cè)ECM蛋白和鈣濃度變化,并將MC3T3-E1成骨細(xì)胞系重新播種在ECM包被的培養(yǎng)皿上,來檢測(cè)ECM骨誘導(dǎo)能力,研究發(fā)現(xiàn)環(huán)形牽拉刺激使ECM中膠原蛋白,BMP-2、BMP-4以及Ca2+濃度均增加,與對(duì)照組的相比,機(jī)械刺激MC3T3-E1成骨細(xì)胞系使ALP活性加強(qiáng),BMP-2、骨橋素(osteopontin,OPN)水平增加,Runx2、骨鈣素(osteocalcin,OCN)mRNA表達(dá)上調(diào),MC3T3-E1成骨細(xì)胞系Ca2+的分泌量增多[26]。Wang等研究發(fā)現(xiàn),機(jī)械牽拉是通過激活p38MAPK和NF-κB,進(jìn)一步上調(diào)BMP-2、BMP-4的表達(dá)來促進(jìn)成骨基因的表達(dá)[27]。

      機(jī)械應(yīng)力可以通過MAPK信號(hào)通路調(diào)節(jié)骨代謝。Karasaw a等通過對(duì)MC3T3-E1成骨細(xì)胞系施加周期性的牽拉刺激,發(fā)現(xiàn)成骨細(xì)胞MAPK信號(hào)通路中金屬蛋白酶組織抑制劑(tissue inhibitor ofmetalloproteinase,TIMP)-2、TIMP-3的表達(dá)上調(diào),同時(shí) 基質(zhì)金 屬 蛋 白酶(matrix metalloproteinase,MMP)-1、MMP-3、MMP-13的表達(dá)下調(diào)[28]。Kanno等報(bào)道,適宜的機(jī)械刺激通過Ras/ERK1/2 MAPK信號(hào)通路調(diào)節(jié)Runx2的表達(dá),進(jìn)一步促進(jìn)成骨細(xì)胞的分化[29]。Ren等研究發(fā)現(xiàn),適宜的周期性的機(jī)械牽拉可通過ERK1/2信號(hào)通路促進(jìn)Runx2的氧化磷酸化,這對(duì)牙周膜干細(xì)胞的成骨分化是一個(gè)決定性因素[30]。

      適宜的流體剪切力(fluid shear stress,FSS)刺激可通過ERK進(jìn)一步調(diào)節(jié)骨代謝。Bo等對(duì)MC3T3-E1成骨細(xì)胞系進(jìn)行60m in的FSS刺激,發(fā)現(xiàn)機(jī)械刺激可通過Gαq-ERK5信號(hào)通路,上調(diào)Cyclin B1和細(xì)胞周期蛋白依賴性激酶1的表達(dá),調(diào)節(jié)細(xì)胞的分化,促進(jìn)成骨細(xì)胞增殖[31]。Bin等報(bào)道生理范圍內(nèi)FSS刺激MC3T3-E1成骨細(xì)胞系1 h可通過ERK5信號(hào)通路抑制腫瘤壞死因子(tumor necrosis factor,TNF)-α誘導(dǎo)的骨質(zhì)疏松,并且Bad的磷酸化水平提高,caspase-3的活性受到抑制,且Bad是ERK5的一個(gè)重要的下游靶點(diǎn)[32]。Zhao等研究發(fā)現(xiàn),壓強(qiáng)為0.12Pa的持續(xù)性與間歇性流體剪切力均可以促進(jìn)MC3T3-E1成骨細(xì)胞系ERK5的磷酸化,增強(qiáng)ALP的活性,上調(diào)OCN及OPN的蛋白表達(dá),進(jìn)而促進(jìn)成骨細(xì)胞分化。并且間歇性的FSS較持續(xù)性的FSS效果更佳。而抑制MEK5/ERK5的活性后,除ALP的活性及OPN、OCN表達(dá)均受到抑制外,Runx2的表達(dá)也降低,這說明Runx2的表達(dá)不但受ERK l/2與p38的調(diào)控,也受MEK5/ERK5的影響[33]。

      3 OPG/RANKL/RANK信號(hào)通路

      OPG/RANKL/RANK通路是成骨細(xì)胞與破骨細(xì)胞之間相互作用的信號(hào)通道,主要調(diào)控破骨細(xì)胞的形成、活動(dòng)和生存[34]。在OPG/RANKL/RANK系統(tǒng)中,骨髓基質(zhì)及成骨細(xì)胞分泌一定量的RANKL使破骨細(xì)胞分化,促進(jìn)骨吸收,同時(shí)也分泌相應(yīng)數(shù)量的OPG以防止骨過度吸收。當(dāng)OPG/RANKL的比值上升時(shí),成骨細(xì)胞活性增強(qiáng),有助于骨形成,骨代謝趨向于正平衡;當(dāng)OPG/RANKL比值下降時(shí),破骨細(xì)胞活性增強(qiáng),有利于骨吸收,骨代謝趨向于負(fù)平衡[35]。

      Tang等對(duì)MC3T3-E1成骨細(xì)胞系進(jìn)行24 h的牽張應(yīng)力刺激后發(fā)現(xiàn),成骨細(xì)胞RANKL的mRNA及蛋白表達(dá)下降,而OPG的mRNA及蛋白表達(dá)上調(diào)[36]。有研究表明,適宜的機(jī)械應(yīng)力刺激可調(diào)節(jié)牙周膜干細(xì)胞的成骨分化以及OPG/RANKL的比值[37]。也有研究表明,長(zhǎng)時(shí)間的大強(qiáng)度機(jī)械應(yīng)力刺激則會(huì)抑制OPG的表達(dá),上調(diào)RANKL的表達(dá),使OPG/RANKL比值下降,促進(jìn)骨吸收,對(duì)骨代謝有負(fù)作用。

      Sanchez等對(duì)小鼠原代成骨細(xì)胞進(jìn)行強(qiáng)度為1~1.7MPa、頻率為1Hz、時(shí)間為1~8 h的機(jī)械壓力發(fā)現(xiàn),在4 h、10%的強(qiáng)度時(shí),OPG、MMP-2、MMP-3以及MMP-13mRNA的表達(dá)均上調(diào),4 h之后OPG的表達(dá)開始下降,但RANKL的表達(dá)沒有明顯的變化,OPG/RANKL比值下降[38]。趙仁清對(duì)6周齡大鼠進(jìn)行7周大負(fù)荷運(yùn)動(dòng)訓(xùn)練后發(fā)現(xiàn),對(duì)照組大鼠股骨骨礦物含量(bonem ineral content,BMC)、骨礦物密度(bonemineraldensity, BMD)及腰椎BMC明顯低于訓(xùn)練組大鼠,訓(xùn)練組大鼠血清OPG水平明顯低于對(duì)照組,而RANKL卻高于對(duì)照組,OPG/ RANKL比值下降。訓(xùn)練組血清OC、ALP和抗酒石酸酸性磷酸酶(tartrate-resistant acid phosphatase,TRAP)明顯高于對(duì)照組。這提示過度運(yùn)動(dòng)導(dǎo)致OPG/RANKL比值下降可能是骨代謝率增快、骨量丟失的重要原因[39]。李盛村等研究也發(fā)現(xiàn),過度跳躍性應(yīng)力刺激后,大鼠脛骨OPG和RANKL表達(dá)均升高,但OPG/RANKL比值卻下降,骨破壞加劇[40]。

      綜上所述,適宜的機(jī)械應(yīng)力刺激會(huì)誘導(dǎo)骨OPG表達(dá)上調(diào),RANKL表達(dá)下調(diào),OPG/RANKL比值明顯上升,有利于骨形成,而過度的機(jī)械刺激導(dǎo)致OPG/RANKL比值下降,促進(jìn)骨吸收[40-41]。

      4 其他信號(hào)通路

      骨代謝過程中涉及的信號(hào)通路多而復(fù)雜,除上述三條主要通路外,機(jī)械應(yīng)力刺激也通過其他通路調(diào)節(jié)骨代謝。

      馬濤等對(duì)去卵巢小鼠進(jìn)行跑臺(tái)訓(xùn)練后發(fā)現(xiàn),適度的跑臺(tái)運(yùn)動(dòng)可通過抑制破骨細(xì)胞分化過程中p65和IκBα蛋白的磷酸化,抑制破骨細(xì)胞分化NF-κB信號(hào)通路,從而有效抑制骨吸收;且較上坡跑而言,下坡跑的抑制效果更佳[42]。

      Yang等研究報(bào)道,周期性機(jī)械牽拉可使內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)降低,但激活轉(zhuǎn)錄因子4(activating transcription factor 4, ATF4)、OCN、骨涎蛋白等表達(dá)上調(diào),并且PERK的過度表達(dá)促進(jìn)eIF2α的氧化磷酸化作用以及ATF4的釋放,并且誘導(dǎo)骨涎蛋白、OCN的釋放,促進(jìn)牙周膜干細(xì)胞向成骨細(xì)胞分化,這提示周期性的機(jī)械牽拉刺激可通過由內(nèi)質(zhì)網(wǎng)應(yīng)激反應(yīng)介導(dǎo)的PERK-eIF2α-ATF4信號(hào)通路促進(jìn)牙周膜干細(xì)胞向成骨細(xì)胞分化[43]。

      陳祥和等研究發(fā)現(xiàn),生長(zhǎng)期小鼠適度的下坡跑運(yùn)動(dòng)可使Ihh(Indian hedgehog)、Shh(Sonic hedgehog)、Ptch(Patched)和Smo(Smoothened)的mRNA表達(dá)上調(diào),進(jìn)一步激活hedgehog信號(hào)通路,從而提高成骨細(xì)胞的成骨能力;與游泳運(yùn)動(dòng)相比,下坡跑運(yùn)動(dòng)更能有效促進(jìn)生長(zhǎng)期雄性小鼠的骨形成[44]。Ihh、Shh是hedgehog基因家族的兩個(gè)亞型,Ptch和Smo是hedgehog信號(hào)通路激活所需的受體[45]。王燕等研究也發(fā)現(xiàn),運(yùn)動(dòng)狀態(tài)下,Ihh/PTHrP信號(hào)通路促進(jìn)軟骨內(nèi)成骨的作用加強(qiáng),并且Ihh/ PTHrp是通過形成負(fù)反饋調(diào)控環(huán)路來達(dá)到調(diào)節(jié)軟骨內(nèi)成骨過程,且運(yùn)動(dòng)可能通過該機(jī)制促進(jìn)機(jī)體骨量增加、長(zhǎng)骨長(zhǎng)長(zhǎng)[46]。

      穆樹云研究發(fā)現(xiàn),適度的跑臺(tái)運(yùn)動(dòng)能夠顯著上調(diào)Notch信號(hào)通路中配體Jagged1、受體Notch1、γ-分泌酶及目標(biāo)基因Hes1的表達(dá),激活骨組織中Jagged1/Notch1-Hes1信號(hào)通路作用于目標(biāo)基因,誘導(dǎo)成骨細(xì)胞增殖分化,提高骨礦物質(zhì)含量及增強(qiáng)骨密度,進(jìn)而影響骨生長(zhǎng)[47]。

      Case等研究指出,機(jī)械應(yīng)力可以激活m TOR信號(hào)通路,通過mTORC2-Akt-GSK3β途徑抑制GSK3β的表達(dá),進(jìn)而激活β-catenin,發(fā)揮促進(jìn)骨生成的生物學(xué)功能[48]。

      5 小結(jié)

      運(yùn)動(dòng)與機(jī)械應(yīng)力分別在在體和離體層面調(diào)節(jié)骨代謝信號(hào)通路中的關(guān)鍵因子來激活相應(yīng)的信號(hào)通路,進(jìn)而調(diào)節(jié)骨形成及骨吸收,從而影響調(diào)控骨代謝的平衡。適宜的機(jī)械刺激或運(yùn)動(dòng)可通過骨代謝通路促進(jìn)BMSCs及成骨細(xì)胞的增殖、分化,抑制破骨細(xì)胞的相關(guān)活動(dòng),進(jìn)而對(duì)骨代謝起到正向調(diào)節(jié)的作用。運(yùn)動(dòng)強(qiáng)度過大或者機(jī)械刺激強(qiáng)度大、時(shí)間長(zhǎng)不僅不會(huì)促進(jìn)骨形成,還會(huì)對(duì)相應(yīng)的骨組織及細(xì)胞造成損傷。在實(shí)際的調(diào)節(jié)過程中,機(jī)械應(yīng)力對(duì)各信號(hào)通路的調(diào)節(jié)并不是獨(dú)立的,而是相互影響、協(xié)同合作,共同調(diào)節(jié)骨代謝。運(yùn)動(dòng)對(duì)機(jī)體骨代謝的調(diào)節(jié)作用較機(jī)械應(yīng)力刺激對(duì)離體細(xì)胞更為復(fù)雜,運(yùn)動(dòng)對(duì)骨代謝的調(diào)節(jié)的不僅僅是造成一定的機(jī)械應(yīng)力作用于骨細(xì)胞,而是對(duì)各個(gè)系統(tǒng)均產(chǎn)生作用,最終調(diào)節(jié)骨代謝的平衡,確切機(jī)制有待于更深入的研究。

      運(yùn)動(dòng)對(duì)骨代謝的調(diào)控作用除了通過Wnt、BMP等骨代謝信號(hào)通路之外,也可能通過其他途徑影響骨代謝。近年來研究發(fā)現(xiàn),m icroRNA、lncRNA也參與骨代謝的調(diào)控,也有報(bào)道m(xù) icroRNA是運(yùn)動(dòng)或機(jī)械應(yīng)力調(diào)控骨代謝正平衡的途徑之一,其機(jī)制有待于進(jìn)一步研究。而運(yùn)動(dòng)或機(jī)械應(yīng)力是否介導(dǎo)lncRNA調(diào)節(jié)骨代謝平衡及其相關(guān)機(jī)制更是今后研究的熱點(diǎn)。

      [1]K lein-Nulend J,Bacabac RG,Bakker AD.M echanical loading and how itaffectsbone cells:the role of theosteocyte cytoskeleton inmaintaining our skeleton[J].Eur CellMater,2012,24 (12):278-291.

      [2]熊燕琴,周筠,雷濤.骨代謝信號(hào)通路的研究進(jìn)展[J].中國(guó)骨質(zhì)疏松雜志,2014,20(2):200-204.

      [3]Endo I,Matsumoto T.[Space flight/bedrest immobilization and bone.Bisphosphonate and the loss of bone mineral due to space flight or prolonged bed rest][J].[in Japanese].Clin Calcium,2012,22(12):1863-1870.

      [4]Belavy DL,Baecker N,Armbrecht G,et al.Serum sclerostin and DKK1 in relation to exercise against bone loss in experimentalbed rest[J].JBoneM inerMetab,2016,34(3):354-365.

      [5]Zhong Z,Zeng XL,Ni JH,et al.Com parison of the biological responseof osteoblasts after tension and compression[J].Eur J Orthod,2013,35(1):59-65.

      [6]Thom pson WR,Rubin CT,Rubin J.Mechanical regulation of signaling pathways in bone[J].Gene,2012,503(2):179-193.

      [7]李麗輝,楊杰,董潔瓊,等.運(yùn)動(dòng)對(duì)去卵巢骨質(zhì)疏松大鼠OPG、RANKL表達(dá)的影響[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2013,32(11): 991-996.

      [8]Czarkowska-Paczek B,Weso?owska K,Przybylski J.[Physical exercise prevents osteoporosis][J].[in Polish].Przegl Lek, 2011,68(2):103-106.

      [9]Rossini M,Gatti D,ADAMI S.Involvement of WNT/beta-catenin signaling in the treatment of osteoporosis[J].Calcif Tissue Int,2013,93(2):121-132.

      [10]Armstrong VJ,Muzylak M,SuntersA,etal.Wnt/beta-catenin signaling is a component of osteoblastic bone cell early responses to load-bearing and requires estrogen receptor alpha[J].JBiolChem,2007,282(28):20715-20727.

      [11]李云矗,徐剛,徐成福.Wnt/β-catenin信號(hào)通路及其對(duì)骨髓間充質(zhì)干細(xì)胞多向分化調(diào)節(jié)研究進(jìn)展[J].牡丹江醫(yī)學(xué)院學(xué)報(bào), 2016,37(1):99-102.

      [12]Robinson JA,Chatterjee-kishore M,Yaworsky PJ,et al.Wnt/ beta-catenin signaling is a normal physiological response to mechanical loading in bone[J].JBiol Chem,2006,281(42): 31720-31728.

      [13]楊念恩.不同方式運(yùn)動(dòng)對(duì)生長(zhǎng)期小鼠骨合成代謝和Wnt信號(hào)通路的影響[D].上海:華東師范大學(xué),2014.

      [14]Case N,Thomas J,Xie Z,et al.Mechanical input restrains PPARgamma2 expression and action to preservemesenchymal stem cellmultipotentiality[J].Bone,2013,52(1):454-464.

      [15]Zeng L,Fagotto F,Zhang T,etal.Themouse Fused locus encodes Axin,an inhibitorof theWnt signaling pathway that regulatesembryonic axis formation[J].Cell,1997,90(1):181-192.

      [16]Norvell SM,A lvarez M,Bidwell JP,et al.Fluid shear stress induces beta-catenin signaling in osteoblasts[J].Calcif Tissue Int,2004,75(5):396-404.

      [17]Case N,Xie Z,Sen B,et al.Mechanical activation of beta-catenin regulates phenotype in adultmurinemarrow-derived mesenchymal stem cells[J].J Orthop Res,2010,28(11): 1531-1538.

      [18]Case N,MaM,Sen B,etal.Beta-catenin levels influence rapid mechanical responses in osteoblasts[J].JBiol Chem,2008, 283(43):29196-29205.

      [19]陳熙,郭健民,元宇,等.不同牽張應(yīng)力對(duì)成骨細(xì)胞MC3T3-E1分化及W nt信號(hào)轉(zhuǎn)導(dǎo)通路的影響研究[J].中國(guó)骨質(zhì)疏松雜志,2016,22(1):9-13.

      [20]Tu X,Rhee Y,Condon KW,etal.SOST downregulation and localW nt signaling are required for the osteogenic response to mechanical loading[J].Bone,2012,50(1):209-217.

      [21]MorseA,Mcdonald MM,Kelly NH,etal.Mechanical load increases in bone formation via a sclerostin-independent pathway[J].JBoneM iner Res,2014,29(11):2456-2467.

      [22]Cai J,Pardali E,Sanchez-duffhues G,etal.BMPsignaling in vascular diseases[J].FEBSLett,2012,586(14):1993-2002.

      [23]Wang L,Zhang X,Guo Y,etal.Involvement of BMPs/Smad signaling pathway in mechanical response in osteoblasts[J]. Cell Physiol Biochem,2010,26(6):1093-1102.

      [24]Kido S,Kuriwaka-kido R,Um ino-miyataniY,etal.Mechanical stress activates Smad pathway through PKCdelta to enhance interleukin-11 gene transcription in osteoblasts[J].PLoS One,2010,5(9):e13090.

      [25]Rath B,Nam J,Deschner J,etal.Biomechanical forces exert anabolic effects on osteoblasts by activation of SMAD 1/5/8 through type 1 BMP receptor[J].Biorheology,2011,48(1): 37-48.

      [26]Guo Y,Zhang CQ,Zeng QC,et al.Mechanical strain promotes osteoblast ECM formation and improves its osteoinductive potential[J].Biomed Eng Online,2012,11:80.

      [27]Wang L,Li JY,Zhang XZ,etal.Involvement of p38MAPK/ NF-kappaB signaling pathw ays in osteoblasts differentiation in response tomechanical stretch[J].Ann Biomed Eng,2012,40 (9):1884-1894.

      [28]Karasawa Y,Tanaka H,Nakai K,et al.Tension Force downregulatesmatrix metalloproteinase expression and upregulates the expression of their inhibitors through MAPK signaling pathways in MC3T3-E1 cells[J].Int JMed Sci,2015,12(11): 905-913.

      [29]Kanno T,Takahashi T,Tsujisawa T,et al.Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2MAPK signaling in osteoblasts[J].JCell Biochem,2007,101 (5):1266-1277.

      [30]Ren D,Wei F,Hu L,etal.Phosphorylation of Runx2,induced by cyclicmechanical tension via ERK1/2 pathway,contributes to osteodifferentiation of human periodontal ligament fibroblasts[J].JCell Biochem,2015,230(10):2426-2436.

      [31]Bo Z,Bin G,JingW,etal.Fluid shear stress promotes osteoblast proliferation via the Galphaq-ERK5 signaling pathway[J].ConnectTissue Res,2016,57(4):299-306.

      [32]Bin G,Cuifang W,Bo Z,et al.Fluid shear stress inhibits TNF-alpha-induced osteoblast apoptosis via ERK5 signaling pathway[J].Biochem Biophys Res Commun,2015,466(1): 117-123.

      [33]Zhao LG,Chen SL,Teng YJ,et al.The MEK5/ERK5 pathwaymediates fluid shear stress promoted osteoblastdifferentiation[J].ConnectTissue Res,2014,55(2):96-102.

      [34]戴杰,陳現(xiàn)紅,鄧偉民.機(jī)械振動(dòng)對(duì)骨內(nèi)細(xì)胞效應(yīng)基礎(chǔ)研究進(jìn)展[J].中華骨質(zhì)疏松和骨礦鹽疾病雜志,2014,7(3):287-292.

      [35]Om insky MS,Li X,Asuncion FJ,et al.RANKL inhibition w ith osteoprotegerin increases bone strength by improving cortical and trabecular bone architecture in ovariectom ized rats[J].JBone M iner Res,2008,23(5):672-682.

      [36]Tang L,Lin Z,LiYM.Effects of differentmagnitudes ofmechanical strain on Osteoblasts in vitro[J].Biochem Biophys ResCommun,2006,344(1):122-128.

      [37]Zhang L,LiuW,Zhao J,etal.Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by theWnt/beta-catenin pathway[J].Biochim BiophysActa,2016,1860(10):2211-2219.

      [38]Sanchez C,Gabay O,Salvat C,et al.Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts[J].Osteoarthritis Cartilage,2009,17(4): 473-481.

      [39]趙仁清.大負(fù)荷運(yùn)動(dòng)對(duì)大鼠血清OPG、sRANKL、骨代謝及骨量的影響[J].體育與科學(xué),2011,32(2):88-90.

      [40]李盛村,鮑捷,王靜,等.跳躍性應(yīng)力刺激對(duì)大鼠脛骨OPG、RANKL及骨代謝的影響[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2014,33 (6):542-546.

      [41]Kaneuji T,A riyoshi W,Okinaga T,et al.M echanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts[J].Biochem Biophys Res Commun,2011,408(1):103-109.

      [42]馬濤,李世昌.上、下坡跑臺(tái)運(yùn)動(dòng)對(duì)去卵巢小鼠破骨細(xì)胞分化NF-κB信號(hào)通路的影響[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2015,34 (5):468-474.

      [43]Yang SY,Wei FL,Hu LH,etal.PERK-eIF2alpha-ATF4 pathway mediated by endoplasm ic reticulum stress response is involved in osteodifferentiation of human periodontal ligament cells under cyclic mechanical force[J].Cell Signal,2016,28 (8):880-886.

      [44]陳祥和,李世昌,嚴(yán)偉良,等.Hedgehog信號(hào)通路對(duì)成骨細(xì)胞分化和骨形成的影響及不同方式運(yùn)動(dòng)的調(diào)控[J].北京體育大學(xué)學(xué)報(bào),2015,38(11):59-64.

      [45]王守豐,邱勇.軟骨內(nèi)成骨的調(diào)控[J].中華外科雜志,2006, 44(16):1147-1149.

      [46]王燕杰.運(yùn)動(dòng)對(duì)Ihh/PTHrP信號(hào)通路調(diào)控骨形成的影響研究[J].當(dāng)代體育科技,2014,4(27):13-14.

      [47]穆樹云.不同方式運(yùn)動(dòng)對(duì)生長(zhǎng)期小鼠骨密度及Notch信號(hào)通路相關(guān)基因表達(dá)的影響[D].上海:華東師范大學(xué),2015.

      [48]Case N,Thomas J,Sen B,etal.Mechanical regulation of glycogen synthase kinase 3β(GSK3β)inmesenchymal stem cells is dependent on Akt protein serine 473 phosphorylation via mTORC2 protein.[J].J Biol Chem,2011,286(45): 39450-39456.

      Advance in Exercise for BoneMetabolism Pathways(review)

      TONG Xiao-yang1,ZHANG Ling-li1,GUO Jian-min1,YUAN Yu1,ZOU Jun2
      1.Schoolof Kinesiology,ShanghaiUniversity of Sport,Shanghai200438,China;2.Developmentand Planning Office,ShanghaiUniversity of Sport,Shanghai200438,China

      The process of exercise regulating bonemetabolism is complicated,which involvesa number of signaling pathways.A large number of studies in vitro have indicated thatmechanicalstress regulates bonemetabolism byWnt,bonemorphogenetic protein(BMP),and osteoprotegerin(OPG)/receptoractivatorof NF-κB ligand(RANKL)/receptoractivatorof NF-κB(RANK)signaling pathways.Both the intensity and frequency ofmechanical stress have varing im pacton bone tissue and cells.Plenty of studies in vivo also have shown that exercise regulates bonemetabolism by key factors in bonemetabolism signaling pathways.This paper reviewed the effects of exercise on bone metabolism pathwaysand theirmechanisms.

      exercise;mechanical stress;bonemetabolism pathw ay;review

      10.3969/j.issn.1006-9771.2016.12.013

      R336

      A

      1006-9771(2016)12-1425-05

      2016-07-21

      2016-09-12)

      1.國(guó)家自然科學(xué)基金項(xiàng)目(No.81572242);2.上海市人類運(yùn)動(dòng)能力開發(fā)與保障重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(上海體育學(xué)院)(No.11DZ2261100)。

      1.上海體育學(xué)院運(yùn)動(dòng)科學(xué)學(xué)院,上海市200438;2.上海體育學(xué)院發(fā)展規(guī)劃處,上海市200438。作者簡(jiǎn)介:仝曉陽(yáng)(1990-),女,漢族,山東莒縣人,碩士研究生,主要研究方向:運(yùn)動(dòng)防治骨質(zhì)疏松。通訊作者:鄒軍(1969-),男,博士,教授。E-mail:zoujun777@126.com。

      猜你喜歡
      骨細(xì)胞成骨細(xì)胞分化
      機(jī)械應(yīng)力下骨細(xì)胞行為變化的研究進(jìn)展
      兩次中美貨幣政策分化的比較及啟示
      調(diào)節(jié)破骨細(xì)胞功能的相關(guān)信號(hào)分子的研究進(jìn)展
      分化型甲狀腺癌切除術(shù)后多發(fā)骨轉(zhuǎn)移一例
      骨細(xì)胞在正畸牙移動(dòng)骨重塑中作用的研究進(jìn)展
      淫羊藿次苷Ⅱ通過p38MAPK調(diào)控成骨細(xì)胞護(hù)骨素表達(dá)的體外研究
      土家傳統(tǒng)藥刺老苞總皂苷對(duì)2O2誘導(dǎo)的MC3T3-E1成骨細(xì)胞損傷改善
      Bim在激素誘導(dǎo)成骨細(xì)胞凋亡中的表達(dá)及意義
      Cofilin與分化的研究進(jìn)展
      機(jī)械力對(duì)骨細(xì)胞誘導(dǎo)破骨細(xì)胞分化作用的影響
      建德市| 东港市| 寻乌县| 上高县| 景洪市| 竹溪县| 河西区| 兴义市| 从江县| 洛阳市| 玛多县| 武定县| 田林县| 咸丰县| 临汾市| 娄底市| 额尔古纳市| 襄樊市| 滁州市| 黄龙县| 周宁县| 卢湾区| 且末县| 甘谷县| 界首市| 景东| 崇文区| 山东省| 台南市| 凉山| 文山县| 巴林左旗| 阳原县| 尉氏县| 黎川县| 叶城县| 轮台县| 招远市| 凤山市| 温宿县| 许昌市|