• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米團(tuán)簇Au19Pd和Au19Pt催化解離N2O

    2015-12-29 11:18:22俞煒鈴左會文陸春海章永凡陳文凱
    物理化學(xué)學(xué)報 2015年3期
    關(guān)鍵詞:能壘氧原子機(jī)理

    俞煒鈴 左會文 陸春海 李 奕 章永凡 陳文凱,*

    (1福州大學(xué)化學(xué)系,福州350116;2成都理工大學(xué)核技術(shù)與自動化工程學(xué)院,成都610059)

    納米團(tuán)簇Au19Pd和Au19Pt催化解離N2O

    俞煒鈴1左會文1陸春海2,*李 奕1章永凡1陳文凱1,*

    (1福州大學(xué)化學(xué)系,福州350116;2成都理工大學(xué)核技術(shù)與自動化工程學(xué)院,成都610059)

    采用密度泛函理論研究Au-Pd和Au-Pt納米團(tuán)簇催化解離N2O.首先根據(jù)計算得到Au19Pd和Au19Pt團(tuán)簇的最優(yōu)構(gòu)型(雜原子均位于團(tuán)簇的表面).以Au19Pd催化解離N2O為例研究催化解離的反應(yīng)機(jī)理.對此主要考慮兩個反應(yīng)機(jī)理,分別是Eley-Rideal(ER)和Langmuir-Hinshelwood(LH).第一個機(jī)理中N2O解離的能壘是1.118 eV,并且放熱0.371 eV.N2分子脫附后,表面剩余的氧原子沿著ER路徑消除需要克服的能壘是1.920 eV,這比反應(yīng)沿著LH路徑的能壘高0.251 eV.此外根據(jù)LH機(jī)理,氧原子在表面的吸附能是-3.203 eV,而氧原子在表面轉(zhuǎn)移所需的能壘是0.113 eV,這表明氧原子十分容易在團(tuán)簇表面轉(zhuǎn)移,從而促進(jìn)氧氣分子的生成.因此,LH為最優(yōu)反應(yīng)路徑.為了比較Au19Pd和Au19Pt對N2O解離的活性,根據(jù)最優(yōu)的反應(yīng)路徑來研究Au19Pt催化解離N2O,得到作為鉑族元素的鉑和鈀對N2O的解離有催化活性,尤其是鈀.同時,將團(tuán)簇與文獻(xiàn)中的Au-Pd合金相比較,得到這兩種團(tuán)簇對N2O解離有較高的活性,尤其是Au19Pd團(tuán)簇.再者,O2的脫附不再是影響反應(yīng)的主要原因,這可以進(jìn)一步提高團(tuán)簇解離N2O的活性.

    納米團(tuán)簇;催化活性;N2O解離;反應(yīng)機(jī)理

    1 Introduction

    Recently,metallic nanocluster with unique shape and size exhibits unusual physical and chemical properties.They have many applications in the fields of magnetic,optical,and electronic materials,catalysts,and drug delivery and so on,which have been of great interest and intensely researched.1-24Therefore morphology of nanocluster can control reactivity and selectivity. Furthermore,multimetallic cluster composed of two or more elements possesses activity,selectivity,and stability,in which there exist structural,ligand,or electronic effects.25,26It is found that bimetallic nanoclusters have been particularly attractive because of the improvement of catalytic properties.27-30And also bimetallic catalysts have been investigated to obtain the relationship between the metal structure and catalytic activity.31Note that it is elusive for catalytic origin of gold or gold-based bimetallic catalysts with nanosize because of the lack of understanding on the nanoscale core-surface property correlation.However,it is interesting to find that the gold-based bimetallic materials of nanoscale exhibit synergistic effect,which are the protection from poisonous species adsorption and change for electronic band structure to alter the adsorption ability of surface.

    In the magical world of gold clusters,there is a gold cluster containing 20 gold atoms(Au20),which is enough chemical inert and a highly stable cluster with a tetrahedral pyramidal structure via ab initio DFT-based calculation32-34and experimental studies like far-infrared vibrational spectroscopy and photoelectron spectroscopy.33There is a large energy gap between the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)for Au20cluster,which is superior to that of C60to manifest that Au20cluster should be a chemical inert and stable cluster.35Meanwhile there are some literature on interaction between a pyridine molecule and surface ofAu20cluster36and catalytic activity ofAu20cluster with an anion to CO oxidation,37which indicate that the Au20cluster is also a good catalyst.Furthermore,multimetallic nanoclusters intimately alloyed are of high interest due to their optical and catalytic properties.38-40In particular,these bimetallic gold clusters have more widely catalytic applications.And also some literature has reported the electronic properties and geometries of gold clusters with the doped transition metal or alkali atoms.41-52

    TheAu-Pd bimetallic alloys have been widely used as catalysts because of their superior catalytic activities in many reactions,24,53-70like selective oxidation for alcohols,62-67synthesis for vinyl acetate,60,61direct synthesis for H2O2on the surface of the Au-Pd bimetallic alloy,53-59selective oxidation for alkene,68generating benzene via coupling acetylene,24and oxidation for primary carbon-hydrogen bond.69And also palladium serves as a catalyst for CO oxidation and Suzuki reaction in the form of monometal and bimetal.71-73Moreover,the platinum has many applications including CO/NOxoxidation,syngas reformation,and petroleum refinement as an excellent catalysts.The catalytic activities of Au-Pt nanoparticles are superior to those nanoclusters containing gold or platinum alone,which is indicated by recent theoretical studies.74Therefore Pt-doped gold clusters have attracted the special attention because of many potential applications in catalysis.75

    Furthermore,the catalytic decomposition of nitrous oxide has been attracting much attention to propulsion systems for satellites76and environmental protection.77Meanwhile,Rh-,78-88Ir-,76,89-91and Pd-supported catalysts78-88viewed as platinum group metal catalysts possess effective catalytic activities for this reaction. However,the platinum group metals have the strong adsorption toward oxygen.It is cumbersome for desorption of the oxygen molecule on the metal surface,which is usually viewed as a ratedetermining step in the process of N2O decomposition,92-95while desorption of O2on the gold can be more easily.96And also the recent study presents that the presence of gold could have no obvious influence on the catalytic activity of platinum in any significant way.97

    Therefore the single gold atom on the cluster can be substituted with the palladium or platinum atom in the Au20cluster.To investigate the catalytic activities of the doped gold clusters for N2O decomposition,we have studied the reaction mechanism of N2O dissociation on the cluster.Note that the mechanisms of the nitrous oxide dissociation on the surface of metal cluster have been simply indicated as follows:98,99

    Here,the step 1 means that nitrous oxide on the active site of the cluster decomposes to generate N2molecule leaving from the cluster and oxygen atom on the cluster.Step 2 presents the two adjacent oxygen atoms on the surface close to each other and then are desorbed by oxygen molecule.O(a)means the oxygen atom on the catalyst.Both of the step 1 and step 2 would be described by the LH mechanism.Meanwhile the step 3 shows the oxygen atom adsorbed on the cluster is removed by the ER mechanism.100Dandl and Emig101presented that the ER mechanism could be more inclined at the lower temperature while the LH mechanism might be more inclined at the higher temperature according to the kinetics simulation.

    In the present work,we want to obtain the most optimized geometries via structural and thermodynamic analyses in orderto investigate their catalytic activities for N2O decomposition. There are two reaction pathways for N2O decomposition on the cluster to be considered:ER and LH,respectively.And we select Au19Pd cluster as a model cluster to investigate the reaction mechanism via DFT-based calculation.The catalytic activity of the Au19Pt cluster for N2O decomposition has been studied in comparison with the Au19Pd as a function of the optimized reaction channel,which indicates how the different heteroatom located at the same site on the cluster influences the activity of the cluster in this reaction.Finally,comparison between this work and the study on the periodic systems presents the influence of the geometry on the catalytic activity of the cluster in this reaction.

    2 Computational method

    To investigate catalytic activities of Au19Pd and Au19Pt clusters for N2O molecule decomposition,the program package Dmol3of Materials Studio of Accelrys Inc has been performed to optimize geometries and search transition states.Generalized gradient approximation(GGA)with exchange-correlation functional proposed by Perdew,Burke,and Ernzerhof(PBE)was performed. The DFT semicore pseudopotential was employed for core electrons of gold,palladium,and platinum atoms,but the N and O atoms were treated with all-electron basis set.Meanwhile the double-numerical basis with polarization functions(DNP)has also been employed in the calculation.The Fermi smearing method for a window size was set as 0.005 hartree,and it was 0.45 nm for orbital cutoff range.The energy,maximum displacement,and maximum force for convergence tolerance were 10-5hartree, 0.0005 nm,and 0.02 hartree·nm-1,respectively.Every atom of the cluster was relaxed in the calculation.The transition states were determined by the complete linear synchronous transit and quadratic synchronous transit methods.Every transition state structure has a single imaginary frequency,which corresponds to the reaction pathway.

    In order to investigate and compare the stability between Au19Pd and Au19Pt clusters,we have calculated the bind energy (BE)and the interaction energy(IE)of the heteroatom with the Au19cluster.

    The bind energy forAu19Pd orAu19Pt cluster was calculated via

    Meanwhile the interaction energy of the heteroatom with the Au19cluster was obtained by performing

    Here,E(Au19Pd/Au19Pt),E(Au),E(Pd/Pt),and E(Au19)mean the energies for Au19Pd or Au19Pt,gold atom,palladium or platinum atom,andAu19clusters,respectively.

    And then we calculated adsorption energy using following equation

    where Eadsis the adsorption energy for the system,Esystemmeans the total energy of the substrate and absorbate,the Eclusterand Eabsorbatepresent the energies of cluster and absorbate,respectively.

    3 Result and discussions

    3.1 Investigation for structural properties of the Au19Pd and Au19Pt clusters

    Fig.1 Optimized geometries ofAu19Pd andAu19Pt clusters with heteroatom located at(a)vertex(V),(b)edge(E),and(c)surface(S)

    The heteroatom can be on the vertex(V),edge(E),or surface (S)of the cluster,as shown in Fig.1.It is noted that the radii of palladium and platinum atoms are 0.137 and 0.139 nm,respectively,which are close to the radius of gold atom,0.144 nm.Fig.1 presents that there is no obvious deformation for the geometries of Au19Pd and Au19Pt clusters in comparison with the Au20cluster with a tetrahedral structure after optimization.Furthermore,we have calculated the bond distances between the heteroatom andthe nearest adjacent gold atom.And also we have obtained the corresponding bond distances on the Au20cluster.These bond distances are compiled in Table 1.The letter X means the gold atom on the Au20cluster and heteroatom on the clusters shown in Fig.1,respectively.And also the letter in the bracket in the first column indicates the position of atom on the cluster,in which the E1 and E2 present the gold atom on the edge without and with the heteroatom,respectively.It is found that there is no obvious elongated or shorter for these bond distances,which indicate that the both of the palladium and platinum can not make configurations obvious deformations.

    Table1 Bond distances between the X atom and its nearest adjacent gold atoms

    Moreover we have studied the thermodynamic stability of these clusters shown in Fig.1 as functions of the bind energy and interaction energy via the DFT-based calculation.These results are compiled in the Table 2.It is noted that the more negative value indicates that the system may be more optimized.Therefore both of the palladium and platinum can make cluster stable via thermodynamic analysis.Furthermore,the heteroatom locates at the surface of the cluster to obtain the more optimized geometry, especially the platinum atom,which is also demonstrated by the recent study.102It is found that the heteroatom is on the surface of the cluster and surrounded by gold atoms,which is similar to the surface of the Au3Pd(111)alloy in the previous study.103The catalytic activity of theAu-Pd alloy for N2O decomposition has been investigated via DFT-based calculation,in which the palladium atom is also isolated by the gold atoms.103We have investigated catalytic activities of these two clusters with the heteroatom on the surface for N2O decomposition.

    Table2 Binding energy for every atom and the interaction energy for the gold and heteroatoms with the correspondingAu19clusters

    3.2 Investigation for N2O decomposition on the Au19Pd and Au19Pt clusters

    It is found that the platinum group metal(PGM)catalysts are effective for N2O decomposition.82,104-108Therefore both of the palladium and platinum atoms on the clusters are considered as active sites in this study.The adsorption of N2O on the cluster is an elementary step.In the previous study,N2O is weakly and tiltedly on the active site via terminal N atom.100,103,109We have obtained the optimized adsorption geometries for N2O on the clusters via DFT-based calculation,as shown in Fig.2,which are the most stable.

    The bond distances of N—N and N—O in the N2O molecule are 0.1142 and 0.1195 nm before adsorption.They are slightly elongated after N2O adsorption on the clusters,as shown in Fig.2, indicating that N2O can be activated.And the adsorption energies for N2O on the Au19Pd and Au19Pt cluster are-0.176 and-0.087 eV,respectively,suggesting that they may be physical adsorption. Furthermore,it is found that the d orbital of heteroatom and p orbital of N2O molecule can play major roles for the adsorption of the N2O on the active site in this study.Therefore the partial density of states(PDOSs)for the N2O molecule,Pd and Pt before and after adsorption are obtained,as shown in Fig.3,to better understand the interaction between the N2O molecule and heteroatom on the surface of the cluster.The p orbital of N2O molecule shifts to the lower energy region and there is a wide range near the HOMO,which overlaps with the d orbital of the heteroatom,after adsorption,suggesting the charge transfer between heteroatom and the absorbate so that it can slightly activate N2O molecule in the reaction.Moreover the different heteroatom has no obvious influence on the adsorption of the N2O on the cluster in this study.

    Fig.4 presents the first N2O decomposition on theAu19Pd cluster on the basis of the reaction mechanism.It is found that the adsorption energy is-0.176 eV for N2O on the Au19Pd cluster,but adsorption energies of N2O on the Pd(111)and Au3Pd(111) are-0.120 and-0.080 eV,respectively.The energy barrier and the value of reaction energy for the first N2O decomposition on the Au19Pd cluster are 1.118 and-0.371 eV,respectively,which are larger than those on the Pd(111),but less than those on theAu3Pd (111).And also the imaginary frequency of the transition state in the energy profile is-505.62i cm-1.It is noted that the palladium atom is isolated by gold atoms on surface of the Au19Pd cluster, which is similar to the surface of Au3Pd(111).Therefore we haveobtained that Pd is the active site in this reaction,but the gold can weaken the catalytic activity of substrate for the first N2O decomposition in this study.However,the structure of the substrate is changed so that it can improve the catalytic activity.Finally,we have obtained that the Au19Pd cluster has better catalytic activity for the first N2O decomposition.

    Fig.3 Partial density of states(PDOSs)for N2O,Pd,and Pt before and after adsorption,in which the adsorption systems are as a function of the corresponding configurations in Fig.2

    Fig.4 Energy profile for the first N2O decomposition on theAu19Pd cluster

    Fig.5 Energy profile for the first N2O decomposition on theAu19Pt cluster

    Furthermore,the palladium has been substituted with the platinum atom on the surface of the cluster.Then we can compare catalytic activity between the Au19Pd and Au19Pt clusters for N2O decomposition.Therefore Fig.5 has been obtained.The adsorption energy of N2O on the platinum atom on the surface of cluster is-0.087 eV,which is more weakly than that on the Au19Pd cluster with the adsorption energy of-0.176 eV.However,the energy barrier of N2O decomposition on the platinum atom on the cluster is 0.989 eV,which is slightly lower than that on theAu19Pd cluster with the energy barrier of 1.118 eV.The reactions on theAu19Pt andAu19Pd clusters are exothermic by 0.303 and 0.371 eV, respectively.And also the N2desorption energies on these two substrates are 0.258 and 0.110 eV,respectively.Therefore platinum atom possesses effective catalytic activity for the first N2O decomposition as well as palladium atom on the surface of the cluster.However,N2O adsorption and N2desorption on Au19Pt cluster are more difficult than those on the Au19Pd cluster,which can weaken the catalytic activity of cluster.Thus the Au19Pd has a little bit better catalytic activity than Au19Pt cluster for the first N2O decomposition.Meanwhile,an atom on the cluster can be changed to enhance the catalytic activity.

    There are two reaction pathways to clear residual oxygen atom on the cluster after the first N2O decomposition and N2desorption, which are the ER and LH reaction channels,respectively.The Au19Pd cluster is similar to the Au19Pt cluster for the influence on the reaction pathway.Therefore we can select the Au19Pd as a model to investigate the reaction mechanism after the first N2O decomposition and N2desorption.Fig.6 indicates that the second N2O on the palladium reacts with the residual oxygen atom to generate N2and O2molecules along the ER pathway,in which the energy barrier is 1.920 eV and the reaction energy is 0.454 eV. However,the second N2O can continue decomposing to leave oxygen atom on the cluster.Therefore oxygen atoms on the cluster are removed by the LH pathway,as shown in Figs.7 and 8.The adsorption energies of single oxygen atom and two adjacent oxygen atoms on the cluster are-3.203 and-6.173 eV,respectively, indicating that oxygen is very easily on the heteroatom and these two oxygen atoms are prone to be close to each other.There is a low energy barrier of 0.113 eV and it is endothermic by 0.099 eV in the oxygen atom transferring on the cluster after N2desorption, suggesting that the surface of the cluster benefits the diffusion of the oxygen atom.It is found that the formation of oxygen molecule has an energy barrier of 1.669 eV and is exothermic by 0.324 eV,which are less difficult than the elimination of the residual oxygen atoms along the ER pathway.Therefore the residual oxygen atoms on the cluster can be more prone to be desorbed by the LH pathway.

    Fig.6 Energy profile for the elimination of residual oxygen atom on theAu19Pd cluster along the ER reaction pathway

    Fig.7 Energy profile for the diffusion of the oxygen atom on the Au19Pd cluster after N2desorption

    Fig.8 Energy profile for the formation of oxygen molecule on the Au19Pd cluster along the LH reaction pathway

    It is noted that oxygen atom diffusion on the Pd(111)has anenergy barrier of 0.540 eV and is endothermic by 0.230 eV,as illustrated in the Table 3.Then the elimination of the residual oxygen atoms on the Pd(111)has an energy barrier of 1.960 eV and is endothermic by 0.860 eV along the LH pathway,which illustrates that the formation of the oxygen molecule on the palladium should be more difficult.Furthermore,Table 3 presents the oxygen atom is more easily transferring on the surface ofAu3Pd (111)and elimination of two adjacent oxygen atoms on the surface has a low energy barrier of 0.500 eV.However,the adsorption energy of two adjacent oxygen atoms is 1.110 eV,indicating that the gold benefits the formation of the oxygen molecule,but hinders the adsorption of the oxygen.Moreover it is interesting to find that O2desorption,which used to be thought to be a ratelimiting step,becomes more easily in this study,indicating that the existence of the gold can promote desorption of O2molecule to improve the catalytic activity of cluster for N2O decomposition. Therefore Au19Pd cluster also possesses high catalytic activity in this reaction process,which can promote the adsorption of the oxygen,the formation,and desorption of the oxygen molecule. We have found the importance of the structure of the catalyst in the reaction further.

    Table3 Comparison of the adsorption energy(Ea),energy barrier(Eb),and reaction energy(ΔEr)of N2O decomposition on theAu19Pd andAu19Pt cluster with literature values

    Fig.9 Energy profile for the diffusion of the oxygen atom on the Au19Pt cluster after N2molecule desorption

    Fig.10 Energy profile for the formation of oxygen molecule on the Au19Pt cluster along the LH reaction pathway

    We have compared catalytic activity between the Au19Pt and Au19Pd clusters for the elimination of oxygen atoms along the LH pathway.Here,Fig.9 presents the transfer of oxygen atom on the Au19Pt cluster surface after N2desorption.The adsorption energy of oxygen atom on the surface is-3.024 eV,signifying that the Au19Pt cluster is very favourable for oxygen atom adsorption. Then energy barrier and reaction energy are 0.201 and-0.114 eV for the oxygen atom transferring on the surface,respectively, suggesting that this reaction process is prone to proceed.Then the formation of oxygen molecule on the Au19Pt cluster is shown in Fig.10.The energy barrier for formation of oxygen molecule on theAu19Pt cluster is 1.385 eV,which is 0.284 eV lower than 1.669 eV on the Au19Pd cluster.And also the reaction energy is-0.542 eV,which is 0.218 eV lower than-0.324 eV on theAu19Pd cluster. Therefore Au19Pt cluster has higher activity than Au19Pd cluster in this reaction process.However,O2desorption energy on theAu19Pt cluster is 0.603 eV,which is 0.335 eV higher than 0.268 eV on the Au19Pd cluster so that it can weaken the activity of the Au19Pt cluster.Finally,it has obtained that they have similar activity inthis reaction process.

    4 Conclusions

    In summary,the heteroatom is located at the surface of the cluster to obtain more optimized configuration on the basis of the structural and thermodynamic analyses via DFT-based calculation. And also it is found that the LH is a superior reaction pathway for N2O decomposition on the Au19Pd and Au19Pt clusters.The palladium has effective activity for N2O decomposition,but hinders the formation and desorption of the oxygen molecule in comparison with the investigation of the N2O dissociation on the Pd (111)via DFT-based calculation,which weakens the catalytic activity.Gold on the Au3Pd(111)promotes the formation of oxygen molecule on the surface,but makes the adsorption of the oxygen atoms become more difficult,which obviously lowers the activity of the catalyst.In this study,bimetallic clusters with the heteroatoms on the surfaces have high catalytic activities in a complete process of N2O decomposition and improve the O2desorption,which used to be thought to be a rate-limiting step,especially for Au19Pd cluster.Therefore the change of the geometry and the single atom on the cluster can present different activities. Finally,it is hoped that these could provide clue for further explanation on the influence of the geometry for catalytic activity.

    (1)Burda,C.;Chen,X.;Narayanan,R.;El-Sayed,M.A.Chem. Rev.2005,105,1025.doi:10.1021/cr030063a

    (2)Ghosh,S.K.;Pal,T.Chem.Rev.2007,107,4797.doi:10.1021/ cr0680282

    (3)Jin,R.;Cao,Y.;Mirkin,C.A.;Kelly,K.;Schatz,G.C.;Zheng, J.Science2001,294,1901.doi:10.1126/science.1066541

    (4)Sun,Y.;Xia,Y.Science2002,298,2176.doi:10.1126/ science.1077229

    (5)Narayanan,R.;El-Sayed,M.A.J.Am.Chem.Soc.2004,126, 7194.doi:10.1021/ja0486061

    (6)Tian,N.;Zhou,Z.Y.;Sun,S.G.;Ding,Y.;Wang,Z.L.Science2007,316,732.doi:10.1126/science.1140484

    (7)Warren,S.C.;Messina,L.C.;Slaughter,L.S.;Kamperman, M.;Zhou,Q.;Gruner,S.M.;DiSalvo,F.J.;Wiesner,U.Science2008,320,1748.doi:10.1126/science.1159950

    (8)Sulman,E.;Matveeva,V.;Doluda,V.;Nicoshvili,L.;Bronstein, L.;Valetsky,P.;Tsvetkova,I.Top Catal.2006,39,187.doi: 10.1007/s11244-006-0056-z

    (9)Ozin,G.A.Adv.Mater.1992,4,612.

    (10)Cahn,R.W.Nature1992,359,591.doi:10.1038/359591a0

    (11)Hayashi,C.Phys.Today1987,12,44.

    (12)Gleiter,H.Prog.Mater.Sci.1989,33,223.doi:10.1016/0079-6425(89)90001-7

    (13)Fendler,J.H.Chem.Rev.1987,87,877.doi:10.1021/ cr00081a002

    (14)Henglein,A.Chem.Rev.1989,89,1861.

    (15)Schimid,G.Clusters and Colloids:from Theory to Application; Wiley-VCH:New York,1994.

    (16)Toshima,N.;Yonezawa,T.New J.Chem.1998,22,1179.doi: 10.1039/a805753b

    (17)Beecroft,L.L.;Ober,C.K.Chem.Mater.1997,9,1302.doi: 10.1021/cm960441a

    (18)Siegel,R.MRS Bulletin1989,14,66.

    (19)Schmid,G.Chem.Rev.1992,92,1709.doi:10.1021/ cr00016a002

    (20)Kamat,P.V.Chem.Rev.1993,93,267.doi:10.1021/ cr00017a013

    (21)Lewis,L.N.Chem.Rev.1993,93,2693.doi:10.1021/ cr00024a006

    (22)Gates,B.Chem.Rev.1995,95,511.doi:10.1021/cr00035a003

    (23)Brus,L.J.Phys.Chem.1986,90,2555.doi:10.1021/ j100403a003

    (24)Lee,A.F.;Baddeley,C.J.;Hardacre,C.;Ormerod,R.M.; Lambert,R.M.;Schmid,G.;West,H.J.Phys.Chem.1995,99, 6096.doi:10.1021/j100016a053

    (25)Ponec,V.;Sachtler,W.J.Catal.1972,24,250.doi:10.1016/ 0021-9517(72)90069-3

    (26)Sinfelt,J.H.;Carter,J.;Yates,D.J.Catal.1972,24,283.doi: 10.1016/0021-9517(72)90072-3

    (27)Toshima,N.;Yonezawa,T.;Kushihashi,K.J.Chem.Soc.1993,89,2537.

    (28)Toshima,N.;Harada,M.;Yamazaki,Y.;Asakura,K.J.Phys. Chem.1992,96,9927.doi:10.1021/j100203a064

    (29)Harada,M.;Asakura,K.;Toshima,N.J.Phys.Chem.1993,97, 5103.doi:10.1021/j100121a042

    (30)Wang,Y.;Toshima,N.J.Phys.Chem.B1997,101,5301.doi: 10.1021/jp9704224

    (31)Sinfelt,J.H.Accounts Chem.Res.1987,20,134.doi:10.1021/ ar00136a002

    (32)Li,J.;Li,X.;Zhai,H.J.;Wang,L.S.Science2003,299, 864.doi:10.1126/science.1079879

    (33)Gruene,P.;Rayner,D.M.;Redlich,B.;van der Meer,A.F.; Lyon,J.T.;Meijer,G.;Fielicke,A.Science2008,321,674.doi: 10.1126/science.1161166

    (34)Wang,J.;Wang,G.;Zhao,J.Chem.Phys.Lett.2003,380, 716.doi:10.1016/j.cplett.2003.09.062

    (35)Kryachko,E.;Remacle,F.Int.J.Quantum Chem.2007,107, 2922.

    (36)Aikens,C.M.;Schatz,G.C.J.Phys.Chem.A2006,110, 13317.doi:10.1021/jp065206m

    (37)Molina,L.;Hammer,B.J.Catal.2005,233,399.doi:10.1016/j. jcat.2005.04.037

    (38)Jonah,C.D.;Rao,B.M.Radiation Chemistry:Present Status and Future Trends;Elsevier:Amsterdam,2001.

    (39)Sinfelt,J.H.Bimetallic Catalysts:Discoveries,Concepts,and Applications;Wiley:New York,1983.

    (40)Belloni,J.;Mostafavi,M.;Remita,H.;Marignier,J.L.; Delcourt,M.O.New J.Chem.1998,22,1239.doi:10.1039/a801445k

    (41)Pyykk?,P.;Runeberg,N.Angew.Chem.2002,114,2278.doi: 10.1002/1521-3757(20020617)114:12<2278::AID-ANGE2278>3.0.CO;2-F

    (42)H?kkinen,H.;Abbet,S.;Sanchez,A.;Heiz,U.;Landman,U. Angew.Chem.Int.Edit.2003,42,1297.doi:10.1002/ anie.200390334

    (43)Janssens,E.;Tanaka,H.;Neukermans,S.;Silverans,R.E.; Lievens,P.Phys.Rev.B2004,69,085402.doi:10.1103/ PhysRevB.69.085402

    (44)Torres,M.;Fernández,E.;Balbás,L.Phys.Rev.B2005,71, 155412.doi:10.1103/PhysRevB.71.155412

    (45)Yuan,D.;Wang,Y.;Zeng,Z.J.Chem.Phys.2005,122, 114310.doi:10.1063/1.1862239

    (46)Majumder,C.;Kandalam,A.K.;Jena,P.Phys.Rev.B2006,74, 205437.doi:10.1103/PhysRevB.74.205437

    (47)Walter,M.;H?kkinen,H.Phys.Chem.Chem.Phys.2006,8, 5407.doi:10.1039/b612221c

    (48)Gao,Y.;Bulusu,S.;Zeng,X.C.ChemPhysChem2006,7,2275.

    (49)Wang,L.M.;Bulusu,S.;Zhai,H.J.;Zeng,X.C.;Wang,L.S. Angew.Chem.Int.Edit.2007,46,2915.

    (50)Wang,L.M.;Bulusu,S.;Huang,W.;Pal,R.;Wang,L.S.;Zeng, X.C.J.Am.Chem.Soc.2007,129,15136.doi:10.1021/ ja077465a

    (51)Fa,W.;Dong,J.J.Chem.Phys.2008,128,144307.doi: 10.1063/1.2897917

    (52)Zorriasatein,S.;Joshi,K.;Kanhere,D.G.J.Chem.Phys.2008,128,184314.doi:10.1063/1.2913153

    (53)Edwards,J.K.;Solsona,B.;Ntainjua,E.;Carley,A.F.;Herzing, A.A.;Kiely,C.J.;Hutchings,G.J.Science2009,323, 1037.doi:10.1126/science.1168980

    (54)Bernardotto,G.;Menegazzo,F.;Pinna,F.;Signoretto,M.; Cruciani,G.;Strukul,G.Appl.Catal.A2009,358,129.doi: 10.1016/j.apcata.2009.02.010

    (55)Menegazzo,F.;Burti,P.;Signoretto,M.;Manzoli,M.;Vankova, S.;Boccuzzi,F.;Pinna,F.;Strukul,G.J.Catal.2008,257, 369.doi:10.1016/j.jcat.2008.05.019

    (56)Ishihara,T.;Hata,Y.;Nomura,Y.;Kaneko,K.;Matsumoto,H. Chem.Lett.2007,36,878.doi:10.1246/cl.2007.878

    (57)Solsona,B.E.;Edwards,J.K.;Landon,P.;Carley,A.F.; Herzing,A.;Kiely,C.J.;Hutchings,G.J.Chem.Mater.2006,18,2689.doi:10.1021/cm052633o

    (58)Edwards,J.K.;Solsona,B.E.;Landon,P.;Carley,A.F.; Herzing,A.;Kiely,C.J.;Hutchings,G.J.J.Catal.2005,236, 69.doi:10.1016/j.jcat.2005.09.015

    (59)Landon,P.;Collier,P.J.;Papworth,A.J.;Kiely,C.J.; Hutchings,G.J.Chem.Commun.2002,2058.

    (60)Pohl,M.M.;Radnik,J.;Schneider,M.;Bentrup,U.;Linke,D.; Brückner,A.;Ferguson,E.J.Catal.2009,262,314.doi: 10.1016/j.jcat.2009.01.008

    (61)Chen,M.;Kumar,D.;Yi,C.W.;Goodman,D.W.Science2005,310,291.doi:10.1126/science.1115800

    (62)Marx,S.;Baiker,A.J.Phys.Chem.C2009,113,6191.doi: 10.1021/jp808362m

    (63)Dimitratos,N.;Lopez-Sanchez,J.A.;Anthonykutty,J.M.; Brett,G.;Carley,A.F.;Tiruvalam,R.C.;Herzing,A.A.;Kiely, C.J.;Knight,D.W.;Hutchings,G.J.Phys.Chem.Chem.Phys.2009,11,4952.doi:10.1039/b904317a

    (64)Wang,D.;Villa,A.;Porta,F.;Prati,L.;Su,D.J.Phys.Chem.C2008,112,8617.

    (65)Wang,D.;Villa,A.;Porta,F.;Su,D.;Prati,L.Chem.Commun.2006,1956.

    (66)Enache,D.I.;Edwards,J.K.;Landon,P.;Solsona-Espriu,B.; Carley,A.F.;Herzing,A.A.;Watanabe,M.;Kiely,C.J.; Knight,D.W.;Hutchings,G.J.Science2006,311,362.doi: 10.1126/science.1120560

    (67)Dimitratos,N.;Villa,A.;Wang,D.;Porta,F.;Su,D.;Prati,L.J. Catal.2006,244,113.doi:10.1016/j.jcat.2006.08.019

    (68)Wang,X.;Venkataramanan,N.S.;Kawanami,H.;Ikushima,Y. Green Chem.2007,9,1352.doi:10.1039/b703458j

    (69)Kesavan,L.;Tiruvalam,R.;Ab Rahim,M.H.;Bin Saiman,M. I.;Enache,D.I.;Jenkins,R.L.;Dimitratos,N.;Lopez-Sanchez, J.A.;Taylor,S.H.;Knight,D.W.Science2011,331,195.

    (70)Liu,P.;N?rskov,J.K.Phys.Chem.Chem.Phys.2001,3, 3814.doi:10.1039/b103525h

    (71)Mueller,U.;Schubert,M.;Yaghi,O.;Ertl,G.;Kn?zinger,H.; Schüth,F.;Weitkamp,J.Wiley VCH2008,1,247.

    (72)Kaya,S.;üner,D.Turk J.Chem.2008,32,645.

    (73)Miyaura,N.;Suzuki,A.Chem.Rev.1995,95,2457.doi: 10.1021/cr00039a007

    (74)Bond,G.C.Platinum Metals Review2007,51,63.doi:10.1595/ 147106707X187353

    (75)Bernhardt,T.;Heiz,U.;Landman,U.Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters; Springer:Berlin Heidelberg,2007.

    (76)Zhu,S.;Wang,X.;Wang,A.;Cong,Y.;Zhang,T.Chem. Commun.2007,1695.

    (77)Ravishankara,A.;Daniel,J.S.;Portmann,R.W.Science2009,326,123.doi:10.1126/science.1176985

    (78)Beyer,H.;Emmerich,J.;Chatziapostolou,K.;K?hler,K.Appl. Catal.A2011,391,411.doi:10.1016/j.apcata.2010.03.060

    (79)Haber,J.;Nattich,M.;Machej,T.Appl.Catal.B2008,77, 278.doi:10.1016/j.apcatb.2007.07.028

    (80)Suárez,S.;Yates,M.;Petre,A.;Martín,J.;Avila,P.;Blanco,J. Appl.Catal.B2006,64,302.doi:10.1016/j.apcatb.2005.12.006

    (81)Xu,X.;Xu,H.;Kapteijn,F.;Moulijn,J.Appl.Catal.B2004,53,265.doi:10.1016/j.apcatb.2004.04.023

    (82)Li,Y.;Armor,J.N.Appl.Catal.B1992,1,L21.

    (83)Doi,K.;Wu,Y.Y.;Takeda,R.;Matsunami,A.;Arai,N.; Tagawa,T.;Goto,S.Appl.Catal.B2001,35,43.doi:10.1016/ S0926-3373(01)00231-4

    (84)Centi,G.;Perathoner,S.;Vazzana,F.;Marella,M.;Tomaselli,M.;Mantegazza,M.Adv.Environ Res.2000,4,325.doi: 10.1016/S1093-0191(00)00032-0

    (85)Paul,D.K.;Marten,C.D.;Yates,J.T.Langmuir1999,15, 4508.doi:10.1021/la980672r

    (86)Yuzaki,K.;Yarimizu,T.;Ito,S.I.;Kunimori,K.Catal.Lett.1997,47,173.doi:10.1023/A:1019017407609

    (87)Oi,J.;Obuchi,A.;Bamwenda,G.R.;Ogata,A.;Yagita,H.; Kushiyama,S.;Mizuno,K.Appl.Catal.B1997,12,277.doi: 10.1016/S0926-3373(96)00079-3

    (88)Dann,T.W.;Schulz,K.H.;Mann,M.;Collings,M.Appl.Catal. B1995,6,1.doi:10.1016/0926-3373(95)00006-2

    (89)Zhu,S.;Wang,X.;Wang,A.;Zhang,T.Catal.Today2008,131, 339.doi:10.1016/j.cattod.2007.10.093

    (90)Ohnishi,C.;Iwamoto,S.;Inoue,M.Chem.Eng.Sci.2008,63, 5076.doi:10.1016/j.ces.2007.08.011

    (91)Boissel,V.;Tahir,S.;Koh,C.A.Appl.Catal.B2006,64, 234.doi:10.1016/j.apcatb.2005.12.001

    (92)Nobukawa,T.;Yoshida,M.;Kameoka,S.;Ito,S.I.;Tomishige, K.;Kunimori,K.Catal.Today2004,93,791.

    (93)Tanaka,S.I.;Yuzaki,K.;Ito,S.I.;Kameoka,S.;Kunimori,K. J.Catal.2001,200,203.doi:10.1006/jcat.2001.3197

    (94)Uetsuka,H.;Aoyagi,K.;Tanaka,S.;Yuzaki,K.;Ito,S.; Kameoka,S.;Kunimori,K.Catal.Lett.2000,66,87.doi: 10.1023/A:1019066732528

    (95)Tanaka,S.I.;Yuzaki,K.;Ito,S.I.;Uetsuka,H.;Kameoka,S.; Kunimori,K.Catal.Today2000,63,413.doi:10.1016/S0920-5861(00)00486-7

    (96)German,E.;Efremenko,I.J.Mol.Struct.-Theochem2004,711, 159.doi:10.1016/j.theochem.2004.10.001

    (97)Mihut,C.;Descorme,C.;Duprez,D.;Amiridis,M.D.J.Catal.2002,212,125.doi:10.1006/jcat.2002.3770

    (98)Kapteijn,F.;Rodriguez-Mirasol,J.;Moulijn,J.A.Appl.Catal. B1996,9,25.doi:10.1016/0926-3373(96)90072-7

    (99)Yamashita,T.;Vannice,A.J.Catal.1996,161,254.doi: 10.1006/jcat.1996.0183

    (100)Leglise,J.;Petunchi,J.O.;Hall,W.K.J.Catal.1984,86, 392.doi:10.1016/0021-9517(84)90384-1

    (101)Dandl,H.;Emig,G.Appl.Catal.A1998,168,261.doi: 10.1016/S0926-860X(97)00357-8

    (102)Mondal,K.;Banerjee,A.;Ghanty,T.K.J.Phys.Chem.C2014,118,11935.

    (103)Wei,X.;Yang,X.F.;Wang,A.Q.;Li,L.;Liu,X.Y.;Zhang,T.; Mou,C.Y.;Li,J.J.Phys.Chem.C2012,116,6222.doi: 10.1021/jp210555s

    (104)Tateishi,Y.;Tsuneyuki,T.;Furukawa,H.;Kagawa,S.; Moriguchi,I.;Kanmura,Y.;Teraoka,Y.Catal.Today2008,139,59.doi:10.1016/j.cattod.2008.08.008

    (105)Dacquin,J.P.;Dujardin,C.;Granger,P.Catal.Today2008,137,390.doi:10.1016/j.cattod.2008.01.016

    (106)Yoshida,H.;Tsuruta,T.;Yazawa,Y.;Hattori,T.Appl.Catal.A2007,325,50.doi:10.1016/j.apcata.2007.03.001

    (107)Christoforou,S.;Efthimiadis,E.;Vasalos,I.Catal.Lett.2002,79,137.doi:10.1023/A:1015360425678

    (108)Gunasekaran,N.;Rajadurai,S.;Carberry,J.Catal.Lett.1995,35,373.doi:10.1007/BF00807194

    (109)Burch,R.;Daniells,S.;Breen,J.;Hu,P.J.Catal.2004,224, 252.doi:10.1016/j.jcat.2004.03.027

    Nitrous Oxide Decomposition Catalyzed by Au19Pd and Au19Pt Clusters

    YU Wei-Ling1ZUO Hui-Wen1LU Chun-Hai2,*LI Yi1ZHANG Yong-Fan1CHEN Wen-Kai1,*
    (1Department of Chemistry,Fuzhou University,Fuzhou 350116,P.R.China;2College of Nuclear Technology and Automation Engineering,Chengdu University of Technology,Chengdu 610059,P.R.China)

    The catalytic decomposition of N2O using Au19Pd and Au19Pt clusters as catalysts with optimized geometries was studied using density functional theory(DFT).The optimized geometries of the Au19Pd and Au19Pt clusters were obtained as a function of structural and thermodynamic analyses,in which the heteroatoms are on the surfaces of the clusters.We selected theAu19Pd cluster as a model cluster to investigate the reaction mechanism of N2O decomposition.There are two reaction pathways to be considered:Eley-Rideal(ER)and Langmuir-Hinshelwood(LH).We found that the first N2O decomposition needs to surmount an energy barrier of 1.118 eV,and is exothermic by 0.371 eV.The elimination of the residual oxygen atom on the surface has an energy barrier of 1.920 eV along the ER pathway after N2desorption,which is higher than that along the LH channel(1.669 eV).The adsorption energy of the oxygen atom on the surface is-3.203 eV,and the oxygen atom diffusion on the surface needs to surmount an energy barrier of 0.113 eV along the LH pathway.This indicates that the oxygen atom is prone to transfer on the cluster to promote the generation of the O2molecule, and therefore the LH is the optimized reaction pathway.We investigated the catalytic activity of Au19Pt for N2O decomposition along the LH pathway in comparison with theAu19Pd cluster.Both platinum and palladium havecatalytic activities for N2O decomposition,especially the palladium in this study.Comparison between this work and the theoretical study on periodic systems shows that these two clusters can be used as better catalysts for N2O decomposition,especially theAu19Pd cluster.Furthermore,the O2desorption is no longer the main barrier to the reaction,which further enhances the catalytic activities of these two clusters for N2O decomposition.?Editorial office ofActa Physico-Chimica Sinica

    Nanocluster;Catalytic activity;N2O decomposition;Reaction mechanism

    O641

    10.3866/PKU.WHXB201501191www.whxb.pku.edu.cn

    Received:November 13,2014;Revised:January 19,2015;Published on Web:January 19,2015.

    ?Corresponding authors.LU Chun-Hai,Email:luchhi@126.com;Tel:+86-28-84078773.CHEN Wen-Kai,Email:wkchen@fzu.edu.cn;

    Tel:+86-591-22866162.

    The project was supported by the National Natural Science Foundation of China(21203027)and Fujian Provincial Natural Science Foundation, China(2012J01041).

    國家自然科學(xué)基金(21203027)和福建省自然科學(xué)基金(2012J01041)資助項目

    猜你喜歡
    能壘氧原子機(jī)理
    聚對苯二甲酸丁二醇酯二聚體熱降解機(jī)理的理論研究
    臭氧層為何在大氣層上空
    你聽
    椰城(2021年12期)2021-12-10 06:08:52
    隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
    化學(xué)反應(yīng)歷程教學(xué)的再思考
    重質(zhì)有機(jī)資源熱解過程中自由基誘導(dǎo)反應(yīng)的密度泛函理論研究
    煤層氣吸附-解吸機(jī)理再認(rèn)識
    中國煤層氣(2019年2期)2019-08-27 00:59:30
    NiTi(110)表面氧原子吸附的第一性原理研究?
    霧霾機(jī)理之問
    氧原子輻射作用下PVDF/POSS納米復(fù)合材料的腐蝕損傷模擬
    免费高清在线观看视频在线观看| 十八禁网站网址无遮挡 | 亚洲在线自拍视频| 女人被狂操c到高潮| 午夜激情福利司机影院| 国产黄色视频一区二区在线观看| 亚洲av免费高清在线观看| 性色avwww在线观看| 精品久久久精品久久久| 啦啦啦中文免费视频观看日本| 69人妻影院| 男女视频在线观看网站免费| 在线观看美女被高潮喷水网站| 少妇裸体淫交视频免费看高清| 91久久精品国产一区二区三区| 色综合站精品国产| 2018国产大陆天天弄谢| 免费电影在线观看免费观看| 久久精品国产自在天天线| 精品国产三级普通话版| 欧美成人一区二区免费高清观看| 色哟哟·www| 午夜激情久久久久久久| 97超视频在线观看视频| 日韩三级伦理在线观看| 国产伦精品一区二区三区视频9| 国产一区二区在线观看日韩| 国产极品天堂在线| 男女边摸边吃奶| 久久热精品热| 神马国产精品三级电影在线观看| 男女啪啪激烈高潮av片| 国产黄频视频在线观看| 国产极品天堂在线| 久久国产乱子免费精品| 只有这里有精品99| 成年女人看的毛片在线观看| 免费大片黄手机在线观看| 伊人久久精品亚洲午夜| 中文字幕av在线有码专区| 亚洲精华国产精华液的使用体验| 亚洲国产日韩欧美精品在线观看| 少妇的逼水好多| 欧美一级a爱片免费观看看| 欧美高清性xxxxhd video| 国产精品蜜桃在线观看| 欧美3d第一页| 成人鲁丝片一二三区免费| 麻豆精品久久久久久蜜桃| 99热全是精品| 亚洲最大成人手机在线| 亚洲av免费高清在线观看| 男人和女人高潮做爰伦理| 日本欧美国产在线视频| 亚洲精品国产av成人精品| 毛片女人毛片| 男人和女人高潮做爰伦理| 国产亚洲精品久久久com| 丰满少妇做爰视频| 国产精品久久视频播放| 国产精品精品国产色婷婷| 超碰av人人做人人爽久久| 深爱激情五月婷婷| 亚洲av免费在线观看| 婷婷六月久久综合丁香| 免费播放大片免费观看视频在线观看| 亚洲国产av新网站| 色吧在线观看| 国产一区亚洲一区在线观看| 午夜激情久久久久久久| 国产精品日韩av在线免费观看| 国产精品精品国产色婷婷| www.色视频.com| av国产免费在线观看| 国产一区二区三区av在线| 国产免费一级a男人的天堂| 免费观看在线日韩| 熟女电影av网| 插逼视频在线观看| 高清午夜精品一区二区三区| 亚洲欧美精品自产自拍| 日韩av不卡免费在线播放| 亚洲真实伦在线观看| 日韩av在线免费看完整版不卡| 亚洲真实伦在线观看| 久久久久久伊人网av| 国产一区二区亚洲精品在线观看| 舔av片在线| 日日摸夜夜添夜夜爱| 国语对白做爰xxxⅹ性视频网站| 成人无遮挡网站| 国产精品嫩草影院av在线观看| 婷婷色综合www| 人妻少妇偷人精品九色| 国产69精品久久久久777片| 国产v大片淫在线免费观看| 国产色爽女视频免费观看| 亚洲丝袜综合中文字幕| 日韩一区二区视频免费看| 国产精品人妻久久久久久| 精品少妇黑人巨大在线播放| 精品酒店卫生间| 波野结衣二区三区在线| 永久免费av网站大全| 亚洲精品aⅴ在线观看| 国内精品美女久久久久久| 成人高潮视频无遮挡免费网站| 免费少妇av软件| 免费少妇av软件| 国产精品99久久久久久久久| 波野结衣二区三区在线| 久久热精品热| 国产不卡一卡二| 亚洲精品色激情综合| 97在线视频观看| 国产高清有码在线观看视频| 精品欧美国产一区二区三| 久久精品国产亚洲网站| 国产久久久一区二区三区| 精品人妻一区二区三区麻豆| 成人综合一区亚洲| 成人亚洲精品av一区二区| 麻豆av噜噜一区二区三区| 18禁动态无遮挡网站| 真实男女啪啪啪动态图| 免费看不卡的av| 波野结衣二区三区在线| freevideosex欧美| 看非洲黑人一级黄片| 色吧在线观看| 青春草亚洲视频在线观看| 最近中文字幕高清免费大全6| 一级毛片我不卡| 最近的中文字幕免费完整| 欧美高清性xxxxhd video| 成人美女网站在线观看视频| 免费看光身美女| 永久免费av网站大全| 亚洲熟女精品中文字幕| 亚洲伊人久久精品综合| 九色成人免费人妻av| 丝袜美腿在线中文| 午夜爱爱视频在线播放| 国产v大片淫在线免费观看| 精品久久久噜噜| 国产探花极品一区二区| 夫妻性生交免费视频一级片| 日韩av在线免费看完整版不卡| 精品国产三级普通话版| 久久久久久国产a免费观看| 能在线免费看毛片的网站| 最近的中文字幕免费完整| 高清毛片免费看| 亚洲av中文字字幕乱码综合| 人妻制服诱惑在线中文字幕| 国产高潮美女av| 3wmmmm亚洲av在线观看| 亚州av有码| 嫩草影院新地址| 国语对白做爰xxxⅹ性视频网站| 免费在线观看成人毛片| av线在线观看网站| 免费av观看视频| 色网站视频免费| 久久99精品国语久久久| av又黄又爽大尺度在线免费看| 美女xxoo啪啪120秒动态图| 精品久久久久久久末码| 午夜激情福利司机影院| 国产综合懂色| 久久精品国产亚洲av涩爱| 日本黄大片高清| 26uuu在线亚洲综合色| 久久久久久久午夜电影| 欧美成人一区二区免费高清观看| 久久精品国产亚洲网站| 黄色欧美视频在线观看| 天天一区二区日本电影三级| 精品一区二区三区人妻视频| 哪个播放器可以免费观看大片| 男女国产视频网站| 一级毛片久久久久久久久女| 性色avwww在线观看| 青春草国产在线视频| 国产高清三级在线| 成人高潮视频无遮挡免费网站| 国产女主播在线喷水免费视频网站 | 极品教师在线视频| 精品一区二区三卡| 国产精品.久久久| 婷婷色麻豆天堂久久| 亚洲av免费在线观看| 精品久久久久久久末码| 日韩一区二区三区影片| 亚洲av成人精品一区久久| 久久久久久久久久久免费av| 亚洲乱码一区二区免费版| 高清日韩中文字幕在线| 午夜亚洲福利在线播放| 欧美xxxx性猛交bbbb| 丝袜喷水一区| 亚洲在久久综合| 男女啪啪激烈高潮av片| 午夜激情久久久久久久| 女人十人毛片免费观看3o分钟| 精品人妻熟女av久视频| 国产亚洲av片在线观看秒播厂 | 91午夜精品亚洲一区二区三区| 日日撸夜夜添| 久久99热这里只频精品6学生| 免费黄色在线免费观看| 亚洲av成人精品一区久久| 白带黄色成豆腐渣| 神马国产精品三级电影在线观看| 国产欧美另类精品又又久久亚洲欧美| 最近中文字幕高清免费大全6| 五月天丁香电影| 尤物成人国产欧美一区二区三区| 内射极品少妇av片p| 中文字幕av成人在线电影| 国产成年人精品一区二区| 毛片一级片免费看久久久久| 韩国av在线不卡| 国产精品麻豆人妻色哟哟久久 | 亚洲av一区综合| 国产麻豆成人av免费视频| 日本一本二区三区精品| 国产成人精品福利久久| 国产极品天堂在线| 九色成人免费人妻av| 久久久色成人| 亚洲av成人精品一区久久| 黄色日韩在线| 久久精品国产自在天天线| 搡老妇女老女人老熟妇| 成人性生交大片免费视频hd| 国产91av在线免费观看| 欧美人与善性xxx| 国产午夜精品久久久久久一区二区三区| 国产成人精品婷婷| 18禁裸乳无遮挡免费网站照片| 精品亚洲乱码少妇综合久久| 国产黄片美女视频| 少妇被粗大猛烈的视频| 国产精品日韩av在线免费观看| 亚洲国产最新在线播放| 熟妇人妻不卡中文字幕| 免费无遮挡裸体视频| 国产不卡一卡二| 天天躁日日操中文字幕| 久热久热在线精品观看| 久久久久免费精品人妻一区二区| 免费看a级黄色片| 国产一区二区亚洲精品在线观看| 在线 av 中文字幕| av黄色大香蕉| 九九在线视频观看精品| 丰满人妻一区二区三区视频av| 国精品久久久久久国模美| 日本黄色片子视频| 日日摸夜夜添夜夜添av毛片| 男女边摸边吃奶| 麻豆国产97在线/欧美| 国产老妇伦熟女老妇高清| 尤物成人国产欧美一区二区三区| 亚洲色图av天堂| 在线观看一区二区三区| 两个人视频免费观看高清| 99久国产av精品| 国产伦在线观看视频一区| 日本与韩国留学比较| 国产高清国产精品国产三级 | 天天躁夜夜躁狠狠久久av| 一边亲一边摸免费视频| 国内精品宾馆在线| av专区在线播放| ponron亚洲| 亚洲国产欧美人成| 亚洲av免费高清在线观看| 欧美成人午夜免费资源| av福利片在线观看| 久久精品久久久久久噜噜老黄| 亚洲aⅴ乱码一区二区在线播放| 欧美 日韩 精品 国产| 不卡视频在线观看欧美| 国产精品无大码| 夫妻午夜视频| 三级毛片av免费| 久久久久久久久中文| 亚洲精品自拍成人| 成人特级av手机在线观看| 亚洲成人久久爱视频| 小蜜桃在线观看免费完整版高清| 久久久亚洲精品成人影院| 亚洲av成人av| 久久久久网色| 成人一区二区视频在线观看| 纵有疾风起免费观看全集完整版 | 午夜福利在线观看吧| 亚洲在线观看片| 汤姆久久久久久久影院中文字幕 | 色尼玛亚洲综合影院| 三级国产精品欧美在线观看| 亚洲国产精品sss在线观看| 久久精品久久精品一区二区三区| 亚洲av不卡在线观看| 黄色一级大片看看| 亚洲伊人久久精品综合| 美女cb高潮喷水在线观看| 欧美一级a爱片免费观看看| freevideosex欧美| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 内射极品少妇av片p| 久久精品夜夜夜夜夜久久蜜豆| 成人无遮挡网站| 最近最新中文字幕大全电影3| 看十八女毛片水多多多| 久久这里只有精品中国| 国产在视频线精品| 国产色婷婷99| 日本-黄色视频高清免费观看| 亚洲熟妇中文字幕五十中出| 国产精品一区www在线观看| 欧美变态另类bdsm刘玥| 亚洲精品日韩在线中文字幕| 国产精品女同一区二区软件| 午夜福利成人在线免费观看| 成人亚洲欧美一区二区av| 美女黄网站色视频| 日韩亚洲欧美综合| 亚洲精品一二三| 久久久久精品久久久久真实原创| 丰满少妇做爰视频| 波多野结衣巨乳人妻| 久久99蜜桃精品久久| 亚洲精品影视一区二区三区av| av黄色大香蕉| 成人毛片a级毛片在线播放| 日韩三级伦理在线观看| 久久精品国产亚洲网站| 黄色配什么色好看| 亚洲怡红院男人天堂| 一本一本综合久久| 国产成人一区二区在线| av免费观看日本| 18禁裸乳无遮挡免费网站照片| 联通29元200g的流量卡| 男女边摸边吃奶| 在线观看免费高清a一片| 又黄又爽又刺激的免费视频.| 午夜福利网站1000一区二区三区| 听说在线观看完整版免费高清| 九九爱精品视频在线观看| 你懂的网址亚洲精品在线观看| 日韩强制内射视频| 99久久人妻综合| 国产乱人视频| 91在线精品国自产拍蜜月| 色尼玛亚洲综合影院| 精品人妻偷拍中文字幕| 青青草视频在线视频观看| 精品亚洲乱码少妇综合久久| 日韩欧美 国产精品| 国产精品女同一区二区软件| 亚洲精品一区蜜桃| 婷婷色麻豆天堂久久| 天天躁日日操中文字幕| 欧美性猛交╳xxx乱大交人| 欧美zozozo另类| 国产探花在线观看一区二区| 国产 一区精品| 亚洲最大成人手机在线| 亚洲在久久综合| 国产一区亚洲一区在线观看| 又爽又黄无遮挡网站| 在线天堂最新版资源| 国产精品精品国产色婷婷| 精品久久久久久久久久久久久| 国产女主播在线喷水免费视频网站 | 日韩av在线大香蕉| 精品久久久噜噜| 亚洲激情五月婷婷啪啪| 91久久精品国产一区二区成人| 免费人成在线观看视频色| 91av网一区二区| 老司机影院成人| 免费av观看视频| 亚洲av男天堂| 亚洲精品第二区| 成人亚洲精品一区在线观看 | 久热久热在线精品观看| 久久久久久久久久人人人人人人| 97在线视频观看| 国产久久久一区二区三区| 午夜福利网站1000一区二区三区| 视频中文字幕在线观看| 久久久a久久爽久久v久久| 人人妻人人澡欧美一区二区| 精品久久久久久久末码| 午夜视频国产福利| 少妇被粗大猛烈的视频| 国产成人aa在线观看| 网址你懂的国产日韩在线| 男女边吃奶边做爰视频| 青春草国产在线视频| 日韩成人伦理影院| 伦理电影大哥的女人| 亚洲av二区三区四区| 国内精品一区二区在线观看| 国产精品99久久久久久久久| 99久久精品一区二区三区| 欧美成人午夜免费资源| 国产亚洲精品av在线| av国产免费在线观看| 日本一二三区视频观看| av黄色大香蕉| 在线观看av片永久免费下载| 女人十人毛片免费观看3o分钟| 成人一区二区视频在线观看| 美女主播在线视频| 欧美xxxx黑人xx丫x性爽| 成人综合一区亚洲| 男女下面进入的视频免费午夜| 最近的中文字幕免费完整| 精品酒店卫生间| 噜噜噜噜噜久久久久久91| 丝袜喷水一区| 日日啪夜夜撸| 男插女下体视频免费在线播放| 高清视频免费观看一区二区 | 久久久久久久久久久丰满| 欧美日韩在线观看h| 老司机影院成人| 欧美激情久久久久久爽电影| 国产成人福利小说| 免费黄网站久久成人精品| 男人舔奶头视频| 毛片一级片免费看久久久久| 少妇的逼水好多| 免费不卡的大黄色大毛片视频在线观看 | 国产乱人偷精品视频| 免费看a级黄色片| 一区二区三区免费毛片| 免费看不卡的av| 免费不卡的大黄色大毛片视频在线观看 | 赤兔流量卡办理| 精品国产三级普通话版| 国产精品一区www在线观看| 国产精品一区二区三区四区免费观看| 色综合站精品国产| 十八禁国产超污无遮挡网站| 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 久久久久久久久久久免费av| 偷拍熟女少妇极品色| 日韩视频在线欧美| 99热网站在线观看| 亚洲精品456在线播放app| 国产一区二区三区综合在线观看 | 小蜜桃在线观看免费完整版高清| 在线观看一区二区三区| 国产黄色视频一区二区在线观看| 免费无遮挡裸体视频| 欧美一区二区亚洲| 日本一本二区三区精品| 国内揄拍国产精品人妻在线| a级毛色黄片| av在线蜜桃| 亚洲国产最新在线播放| 亚洲最大成人中文| 精品一区在线观看国产| 国产高清三级在线| 免费播放大片免费观看视频在线观看| 青春草国产在线视频| 我的老师免费观看完整版| 美女xxoo啪啪120秒动态图| 大又大粗又爽又黄少妇毛片口| 高清日韩中文字幕在线| 中文字幕免费在线视频6| 黄片无遮挡物在线观看| 亚洲成人久久爱视频| av.在线天堂| 美女内射精品一级片tv| 成人高潮视频无遮挡免费网站| 狂野欧美激情性xxxx在线观看| 国产精品麻豆人妻色哟哟久久 | 极品教师在线视频| 亚洲精品久久久久久婷婷小说| 国产片特级美女逼逼视频| 熟女电影av网| 大片免费播放器 马上看| 亚洲无线观看免费| 日韩欧美国产在线观看| 亚洲成人精品中文字幕电影| 最近2019中文字幕mv第一页| 国内精品美女久久久久久| 午夜免费激情av| 在线a可以看的网站| 欧美激情在线99| 亚洲性久久影院| 国产高清国产精品国产三级 | 日本免费a在线| 成人午夜精彩视频在线观看| 久久久久久伊人网av| 丝瓜视频免费看黄片| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| 日日啪夜夜撸| 少妇熟女欧美另类| 精品人妻偷拍中文字幕| 国产老妇伦熟女老妇高清| 国产老妇女一区| 亚洲婷婷狠狠爱综合网| 女人久久www免费人成看片| 一个人免费在线观看电影| 色5月婷婷丁香| 欧美另类一区| 波多野结衣巨乳人妻| 久久久久久久午夜电影| 午夜免费观看性视频| 久久人人爽人人爽人人片va| 国产精品麻豆人妻色哟哟久久 | 色尼玛亚洲综合影院| 免费播放大片免费观看视频在线观看| 久久久久久久大尺度免费视频| 欧美日韩在线观看h| 亚洲成人一二三区av| 亚洲自拍偷在线| 婷婷色av中文字幕| 日本与韩国留学比较| 麻豆av噜噜一区二区三区| 久久久午夜欧美精品| 国产中年淑女户外野战色| 国产极品天堂在线| 99热全是精品| freevideosex欧美| 免费黄色在线免费观看| 亚洲av国产av综合av卡| 少妇熟女欧美另类| 2021天堂中文幕一二区在线观| 少妇熟女欧美另类| 2022亚洲国产成人精品| 99热6这里只有精品| 国产av在哪里看| 日本黄色片子视频| 欧美日韩在线观看h| 干丝袜人妻中文字幕| 亚洲精品自拍成人| 最近的中文字幕免费完整| 婷婷色麻豆天堂久久| 日韩 亚洲 欧美在线| 国产精品.久久久| 国产精品女同一区二区软件| 国产成人一区二区在线| 亚洲自偷自拍三级| 欧美成人精品欧美一级黄| 91av网一区二区| 极品教师在线视频| 欧美日韩精品成人综合77777| 一级av片app| 免费观看a级毛片全部| 国产v大片淫在线免费观看| 日本色播在线视频| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av电影不卡..在线观看| 少妇丰满av| 亚洲精品乱码久久久v下载方式| 国产成人91sexporn| 日本一本二区三区精品| 天堂√8在线中文| 99久久精品一区二区三区| 国产亚洲91精品色在线| 啦啦啦韩国在线观看视频| 久久久精品94久久精品| 97超碰精品成人国产| 国产精品精品国产色婷婷| 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| h日本视频在线播放| 美女cb高潮喷水在线观看| 国产高潮美女av| 精品人妻熟女av久视频| 亚洲精品视频女| 干丝袜人妻中文字幕| 亚洲国产精品sss在线观看| 中文字幕亚洲精品专区| 久久久久久久久大av| 天堂网av新在线| 丰满乱子伦码专区| 麻豆成人av视频| 女人十人毛片免费观看3o分钟| 欧美区成人在线视频| 少妇裸体淫交视频免费看高清| 不卡视频在线观看欧美| 国产免费视频播放在线视频 | 少妇裸体淫交视频免费看高清| 九草在线视频观看| 国产精品久久久久久av不卡| www.av在线官网国产| 嫩草影院入口| 欧美三级亚洲精品| 狂野欧美白嫩少妇大欣赏| 日本与韩国留学比较| 中文字幕亚洲精品专区| 亚洲av.av天堂| 国产成人a区在线观看| 97在线视频观看| 亚洲人成网站在线观看播放| 乱人视频在线观看| 内射极品少妇av片p| 卡戴珊不雅视频在线播放| 最近中文字幕2019免费版| 在现免费观看毛片|