• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PbO-PbI2復(fù)合物膜轉(zhuǎn)化的CH3NH3PbI3鈣鈦礦薄膜及其光電特性

    2015-12-29 11:19:00丁緒坤李效民高相東張樹德黃宇迪李浩然中國科學(xué)院上海硅酸鹽研究所高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室上海200050
    物理化學(xué)學(xué)報 2015年3期
    關(guān)鍵詞:鹵化物樹德鈣鈦礦

    丁緒坤 李效民 高相東 張樹德 黃宇迪 李浩然(中國科學(xué)院上海硅酸鹽研究所,高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,上海200050)

    PbO-PbI2復(fù)合物膜轉(zhuǎn)化的CH3NH3PbI3鈣鈦礦薄膜及其光電特性

    丁緒坤 李效民*高相東 張樹德 黃宇迪 李浩然
    (中國科學(xué)院上海硅酸鹽研究所,高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室,上海200050)

    有機(jī)-無機(jī)鹵化物鈣鈦礦是一類優(yōu)異的光電材料.在過去四年內(nèi),基于有機(jī)-無機(jī)鹵化物鈣鈦礦的光電器件實(shí)現(xiàn)了超過15%的光電轉(zhuǎn)換效率.而有機(jī)-無機(jī)鹵化物鈣鈦礦材料的可控制備是保證其在光電器件中應(yīng)用的基礎(chǔ).本文采用新的沉積方法在玻璃襯底表面制備了一種典型的有機(jī)-無機(jī)鹵化物鈣鈦礦CH3NH3PbI3薄膜.其制備過程是:采用超聲輔助的連續(xù)離子吸附與反應(yīng)法在玻璃襯底表面沉積PbO-PbI2復(fù)合物膜,之后與CH3NH3I蒸汽在110°C環(huán)境下反應(yīng),將PbO-PbI2復(fù)合物膜轉(zhuǎn)化成CH3NH3PbI3鈣鈦礦薄膜.對CH3NH3PbI3薄膜的微觀結(jié)構(gòu),結(jié)晶性及其光電性能等進(jìn)行了表征.結(jié)果表明,CH3NH3PbI3薄膜呈晶態(tài),具有典型的鈣鈦礦晶體結(jié)構(gòu).薄膜表面形貌均勻,晶粒尺寸超過400 nm.在可見光范圍,CH3NH3PbI3薄膜透過率低于10%,能帶寬度為1.58 eV.電學(xué)性能研究表明CH3NH3PbI3薄膜表面電阻率高達(dá)1000 MΩ.高表面電阻率表明CH3NH3PbI3薄膜具有一定的介電性能,其介電常數(shù)(εr)在100 Hz時達(dá)到155.本研究提出了一種制備高質(zhì)量CH3NH3PbI3鈣鈦礦薄膜的新方法,所得CH3NH3PbI3薄膜可望在光、電及光電器件中得到應(yīng)用.

    CH3NH3PbI3;薄膜;鈣鈦礦;連續(xù)離子吸附與反應(yīng)法;氣相過程;光電材料

    ?Editorial office ofActa Physico-Chimica Sinica

    Key Words:CH3NH3PbI3;Thin film;Perovskite;Successive ionic layer adsorption and reaction; Vapor process;Photovoltaic material

    1 Introduction

    Organic-inorganic halide perovskites CH3NH3PbX3(X=Cl,Br, I)have recently attracted great attention due to their special physical and chemical properties.There are some organic-inorganic halide perovskites(CH3NH3PbI3,CH3NH3PbIxCl3-x,CH3NH3PbIxBr3-x) having been vastly investigated.Among them,CH3NH3PbI3is considered as an ideal absorber in photovoltaic devices due to its narrow band gap,1high absorption coefficient,2near-perfect crystallinity,and excellent electron and hole transport.3Although first implemented in dye-sensitized solar cells based on mesoporous structures,4-6CH3NH3PbI3has been gradually found to assume planar architecture solar cells.7-9Therefore significant efforts have been made to enhance controllability of CH3NH3PbI3thin film quality for constructing high performance planar structure devices.

    Several techniques,such as co-evaporation of two precursors,9,10solution-based spin-coating,11,12vapor-assisted solution process,13have been developed to prepare CH3NH3PbI3thin films.However, co-evaporation demands sophisticated equipment which hinders mass production and spin-coating often results in incomplete surface coverage.It is also difficult for vapor-assisted solution process to find suitable solvents which can dissolve PbI2at room temperature.13Hence,in views of low cost and non-solution spincoating process,there is an urge to develop a simple approach for fabricating CH3NH3PbI3thin films.

    Successive ionic layer adsorption and reaction(SILAR)technique for deposition of thin films is based on a heterogeneous reaction between adsorbed ions and solvated ions on the solidliquid interface.14With outstanding features of low-cost,the simplicity of procedure and high quality of obtaining films,SILAR technique has been widely applied to prepare kinds of semiconductor films,for instance PbS,15Cu2S,16CdS,17ZnO,18In2S3,19and the like,on various substrates.On the other hand,ultrasonic has been introduced to SILAR technique because of the nature of high energy field and cavitations20etc.Further researches show that ultrasonic-assisted SILAR technique reveals thin films with smoother and more compact surface morphology compared with the traditional SILAR method because the former can remove the loose particles effectively.21

    In this article,we fabricated CH3NH3PbI3thin films by reacting ultrasonic-assisted SILAR derived PbO-PbI2hybrid films with CH3NH3I vapor at high temperature of 110°C.The key step was that PbO-PbI2hybrid films were deposited on glass slide substrates by ultrasonic-assisted SILAR technique.CH3NH3PbI3thin films then were prepared via the in-situ reaction of the hybrid films with CH3NH3I vapor at 110°C,which led to the formation of uniform and compact CH3NH3PbI3thin films on substrates.The deposition mechanism of CH3NH3PbI3thin films was investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM), and energy dispersive X-ray spectroscopy(EDS).Optical and electrical properties of thin films were also presented.

    2 Experimental

    2.1 Materials

    Chemicals used in this work including lead nitrate(PbNO3,≥99%),ethanolamine(C2H7NO,≥99%),sodium iodide(NaI,≥99%)were used without further purification.CH3NH3I was synthesized according to reported procedure.24 mL methylamine (CH3NH2,33%(w)in alcohol,Sigma)and 10 mL hydroiodic acid (HI,57%(w)in water,Aldrich)reacted in 250 mL round bottomed flask at 0°C for 2 h with stirring.The precipitate was recovered by evaporation on a rotary evaporator at 60°C for 1 h. The yellow raw product was washed with diethyl ether(C4H10O,≥99.5%)and repeated three times.After drying at 60°C in vacuum oven over 24 h,white solid CH3NH3I was obtained.

    2.2 Preparation of CH3NH3PbI3thin films

    The glass slides were chosen as substrates and cleaned by ultrasonic in deionized water,ethanol,and acetone sequentially for 15 min and dried under a nitrogen flow before used.

    In ultrasonic-assisted SILAR procedure,aqueous solutions of lead nitrate complex with ethanolamine(ETA)and sodium iodide were used as precursors.The concentrations of the solutions were 0.1 and 0.2 mol·L-1,respectively.In a representative cycle of ultrasonic-assisted SILAR procedure,substrates were immersed into lead ion(Pb2+)precursors,iodide ion(I-)precursors and rinsed by ultrasonic in pure alcohol in turn.The absorption and reaction time were both set as 30 s while 90 s was spent to sweep incompact grains away completely in rinsing process.After repeating deposition cycles 20 times,the as-deposited films were annealed at 350°C in tube furnace with nitrogen protecting for 2 h.After that,the PbO-PbI2hybrid thin films were prepared.

    The vapor process was chosen to fabricate CH3NH3PbI3thin films according to the reference.13Briefly speaking,the CH3NH3I powder was spread out around the substrates.Then the PbO-PbI2hybrid thin films were covered by a petridish and heated at 110°C for 6 h.This process was treated in vacuum drying oven.

    2.3 Characterization

    The crystal structure of thin films was determined using X-ray diffraction(Bruker D8Advance,3 kW)with Cu Kαirradiation(λ= 0.154 nm).The morphology and film thickness were characterized with Magellan 400 scanning electron microscope(SEM)and the composition of as-deposited thin films was analyzed by integrated EDS system.Optical transmittance spectra in the UV-Vis range (300-1000 nm)was measured using a Techcomp UV2310II PC double beam spectrophotometer.The surface resistivity and dielectric constant were tested by Keithley 4200 and Agilent E4980A,respectivly.Fordielectric constanttesting,the CH3NH3PbI3thin films were deposited on FTO glass(SnO2:Ftransparent conductive glass,sheet resistivity 15 Ω·□-1).Carrier concentration and carrier mobility of the CH3NH3PbI3films were measured using Hall effect measurement,which was performed by linking Keithley 4200 and 2400 to Quantum Design PPMS-9 system.

    3 Results and discussion

    3.1 Deposition and reaction mechanism of thin films

    Fig.1 is the standard schematic illustration of CH3NH3PbI3thin film fabrication.In ultrasonic-assisted SILAR procedure,lead ions are firstly adsorbed on glass substrates after immersion in lead nitrate complex with ETA solution.Then absorbed lead ions reacted with iodide ions in sodium iodide solution(equation(1)).At the same time,part of absorbed lead ions hydrolyzed(equation (2)).Therefore we suggested that the whole reaction resulted in not only PbI2but also amount of Pb(OH)2.It was unusual because cation hydrolyzing usually occupied a rather small part in entire reaction.In our work,the likely reasons for violent hydrolysis reaction are(i)the instability of complex lead nitrate,(ii)slight alkaline sodium iodide solution caused by dissolution of ETA. Accordingly,the chemical constituents of as-deposited thin films included PbI2and Pb(OH)2.To remove organics and improve the crystalline,the as-deposited films were heat treated at 350°C in nitrogen gas atmosphere.After annealing,Pb(OH)2thermally decomposed into PbO(equation(3)),but PbI2was reserved.The phenomena that film color became faint yellow from white demonstrated PbO-PbI2hybrid thin films formed.

    Fig.1 Schematic diagram of CH3NH3PbI3thin film formation

    Dipping the PbO-PbI2hybrid thin films into the solution of CH3NH3I in 2-propanol of 10 mg·mL-1did not change its color even after prolonging immersing time and raising CH3NH3I concentration.It suggested the reaction condition between PbO and CH3NH3I much stricter than that of between PbI2and CH3NH3I.So vapor process was chosen to fabricate CH3NH3PbI3thin films(equations(4),(5)).The vapor process is based on reaction between solid thin films and CH3NH3I gas.And the whole vapor process was carried out in relative high temperature of 110°C which provided kinetically favorable environment.After lasting 6 h reaction time,film′scolor became dark brown finally and no yellow remnant remained.

    The possible reaction equations involved in the whole process are listed below.

    3.2 Morphology and growth rate of thin films in ultrasonic-assisted SILAR process

    Fig.2 is the SEM images of as-deposited and PbO-PbI2hybrid thin films with and without application of ultrasonic rinsing.The number of deposited cycles is 20.The top-view images of asdeposited films with ultrasonic rinsing were depicted in Fig.2a.As indicated in which,as-deposited films were smooth and covered the substrates completely.Grains with size smaller than 20 nm made up the as-deposited films.Fig.2c shows that after heat treating,grains size of the PbO-PbI2hybrid thin films became slightly bigger and scattered voids among adjacent grains presented which caused by PbO grains growing up and Pb(OH)2decomposing,respectively.For the same reason,the cross section of PbO-PbI2hybrid films was full of pores which could be obviously observed via contrasting Fig.2(b,d).These pores acted as transport tunnel of CH3NH3I gas in vapor-process,therefore pores were beneficial for vapor reaction proceeding.

    In ultrasonic-assisted SILAR process,ultrasonic rinsing is of great importance for obtaining uniform films.Fig.2(e,f)shows the surface of PbO-PbI2hybrid thin films with and without application of ultrasonic rinsing.For PbO-PbI2hybrid thin films without ultrasonic rinsing,certain amount of large grains and film peeling off from substrates were observed clearly while smooth surface and full surface coverage were obtained after ultrasonic rinsing.In every SILAR cycle,lead nitrate complex ETA reacted with sodium iodide.And the precipitates,with different adsorptive attraction and particles size,attached on film surface.The function of ultrasonic rinsing is primarily to remove loose and large grains of film.So PbO-PbI2hybrid thin films obtained from ultrasonicassisted SILAR are more smooth and compact.

    Fig.3 shows the relationship between PbO-PbI2hybrid thin films thickness and the number of ultrasonic-assisted SILAR cycles.Alinear dependence on the number of cycles was observed which was consistent with traditional SILAR technique results.However,an amazing growth rate of average 13 nm per cycle was obtained which was significantly higher than traditional SILAR technique.22With this high growth rate,PbO-PbI2hybrid thin films with 656 nm thickness could be achieved only after 50 deposition cycles.The morphology characterization of different cycles is similar.

    Fig.2 Top-view SEM images of(a)as-deposited films,(b)cross section of(a),(c)PbO-PbI2hybrid films,(d)cross section of(c), (e)lower resolution image of(c),and(f)hybrid films without ultrasonic rinsing

    Fig.3 cross section SEM images of PbO-PbI2hybrid films with (a)10 cycles and(b)50 cycles

    3.3 Morphology characterization of CH3NH3PbI3thin films

    Fig.4a shows the top-view SEM images of CH3NH3PbI3thin films.It was clearly that the CH3NH3PbI3thin films had full surface coverage on the substrates.Detail surface morphology is shown in Fig.4b which is the high resolution of Fig.4a.The CH3NH3PbI3grain size is up to 400-500 nm which is one order of magnitude bigger than that of PbO-PbI2hybrid films.The relative high temperature of vapor process promotes rearrangement and growing up of small grain in PbO-PbI2hybrid films so that grain size of CH3NH3PbI3thin films increases up to sub-micrometers.The smooth surface of PbO-PbI2hybrid films resulted in relatively small roughness of CH3NH3PbI3films.All the characteristics of CH3NH3PbI3thin films suggested its promising application in photovoltaic devices.

    In vapor process,the reaction temperature has a giant effect on CH3NH3PbI3thin film quality.As shown in Fig.4d,the CH3NH3PbI3thin films fabricating at 150°C pelt off glass sub-strate so that a number of cracks between film and substrate appeared.However,impact cross section was achieved when the reaction temperature reduced to 110°C.The reaction rate between PbO-PbI2hybrid films and CH3NH3I vapor is crucial for fabricating high quality CH3NH3PbI3thin films.150°C temperature results in very fast reacting which produces large internal stress in CH3NH3PbI3thin films.So CH3NH3PbI3thin films peel off from substrates easily and the quality of CH3NH3PbI3thin films intensively deteriorates.

    Fig.4 (a)Top-view SEM images of CH3NH3PbI3thin films,(b)high resolution of(a),cross section SEM images of CH3NH3PbI3thin films at(c)110°C and(d)150°C

    The surface SEM images of CH3NH3PbI3thin films which prepared by different methods are shown in Fig.5.Details about CH3NH3PbI3perovskite film fabrication process including twostep solution method and vapor-assisted solution process could be found elsewhere.11,13By contrast,it is observed that the ultrasonicassisted SILAR derived CH3NH3PbI3thin films have uniform and compact morphology without any voids and cracks.However,the CH3NH3PbI3perovskite films fabricated by the other two processes are full of voids and cracks between perovskite grains.The two-step solution method and vapor-assisted solution process are all based on PbI2films prepared by solution spin-coating process. The solution spin-coating based PbI2films exhibit big grains of a few hundred nanometers and larger voids among grains.13Hence, after the perovskite films formation,voids and cracks do not vanish completely,even the perovskite grains growing up. Compared to the conventional PbI2films prepared by solution spin-coating process,the PbO-PbI2hybrid films are composed by much smaller grains with a few tens of nanometers and cracks between grains.During the transformation from PbO-PbI2hybrid films to perovskite films,the crystalline grains rearrange and the cracks disappear.

    Fig.5 Top-view SEM images of CH3NH3PbI3films fabricated by(a)two-step solution method,(b)vapor-assisted solution process,and (c)ultrasonic-assisted SILAR technique

    3.4 Composition and crystallinity of thin films

    Fig.6 shows XRD pattern and EDS mapping of thin films.XRD pattern revealed the amorphous structure of as-deposited films caused by low operation temperature in ultrasonic-assisted SILAR process.Further identification of chemical compositions in asdeposited films was conducted by EDS analysis.Due to relatively thinfilms′thickness,the elements in glass substrates were also detected.Hydrogen element was neglected because of the limited detection of EDS.Atom ration of Pb and I was determined to be about 8.6:1 and this ration heavily deviated from 1:2 in pure PbI2. The departure of atom ration demonstrated the main component in as-deposited films was Pb(OH)2.Carbon element may come from ETAwhich would be removed in annealing procedure.

    XRD pattern of PbO-PbI2hybrid films is shown in Fig.6(a).In XRD pattern,the diffraction peak of PbO could be clearly observed,but not for PbI2because of relative small amounts. Looking closely,there was a tiny signature peak at 12.69°corresponding to the(001)diffraction peak for PbI2.The presence of weak peak indicated PbI2phases in hybrid films.In XRD pattern of CH3NH3PbI3thin films,a series of main diffraction peaks at 14.16°,28.49°,and 31.85°which were assigned to(110),(220), (310)of the CH3NH3PbI3perovskite crystal respectively suggested formation of CH3NH3PbI3perovskite.The disappearance of PbO and PbI2characteristic peaks implied that CH3NH3PbI3perovskite films were high purity.Hence,the CH3NH3PbI3perovskite films fabricated by our method are high crystallinity and have few impurities.

    3.5 Optical properties of thin films

    Fig.7(a)shows the transmittance spectra in the wavelength range of 300 to 1000 nm of as-prepared films,PbO-PbI2hybrid films,and CH3NH3PbI3thin films.As contrast,optical property of glass slides without any films was included.The as-deposited films performed high transparency in the visible region and transmittance decreased slightly after annealing.However,for theCH3NH3PbI3thin films,high absorbance could be observed.In visible wavelength,CH3NH3PbI3thin films showed low transmittance below 10%.So the CH3NH3PbI3thin films were dark brown by naked eye.

    Fig.6 (a)XRD patterns of films,(b)EDS of as-deposited films

    The band gap of CH3NH3PbI3thin film was estimated by studying the relationship between adsorption coefficient(α)and photo energy(hv)as

    Fig.7 (a)Transmittance spectra of thin films and glass slide substrate and(b)plot of(αhν)2-hν for CH3NH3PbI3films

    In which,k is constant;the exponent m equals 1/2 for direct band gap materials and 2 for indirect gap materials.The absorption coefficient α was calculated after subtracting absorbance of glass substrate and neglecting reflectance at normal incidence.Fig.7(b) shows the plot of(αhν)2-hν for CH3NH3PbI3thin films.By elongating the linear part of the plot,the intercept of photo energy was determined as the band gap.For CH3NH3PbI3thin films,the band gap is 1.58 eV,which is well comparable with the band gap (1.51 eV)reported in previous article.23

    3.6 Electrical properties of thin films

    Fig.8 (a)Surface resistivity and(b)dielectric constant of CH3NH3PbI3perovskite films as a function of frequency

    Fig.8(a)shows current-voltage(I-V)dependence of CH3NH3PbI3thin films.A remarkable behavior which can be easily spotted from I-V curve is the strongly non-Ohmic characteristics.Being repeatedly displayed at different applied voltages,the non-Ohmic properties are suggested to be attributed to ferroelectric response in CH3NH3PbI3.24The calculated surface resistivity value forprepared CH3NH3PbI3thin films by ignoring the nonlinear parts of the plot is about 1000 MΩ at room temperature.Interestingly, the surface resistivity value varies slightly with the applied voltage.A higher applied voltage generates a higher surface resistivity.Generally speaking,CH3NH3PbI3shows poor electrical conductivity.The conductivity type of CH3NH3PbI3thin films determined by Hall effect measurement is a p-type semiconductor with carrier concentration in the order of 1015cm-3.The carrier mobility is 5.8 cm2·V-1·s-1.The poor electrical conductivity could be related with low hole concentration.

    The characteristic behavior of the frequency dependent of the dielectric constant of CH3NH3PbI3is also been detected as shown in Fig.8(b).The dielectric constant of CH3NH3PbI3thin films decreases from a low frequency value of about εr(100 Hz)=155 to the high frequency value in the order of tens.The high dielectric constant in low frequency implies that CH3NH3PbI3could be a candidate in energy devices.25

    4 Conclusions

    In summary,CH3NH3PbI3thin films were fabricated on glass substrates by reacting ultrasonic-assisted SILAR derived PbO-PbI2hybrid films with CH3NH3Ivapor at high temperature of 110°C. SEM,XRD,EDS,UV-Vis spectroscopy,surface resistivity,and dielectric constant test were performed to characterize the prepared CH3NH3PbI3thin films.The results showed that CH3NH3PbI3thin films derived from our approach exhibited full surface coverage,uniform structure with grain size up to 400 nm.The suitable band gap of 1.58 eV and electrical properties of high dielectric constant suggest that CH3NH3PbI3thin films prepared by our technique could be used in photovoltaic or other photoelectrical devices.Our method offers a relatively low-cost and convenient way to synthesize CH3NH3PbI3thin films with high quality for large-scale application.

    (1)Noh,J.H.;Jeon,N.J.;Choi,Y.C.;Nazeeruddin,M.K.; Gr?tzel,M.;Seok,S.I.J.Mater.Chem.A2013,1,11842.doi: 10.1039/c3ta12681a

    (2)Im,J.H.;Lee,C.R.;Lee,J.W.;Park,S.W.;Park,N.G. Nanoscale2011,3,4088.doi:10.1039/c1nr10867k

    (3)Xing,G.C.;Mathews,N.;Sun,S.Y.;Lim,S.S.;Lam,Y.M.; Gr?tzel,M.;Mhaisalkar,S.;Sum,T.C.Science2013,342, 344.doi:10.1126/science.1243167

    (4)Burschka,J.;Pellet,N.;Moon,S.J.;Humphry-Baker,R.;Gao, P.;Nazeeruddin,M.K.;Gr?tzel,M.Nature2013,499,316. doi:10.1038/nature12340

    (5)Etgar,L.;Gao,P.;Xue,Z.S.;Peng,Q.;Chandiran,A.K.;Liu, B.;Nazeeruddin,M.K.;Gr?tzel,M.J.Am.Chem.Soc.2012,134,17396.doi:10.1021/ja307789s

    (6)Kim,H.S.;Lee,J.W.;Yantara,N.;Boix,P.P.;Kulkarni,S.A.; Mhaisalkar,S.;Gr?tzel,M.;Park,N.G.Nano Lett.2013,13, 2412.doi:10.1021/nl400286w

    (7)Chen,Q.;Zhou,H.P.;Song,T.B.;Luo,S.;Hong,Z.;Duan,H. S.;Dou,L.T.;Liu,Y.S.;Yang,Y.Nano Lett.2014,14,4158. doi:10.1021/nl501838y

    (8)Jeng,J.Y.;Chen,K.C.;Chiang,T.Y.;Lin,P.Y.;Tsai,T.D.; Chang,Y.C.;Guo,T.F.;Chen,P.;Wen,T.C.;Hsu,Y.J.Adv. Mater.2014,26,4107.doi:10.1002/adma.v26.24

    (9)Liu,M.Z.;Johnston,M.B.;Snaith,H.J.Nature2013,501, 395.doi:10.1038/nature12509

    (10)Kim,H.S.;Lee,C.R.;Im,J.H.;Lee,K.B.;Moehl,T.; Marchioro,A.;Moon,S.J.;Humphry-Baker,R.;Yum,J.H.; Moser,J.E.;Gr?tzel,M.;Park,N.G.Sci.Rep.2012,2,591.

    (11)Yella,A.;Heiniger,L.P.;Gao,P.;Nazeeruddin,M.K.;Gr?tzel, M.Nano Lett.2014,14,2591.doi:10.1021/nl500399m

    (12)Mei,A.Y.;Li,X.;Liu,L.F.;Ku,Z.L.;Liu,T.F.;Rong,Y.G.; Xu,M.;Hu,M.;Chen,J.Z.;Yang,Y.;Gr?tzel,M.;Han,H.W. Science2014,345,295.doi:10.1126/science.1254763

    (13)Chen,Q.;Zhou,H.P.;Hong,Z.;Luo,S.;Duan,H.S.;Wang,H. H.;Liu,Y.S.;Li,G.;Yang,Y.J.Am.Chem.Soc.2014,136, 622.doi:10.1021/ja411509g

    (14)Kanniainen,T.;Lindroos,S.;Ihanus,J.;Leskela,M.J.Mater. Chem.1996,6,161.doi:10.1039/jm9960600161

    (15)Kanniainen,T.;Lindroos,S.;Resch,R.;Leskela,M.; Friedbacher,G.;Grasserbauer,M.Mater.Res.Bull.2000,35, 1045.doi:10.1016/S0025-5408(00)00298-1

    (16)Zhuge,F.W.;Li,X.M.;Gao,X.D.;Gan,X.Y;Zhou,F.L. Mater.Lett.2009,63,652.doi:10.1016/j.matlet.2008.12.010

    (17)Zhang,Q.B.;Feng,Z.F.;Han,N.N.;Lin,L.L.;Zhou,J.Z.; Lin,Z.H.Acta Phys.-Chim.Sin.2010,26,2927.[張橋保,馮曾芳,韓楠楠,林玲玲,周劍章,林仲華.物理化學(xué)學(xué)報,2010,26,2927.]doi:10.3866/PKU.WHXB20101113

    (18)Jambure,S.B.;Patil,S.J.;Deshpande,A.R.;Lokhande,C.D. Mater.Res.Bull.2014,49,420.doi:10.1016/j. materresbull.2013.09.007

    (19)Sall,T.;Raidou,A.;Elfarrass,S.;Hartiti,B.;Mari,B.;Qachaou, A.;Fahoume,M.Opt.Quantum Electron2014,46,247.doi: 10.1007/s11082-013-9786-x

    (20)Gao,X.D.;Li,X.M.;Yu,W.D.Thin Solid Films2004,468, 43.doi:10.1016/j.tsf.2004.04.005

    (21)Shei,S.C.;Chang,S.J.;Lee,P.Y.J.Electrochem.Soc.2011,158,208.

    (22)Su,Z.H.;Yan,C.;Sun,K.W.;Han,Z.L.;Liu,F.Y.;Liu,J.; Lai,Y.Q.;Li,J.;Liu,Y.X.Appl.Surf.Sci.2012,258, 7678.doi:10.1016/j.apsusc.2012.04.120

    (23)Noh,J.H.;Im,S.H.;Heo,J.H.;Mandal,T.N.;Seok,S.I. Nano Lett.2013,13,1764.

    (24)Stoumpos,C.C.;Malliakas,C.D.;Kanatzidis,M.G.Inorg. Chem.2013,52,9019.doi:10.1021/ic401215x

    (25)Juarez-Perez,E.J.;Sanchez,R.S.;Badia,L.;Garcia-Belmonte, G.;Kang,Y.S.;Mora-Sero,I.;Bisquert,J.J.Phys.Chem.Lett.2014,5,2390.doi:10.1021/jz5011169

    Optical and Electrical Properties of CH3NH3PbI3Perovskite Thin Films Transformed from PbO-PbI2Hybrid Films

    DING Xu-Kun LI Xiao-Min*GAO Xiang-Dong ZHANG Shu-De HUANG Yu-Di LI Hao-Ran
    (State Key Laboratory of High Performance Ceramics and Superfine Microstructures,Shanghai Institute of Ceramics, Chinese Academy of Sciences,Shanghai 200050,P.R.China)

    Organic-inorganic halide perovskites have been shown to be outstanding photovoltaic materials, achieving remarkably high power conversion efficiency(15%)of sunlight to electricity within the past 4 years. The controllable synthesis of organic-inorganic halide perovskites is fundamental to their applications in photovoltaic devices.Here we explore a novel strategy to prepare a typical halide peroskite CH3NH3PbI3by transforming PbO-PbI2hybrid materials.CH3NH3PbI3thin films were deposited on glass substrates by reacting ultrasonic-assisted successive ionic layer adsorption and reaction(SILAR)-derived PbO-PbI2hybrid films with CH3NH3I vapor at 110°C.The microstructure and crystallinity of the films,together with the optical and electrical properties were characterized.Results show that CH3NH3PbI3thin films possess perovskite crystal structure and uniform surface morphology with grain size up to 400 nm.In the visible band,CH3NH3PbI3thin films showed low transmittance(below 10%),with a band gap of 1.58 eV.The surface resistivity of CH3NH3PbI3thin films was as high as 1000 MΩ,indicating the dielectric nature of obtained CH3NH3PbI3films,with a dielectric constant of εr(100 Hz)=155 on low frequency.The current work opens an effective route toward high quality organicinorganic halide perovskite films with good crystallinity and optical properties,which make them suitable for application in photovoltaic devices,and other optical and electrical applications.

    O649

    10.3866/PKU.WHXB201501201www.whxb.pku.edu.cn

    Received:November 13,2014;Revised:January 19,2015;Published on Web:January 20,2015.

    ?Corresponding author.Email:lixm@mail.sic.ac.cn;Tel:+86-21-52412554.

    The project was supported by the National Natural Science Foundation of China(50502038,10576036).

    國家自然科學(xué)基金(50502038,10576036)資助項目

    猜你喜歡
    鹵化物樹德鈣鈦礦
    內(nèi)蒙古地區(qū)甜菜臨界氮濃度稀釋模型的構(gòu)建及應(yīng)用
    樹德娃的太空之旅 學(xué)習(xí)設(shè)計
    硝酸銀沉淀法去除高鹽工業(yè)廢水中鹵化物對COD測定的干擾
    新興零維金屬鹵化物的光致發(fā)光與應(yīng)用研究進(jìn)展
    小小魚
    離子色譜法測定燃料電池汽車用燃料氫氣中的痕量鹵化物*
    當(dāng)鈣鈦礦八面體成為孤寡老人
    幾種新型鈣鈦礦太陽電池的概述
    鈣鈦礦型多晶薄膜太陽電池(4)
    太陽能(2015年4期)2015-02-28 17:08:19
    鈣鈦礦型多晶薄膜太陽電池(2)
    太陽能(2015年2期)2015-02-28 17:07:18
    日韩av不卡免费在线播放| 身体一侧抽搐| 亚洲天堂国产精品一区在线| 欧美少妇被猛烈插入视频| 亚洲精品乱久久久久久| 国产一区二区三区av在线| 三级国产精品欧美在线观看| 欧美日本视频| 成人欧美大片| 尤物成人国产欧美一区二区三区| 乱系列少妇在线播放| 成人无遮挡网站| 亚洲av一区综合| 欧美少妇被猛烈插入视频| 18禁裸乳无遮挡动漫免费视频 | 久久久精品欧美日韩精品| 有码 亚洲区| 啦啦啦在线观看免费高清www| 久久这里有精品视频免费| 好男人视频免费观看在线| 日韩成人av中文字幕在线观看| 我要看日韩黄色一级片| 国产免费视频播放在线视频| 春色校园在线视频观看| 简卡轻食公司| 国产精品国产三级国产专区5o| 蜜桃亚洲精品一区二区三区| 99久久人妻综合| 夜夜爽夜夜爽视频| 久久久欧美国产精品| 久久久久国产网址| 欧美三级亚洲精品| 免费高清在线观看视频在线观看| 美女主播在线视频| 搡女人真爽免费视频火全软件| 亚洲av福利一区| av在线天堂中文字幕| 午夜福利视频精品| 免费观看的影片在线观看| 亚洲成人久久爱视频| 久久99热6这里只有精品| 亚洲精品一区蜜桃| 国产成人a区在线观看| kizo精华| 久久久久国产网址| 插逼视频在线观看| 国产白丝娇喘喷水9色精品| 久久久久久久久久久免费av| 少妇高潮的动态图| 日韩一区二区视频免费看| 中文字幕亚洲精品专区| 国产精品久久久久久精品电影小说 | 久久99热6这里只有精品| 国精品久久久久久国模美| 日本猛色少妇xxxxx猛交久久| 一级毛片黄色毛片免费观看视频| 久久女婷五月综合色啪小说 | 最近最新中文字幕免费大全7| 日韩伦理黄色片| 国产一区二区三区av在线| 国产精品偷伦视频观看了| 色综合色国产| 亚洲av二区三区四区| 黄色一级大片看看| 国产成人精品福利久久| h日本视频在线播放| 夫妻性生交免费视频一级片| 久久女婷五月综合色啪小说 | 亚洲成色77777| a级一级毛片免费在线观看| 国产精品人妻久久久久久| av在线亚洲专区| 亚洲欧美成人精品一区二区| 波多野结衣巨乳人妻| 男女无遮挡免费网站观看| 欧美一级a爱片免费观看看| 久久久久久久亚洲中文字幕| 亚洲av在线观看美女高潮| 中文字幕人妻熟人妻熟丝袜美| 成人亚洲精品av一区二区| 国产精品嫩草影院av在线观看| 最后的刺客免费高清国语| 能在线免费看毛片的网站| 嫩草影院入口| 一个人观看的视频www高清免费观看| 一区二区三区免费毛片| 久久久久久久午夜电影| 亚洲一级一片aⅴ在线观看| 免费播放大片免费观看视频在线观看| 视频区图区小说| 又大又黄又爽视频免费| 最近中文字幕2019免费版| 国产女主播在线喷水免费视频网站| 久久热精品热| 精品人妻偷拍中文字幕| 亚洲激情五月婷婷啪啪| 九九久久精品国产亚洲av麻豆| 精品久久国产蜜桃| 18禁在线无遮挡免费观看视频| 中文乱码字字幕精品一区二区三区| 久久久久久久国产电影| 看黄色毛片网站| 成人亚洲欧美一区二区av| 国产乱人视频| 色吧在线观看| 精品久久久久久久末码| 在线免费观看不下载黄p国产| 亚洲国产色片| 青青草视频在线视频观看| av又黄又爽大尺度在线免费看| 777米奇影视久久| 欧美少妇被猛烈插入视频| 偷拍熟女少妇极品色| 夫妻午夜视频| 欧美日韩视频高清一区二区三区二| 青青草视频在线视频观看| 久久精品久久精品一区二区三区| 国产成人免费无遮挡视频| 成人无遮挡网站| 国产片特级美女逼逼视频| 色播亚洲综合网| 精品久久久精品久久久| av在线播放精品| 最后的刺客免费高清国语| 五月天丁香电影| 日韩亚洲欧美综合| 亚洲精品第二区| 久久99热6这里只有精品| 亚洲人成网站在线播| 国产色爽女视频免费观看| 亚洲丝袜综合中文字幕| 国产精品久久久久久久久免| 欧美成人午夜免费资源| 欧美高清性xxxxhd video| 成人二区视频| 99久久人妻综合| 国产色爽女视频免费观看| 久久久精品免费免费高清| 天天一区二区日本电影三级| 看黄色毛片网站| 精品久久久久久久人妻蜜臀av| 特级一级黄色大片| 熟女电影av网| 中文天堂在线官网| 日本与韩国留学比较| 亚洲美女视频黄频| 免费看日本二区| 嘟嘟电影网在线观看| 最后的刺客免费高清国语| 一级毛片我不卡| 青春草亚洲视频在线观看| 欧美 日韩 精品 国产| 亚洲最大成人手机在线| 亚洲av免费高清在线观看| 99热全是精品| 久久精品国产亚洲网站| 免费在线观看成人毛片| 91精品国产九色| 中文字幕人妻熟人妻熟丝袜美| 一级毛片aaaaaa免费看小| 久久精品国产亚洲网站| 免费观看的影片在线观看| 久久午夜福利片| 男女国产视频网站| 色综合色国产| 成人亚洲欧美一区二区av| 黄色配什么色好看| 成人高潮视频无遮挡免费网站| 国产毛片在线视频| 免费看光身美女| 男女啪啪激烈高潮av片| 高清日韩中文字幕在线| 中国国产av一级| 在线 av 中文字幕| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久成人| 亚洲精品aⅴ在线观看| 免费av毛片视频| 国产成人a∨麻豆精品| 麻豆精品久久久久久蜜桃| 国产日韩欧美在线精品| 人体艺术视频欧美日本| 精品久久久久久电影网| 久久综合国产亚洲精品| 水蜜桃什么品种好| tube8黄色片| .国产精品久久| 视频区图区小说| 少妇裸体淫交视频免费看高清| 国内精品宾馆在线| 中文字幕免费在线视频6| 91精品一卡2卡3卡4卡| 1000部很黄的大片| av免费在线看不卡| 啦啦啦中文免费视频观看日本| 精品一区二区三区视频在线| 国产乱人偷精品视频| 在线精品无人区一区二区三 | 亚洲国产日韩一区二区| 亚洲欧美精品专区久久| 国产精品三级大全| 在线 av 中文字幕| 国产久久久一区二区三区| 国产欧美亚洲国产| 免费高清在线观看视频在线观看| 国产男人的电影天堂91| 色播亚洲综合网| 干丝袜人妻中文字幕| av专区在线播放| 亚洲国产高清在线一区二区三| 婷婷色综合大香蕉| 精品少妇久久久久久888优播| 国产美女午夜福利| 国产成人精品一,二区| 亚洲色图av天堂| 日日啪夜夜撸| 一边亲一边摸免费视频| 国产亚洲精品久久久com| 别揉我奶头 嗯啊视频| 成人高潮视频无遮挡免费网站| 中文字幕av成人在线电影| 久久久久网色| 国产日韩欧美亚洲二区| 少妇高潮的动态图| 精品人妻视频免费看| 噜噜噜噜噜久久久久久91| 大香蕉97超碰在线| 老师上课跳d突然被开到最大视频| 日本熟妇午夜| 深夜a级毛片| 国产精品三级大全| 乱系列少妇在线播放| 亚洲av中文字字幕乱码综合| 午夜福利高清视频| 国产国拍精品亚洲av在线观看| 插阴视频在线观看视频| 中文字幕免费在线视频6| 国产精品.久久久| 免费播放大片免费观看视频在线观看| 国产av国产精品国产| 亚洲人与动物交配视频| 国产欧美日韩精品一区二区| 身体一侧抽搐| 国产亚洲91精品色在线| 亚洲精品日本国产第一区| 黄色欧美视频在线观看| 欧美xxⅹ黑人| 一本色道久久久久久精品综合| 久久国内精品自在自线图片| 成人综合一区亚洲| 夜夜看夜夜爽夜夜摸| 丰满人妻一区二区三区视频av| 国产一区二区亚洲精品在线观看| 国产免费一区二区三区四区乱码| 在线亚洲精品国产二区图片欧美 | 丰满乱子伦码专区| av卡一久久| 色视频www国产| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看| 听说在线观看完整版免费高清| 啦啦啦啦在线视频资源| 黄色配什么色好看| 久久久久久伊人网av| 国产 精品1| 国产乱人偷精品视频| 精品少妇久久久久久888优播| 狂野欧美激情性bbbbbb| .国产精品久久| 嫩草影院精品99| 新久久久久国产一级毛片| 亚洲精品视频女| 青青草视频在线视频观看| 丝袜喷水一区| 日韩 亚洲 欧美在线| 成年女人在线观看亚洲视频 | 久久精品国产亚洲网站| 免费av不卡在线播放| 丰满人妻一区二区三区视频av| 精品人妻熟女av久视频| 91狼人影院| 美女主播在线视频| 久久久久精品性色| 一个人看视频在线观看www免费| 高清日韩中文字幕在线| 人妻少妇偷人精品九色| 成人高潮视频无遮挡免费网站| 国产一区亚洲一区在线观看| 午夜老司机福利剧场| 精品一区二区三卡| 欧美日韩在线观看h| 久久影院123| 狂野欧美白嫩少妇大欣赏| 久久久久久久久久人人人人人人| 国产精品三级大全| 国产乱人偷精品视频| 亚洲av日韩在线播放| 精品少妇久久久久久888优播| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 午夜福利视频精品| 小蜜桃在线观看免费完整版高清| 视频区图区小说| 狂野欧美激情性bbbbbb| 九草在线视频观看| 国产av不卡久久| 中文字幕制服av| 欧美日韩一区二区视频在线观看视频在线 | 久久99热这里只有精品18| 一级黄片播放器| 国产毛片a区久久久久| 国产精品三级大全| 久久久久久久国产电影| 两个人的视频大全免费| 国产精品精品国产色婷婷| 国产成人aa在线观看| 简卡轻食公司| 久久久久久久久久成人| 亚洲国产精品专区欧美| 亚洲欧美中文字幕日韩二区| 亚洲精品一二三| 黄片无遮挡物在线观看| 亚洲av电影在线观看一区二区三区 | 成年av动漫网址| 三级男女做爰猛烈吃奶摸视频| 少妇的逼好多水| 国产亚洲一区二区精品| 久久精品国产亚洲av涩爱| 日韩中字成人| 国模一区二区三区四区视频| 日韩视频在线欧美| 中文欧美无线码| 亚洲高清免费不卡视频| 欧美一级a爱片免费观看看| 婷婷色麻豆天堂久久| 一区二区三区四区激情视频| 日本三级黄在线观看| 国产午夜福利久久久久久| 欧美国产精品一级二级三级 | 草草在线视频免费看| 高清欧美精品videossex| 天堂网av新在线| 日本色播在线视频| 在线观看免费高清a一片| 99久久精品一区二区三区| 亚洲欧美日韩无卡精品| 欧美成人a在线观看| 日韩一区二区视频免费看| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 中文字幕久久专区| 国产精品偷伦视频观看了| 日韩欧美精品免费久久| 80岁老熟妇乱子伦牲交| 日韩中字成人| 在线 av 中文字幕| 国产伦在线观看视频一区| 精品一区二区免费观看| 久久久久网色| 天天一区二区日本电影三级| 国产成年人精品一区二区| 亚洲精品成人av观看孕妇| 久久鲁丝午夜福利片| 九色成人免费人妻av| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 国产高清国产精品国产三级 | 亚洲人成网站在线播| 1000部很黄的大片| 丝袜美腿在线中文| 国产色婷婷99| 日本色播在线视频| 水蜜桃什么品种好| 国产精品一区二区三区四区免费观看| 久久久久久伊人网av| 亚洲欧美一区二区三区国产| 国产毛片a区久久久久| 国产成年人精品一区二区| 99热全是精品| 插逼视频在线观看| 中国国产av一级| 久久久久久久国产电影| 久久亚洲国产成人精品v| 草草在线视频免费看| 成人无遮挡网站| 中文在线观看免费www的网站| 国产乱人视频| 丰满少妇做爰视频| 欧美老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 久久亚洲国产成人精品v| 亚洲av男天堂| 在线免费观看不下载黄p国产| 亚洲国产日韩一区二区| 一边亲一边摸免费视频| 精品亚洲乱码少妇综合久久| 亚洲av国产av综合av卡| 97热精品久久久久久| 免费看光身美女| 精品午夜福利在线看| 国产片特级美女逼逼视频| 插逼视频在线观看| 久久精品久久精品一区二区三区| 人妻 亚洲 视频| 日本wwww免费看| 热re99久久精品国产66热6| 精品熟女少妇av免费看| 黄色怎么调成土黄色| 秋霞伦理黄片| 久久99热这里只有精品18| 国产69精品久久久久777片| 男女边摸边吃奶| 王馨瑶露胸无遮挡在线观看| 一个人看视频在线观看www免费| 精品久久久久久久久av| 伊人久久国产一区二区| 国产精品成人在线| 18禁裸乳无遮挡免费网站照片| 国产精品不卡视频一区二区| 国产精品久久久久久精品电影| 狂野欧美白嫩少妇大欣赏| av.在线天堂| 亚洲av一区综合| 欧美97在线视频| 视频区图区小说| 天堂俺去俺来也www色官网| 人体艺术视频欧美日本| 国产精品女同一区二区软件| 亚洲人成网站高清观看| 深夜a级毛片| 亚洲最大成人手机在线| 九草在线视频观看| 激情 狠狠 欧美| 国产日韩欧美亚洲二区| 国产真实伦视频高清在线观看| 国产片特级美女逼逼视频| 欧美区成人在线视频| 亚洲av电影在线观看一区二区三区 | 欧美+日韩+精品| 美女国产视频在线观看| 国产美女午夜福利| 肉色欧美久久久久久久蜜桃 | 国产毛片a区久久久久| 成人特级av手机在线观看| 成人综合一区亚洲| 亚洲天堂av无毛| 热re99久久精品国产66热6| 久久久久久九九精品二区国产| 一区二区三区乱码不卡18| 一个人看视频在线观看www免费| 有码 亚洲区| 老师上课跳d突然被开到最大视频| 欧美日韩在线观看h| 亚洲成人久久爱视频| av.在线天堂| 国产免费视频播放在线视频| 日韩在线高清观看一区二区三区| av又黄又爽大尺度在线免费看| 成人综合一区亚洲| 伦理电影大哥的女人| 99九九线精品视频在线观看视频| 免费人成在线观看视频色| 亚洲av福利一区| 精品亚洲乱码少妇综合久久| 少妇人妻一区二区三区视频| 少妇 在线观看| 1000部很黄的大片| 春色校园在线视频观看| 成人免费观看视频高清| 亚洲av电影在线观看一区二区三区 | 国产午夜福利久久久久久| 美女内射精品一级片tv| 免费看光身美女| 精品一区在线观看国产| 欧美潮喷喷水| 亚洲自偷自拍三级| 国产大屁股一区二区在线视频| 国产一区二区在线观看日韩| 99热这里只有是精品在线观看| 成人毛片a级毛片在线播放| 午夜福利视频1000在线观看| 网址你懂的国产日韩在线| 我要看日韩黄色一级片| av专区在线播放| 亚洲怡红院男人天堂| 亚洲不卡免费看| 少妇被粗大猛烈的视频| 欧美丝袜亚洲另类| 白带黄色成豆腐渣| 搡老乐熟女国产| 另类亚洲欧美激情| 婷婷色av中文字幕| 插逼视频在线观看| 久久99热这里只频精品6学生| 午夜精品一区二区三区免费看| 免费播放大片免费观看视频在线观看| 干丝袜人妻中文字幕| 婷婷色麻豆天堂久久| 国产黄色视频一区二区在线观看| 你懂的网址亚洲精品在线观看| 欧美成人a在线观看| www.av在线官网国产| 国产综合精华液| 国产伦理片在线播放av一区| 亚洲精品国产成人久久av| 免费人成在线观看视频色| 高清av免费在线| 国产高清三级在线| 97超视频在线观看视频| 国产爽快片一区二区三区| av播播在线观看一区| 韩国高清视频一区二区三区| av在线观看视频网站免费| 国产精品一二三区在线看| 国产亚洲5aaaaa淫片| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 国语对白做爰xxxⅹ性视频网站| 夫妻性生交免费视频一级片| 欧美xxxx黑人xx丫x性爽| 成年版毛片免费区| 少妇猛男粗大的猛烈进出视频 | 国产成人精品婷婷| 免费少妇av软件| 国产av不卡久久| 精品一区二区三卡| 丰满人妻一区二区三区视频av| av在线app专区| 免费播放大片免费观看视频在线观看| 国产v大片淫在线免费观看| 欧美日韩精品成人综合77777| 嘟嘟电影网在线观看| 久久国产乱子免费精品| 美女高潮的动态| 中文欧美无线码| 亚洲成人一二三区av| 国产午夜精品久久久久久一区二区三区| 韩国高清视频一区二区三区| 哪个播放器可以免费观看大片| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 如何舔出高潮| 久久精品国产自在天天线| 精品99又大又爽又粗少妇毛片| 国产成人91sexporn| 涩涩av久久男人的天堂| 久久久久久久久大av| 亚洲人成网站高清观看| 亚洲av免费在线观看| 夜夜爽夜夜爽视频| 高清av免费在线| 午夜免费男女啪啪视频观看| 久久久精品94久久精品| 赤兔流量卡办理| 2018国产大陆天天弄谢| 免费人成在线观看视频色| 国国产精品蜜臀av免费| 成人午夜精彩视频在线观看| 免费大片18禁| 少妇高潮的动态图| 久久99热这里只频精品6学生| 免费大片黄手机在线观看| 毛片一级片免费看久久久久| 国产av码专区亚洲av| 老司机影院成人| 男女啪啪激烈高潮av片| 久久99热6这里只有精品| 亚洲成人中文字幕在线播放| 亚洲精品国产av蜜桃| 最新中文字幕久久久久| 99热这里只有是精品50| 高清av免费在线| 亚洲精品一二三| 国产av国产精品国产| 国产高清不卡午夜福利| 国产成人a∨麻豆精品| 欧美三级亚洲精品| 久久久久网色| av在线观看视频网站免费| 18禁动态无遮挡网站| 精品国产乱码久久久久久小说| 美女视频免费永久观看网站| 日韩制服骚丝袜av| 日本一本二区三区精品| 有码 亚洲区| 亚洲性久久影院| 一个人观看的视频www高清免费观看| 插逼视频在线观看| 亚洲国产色片| 中文欧美无线码| 中文字幕人妻熟人妻熟丝袜美| 一级片'在线观看视频| 熟女av电影| av国产久精品久网站免费入址| 熟女电影av网| 狂野欧美激情性bbbbbb| av免费观看日本| 久久久a久久爽久久v久久| 国国产精品蜜臀av免费| 不卡视频在线观看欧美| 久久97久久精品| 亚洲经典国产精华液单| 在线 av 中文字幕| 2021天堂中文幕一二区在线观| 免费看av在线观看网站| 久久久久久伊人网av| 日韩欧美一区视频在线观看 | 寂寞人妻少妇视频99o| 麻豆乱淫一区二区| 亚洲精品成人久久久久久| 国产高清三级在线| 亚洲欧洲日产国产| 亚洲国产精品999| 嫩草影院新地址| 五月开心婷婷网|