• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mo-Ni2P/SBA-15催化劑的制備、表征及加氫脫硫催化性能

    2015-12-29 11:18:51王周君吳平易劉坤紅胡亞瓊季生福北京化工大學(xué)化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室北京0009中國(guó)石油石油化工研究院北京0095
    物理化學(xué)學(xué)報(bào) 2015年3期
    關(guān)鍵詞:劉坤北京化工大學(xué)李成

    王周君 吳平易, 蘭 玲 劉坤紅 胡亞瓊 季生福,*(北京化工大學(xué),化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京0009;中國(guó)石油石油化工研究院,北京0095)

    Mo-Ni2P/SBA-15催化劑的制備、表征及加氫脫硫催化性能

    王周君1吳平易1,2蘭 玲2劉坤紅2胡亞瓊2季生福1,*
    (1北京化工大學(xué),化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100029;2中國(guó)石油石油化工研究院,北京100195)

    以介孔分子篩SBA-15為載體,通過(guò)分步浸漬硝酸鎳、磷酸氫二銨、鉬酸銨,然后在H2氣流下程序升溫還原(H2-TPR),制備了一系列不同Mo含量的Mo-Ni2P/SBA-15催化劑.采用X射線衍射(XRD)、氮?dú)馕摳?BET)、透射電子顯微鏡(TEM)和X射線光電子能譜(XPS)對(duì)催化劑的結(jié)構(gòu)進(jìn)行了表征,評(píng)價(jià)了催化劑對(duì)二苯并噻吩(DBT)的加氫脫硫(HDS)活性.結(jié)果表明,Mo-Ni2P/SBA-15催化劑仍然保留有介孔結(jié)構(gòu),催化劑的物相主要是Ni2P.催化劑表面的Ni以Niδ+和Ni2+形式存在;P以Pδ-和P5+形式存在;Mo以Moδ+和Mo6+形式存在.Mo能促進(jìn)催化性能的提高,其中Mo含量為1%(w,質(zhì)量分?jǐn)?shù))的Mo-Ni2P/SBA-15催化劑具有最好的二苯并噻吩加氫脫硫催化活性,在反應(yīng)溫度為380°C,反應(yīng)壓力為3.0 MPa的條件下,二苯并噻吩的轉(zhuǎn)化率可達(dá)99.03%,所有考察的Mo-Ni2P/SBA-15都以直接加氫脫硫(DDS)途徑為主.

    Mo;Ni2P;二苯并噻吩;加氫脫硫;介孔

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    In recent years,environmental regulations have been tightened in many countries all over the world to limit the sulfur(S)content of fuel to ultra-low levels(10×10-6(mass fraction,w)),aiming at mitigating the exhaust emission of SO2and improving the air quality.1To fulfil such regulations,>99.99%of S should be removed from a typical crude oil containing 1.5%(w)of S.This removal process is termed as deep hydrodesulfurization(HDS), in which the catalyst plays a key role.2,3The classic Mo(W)Co(Ni)/ Al2O3HDS catalyst cannot meet the requirements.Therefore,it is of great urgency to develop new catalysts with exceptional HDS performances.4,5

    The transition metal phosphides are reported as a family of prospective catalysts with high activity,good stability,and excellent S resistance,among which nickel phosphide exhibits the best catalytic performances and molybdenum phosphide also possesses good activity.6,7Besides,it is well known that in the classic HDS catalysts,the addition of Ni toAl2O3-supported MoS2catalysts would efficiently promote the catalytic performances.8,9Therefore,it is of interest to study the effect of Mo on the structure and HDS performances of nickel phosphide catalysts.Up to now,a few studies have been conducted but controversial results were reported.10-12For example,Rodriguez et al.10reported that the MoNiP/SiO2catalyst is much less active than the monometallic phosphide catalysts in the HDS of thiophene,which was ascribed to the stronger interactions between MoNiP and SiO2due to the smaller size of the supported MoNiP particles relative to the supported Ni2P and MoP catalysts.On the contrary,Sun and coworkers11reported that the activities of the phosphides in the HDS of dibenzothiophene(DBT)followed the order of Ni2P/SiO2>Ni-Mo-P/SiO2>MoP/SiO2.The Ni sites in the Ni-Mo-P/SiO2catalysts were found to play a major role and no synergetic effect was observed between the phosphided Ni and the Mo atoms. Wang and Smith12reported similar activity trend on the unsupported metal phosphides for the HDS of 4,6-dimethyldibenzothiophene(4,6-DMDBT),which was interpreted by different electronic properties of the metal cations in Ni2P,Ni-Mo-P,and MoP.

    Herein,the effect of Mo on the structure and HDS performances of nickel phosphide catalysts was further clarified.Silica has been most widely employed as the support for nickel phosphide because the support-precursor interaction is weak,which benefits the catalytic performances.13The ordered mesoporous silica SBA-15 has attracted particular attention due to its superior HDS performances than the traditional silica support.The unique textural properties(high specific surface areas,large pore volumes,and narrow pore size distributions)of SBA-15 lead to better dispersion of the active phases,thus improving the catalytic performances of the phosphide catalysts.14,15Therefore,the Ni2P/ SBA-15 catalysts were employed as the model phosphide catalysts.A series of Mo-promoted Ni2P/SBA-15 catalysts with various Mo contents(0.5%,1%,3%,5%,7%(w))were prepared by the temperature-programmed reduction(TPR)treatment following the subsequent incipient impregnation method.X-ray diffraction (XRD)and N2sorption analysis were employed to characterize the catalyst structure.The HDS of DBT was performed to evaluate the catalytic performances.

    2 Experimental

    2.1 Preparation of samples

    The mesoporous molecular sieve SBA-15 was synthesized according to the method described in the literature16using a triblock copolymer(P123,EO20PO70EO20(EO:ethylene oxide,PO:propylene oxide),AR,Aldrich)as the structure-directing reagent and tetraethyl orthosilicate(TEOS,AR,Beijing Chemical Works)as the silica precursor.P123(4 g)was dissolved in a mixture of deionized water(90 mL)and hydrochloric acid(60 mL,4 mol·L-1) followed by a stirring at 40°C for 2 h.TEOS(8.5 g)was then slowly added to the mixture and subsequently stirred at 40°C for 22 h.After that,the gel mixture was transferred into a Teflon bottle and aged at 100°C for 24 h under static condition.The obtained solid sample was filtered,washed with the deionized water until neutral pH,and dried at room temperature.To remove the organic template,the sample was finally calcined at 550°C for 6 h.

    The Mo-promoted Ni2P/SBA-15 catalysts with the initial P/Ni molar ratio of 2,the Ni2P content of 40%(w),and the Mo content varying from 0.5%to 7%(w)were prepared by the subsequent incipient impregnation method.Firstly,Ni2P/SBA-15 precursors were prepared by a co-impregnation method using Ni(NO3)2· 6H2O as the nickel source,(NH4)2HPO4as the phosphorus source, and SBA-15 as the support.The P/Ni molar ratio in the nickel and phosphorus sources was set at 2.SBA-15 was impregnated with the required amount of Ni(NO3)2·6H2O and(NH4)2HPO4aqueous solution at room temperature for 24 h,followed by drying at 100 oC for another 24 h.Then the sample was calcined at 500°C for 4 h to give the oxidic precursor of Ni2P/SiO2catalyst.Secondly, the Mo-promoted Ni2P/SBA-15 catalyst was prepared by impregnating an appropriate content of Mo(NO3)2·6H2O aqueous solution onto the obtained Ni2P/SBA-15 oxidic precursor at room temperature for 12 h,followed by drying at 120°C for 24 h.Then the sample was calcined at 500°C for 4 h to give the oxidic precursor of Mo-Ni2P/SiO2catalyst.After that,the Mo-Ni2P/SiO2oxidic precursors were pelletized to 40-60 mesh(250-420μm) and treated by TPR in a fixed-bed quartz reactor under atmospheric pressure in flowing H2(100 mL·min-1).The temperature was increased from room temperature to 300oC at a heating rate of 10°C·min-1,then to 650°C at 1°C·min-1,and held at 650°C for 2 h,followed by cooling to room temperature in the H2flow. Finally,the sample was passivated at room temperature with a 1.0%(volume fraction,φ)O2/Ar flow(50 mL·min-1)for 2 h.Such passivated sample was used for structure characterization or catalytic investigation.The sample was denoted as xMo-Ni2P/SBA-15 catalyst,where x%was the nominal mass fraction of Mo.

    2.2 Catalyst characterization

    The XRD patterns were collected on a Rigaku D/MAX2500VB 2+/PC system using Cu Kαradiation(λ=0.154056 nm)at 40 kV and 200 mA.The XRD patterns were collected at a scanning speed of 10(°)·min-1in the 2θ range of 10°-85°.The surface areas and porosity of the samples were characterized with N2sorption analysis.N2adsorption-desorption isotherms were measured at-196°C on a Sorptomatic 1990 analyzer(Thermo Corp.).Before the measurements,the samples were outgassed at 300°C for 4.0 h.The Brumauer-Emmett-Teller(BET)method was employed to calculate the specific surface areas.The pore volumes and pore size distributions were derived from the desorption branches of the isotherms using the Barrett-Joyner-Halanda(BJH)model.Transmission electron microscopy(TEM) experiments were carried out in a JEOL JEM-2100 microscope with an accelerating voltage of 200 kV.The microscope was equipped with an electron gun with LaB6and an objective lens (Focal length,2.3 mm;Spherical aberration,1.0 mm;Chromatic aberration,1.4 mm;point to point resolution,0.23 nm).The samples were dispersed in ethanol and placed on a copper grid before TEM examinations.The XPS experiments were carried out in an ESCALAB 250(Thermo Electron Co.)instrument using Al Kαas the exciting radiation at constant pass energy of 50 eV. Binding energies were calibrated using the carbon present as a contaminant(C 1s,285.0 eV).

    2.3 Catalytic activity

    The catalytic performance of the catalyst was evaluated by the HDS of DBT,which was carried out in a high pressure fixed-bed continuous flow stainless steel reactor(i.d.9.0 mm)with a central thermocouple to monitor the temperature of the catalyst bed.For each test,0.3 g of the catalyst(40-60 mesh)was diluted with quartz sands to fill the reactor.H2flow was regulated by a mass flow controller and the liquid feed consisting of 1.0%(w)DBT in decalin was introduced into the reactor by a piston pump.The S content in the feed corresponded to 1740×10-6(mass fraction,w). Aliquid hourly space velocity(LHSV)of 1.9 h-1was used in the present work.Preliminary tests have confirmed that both the internal and external diffusions were completely eliminated under the current experimental conditions.The catalyst was pre-reduced in-situ by flowing 40 mL·min-1H2at 500°C for 2 h.The catalytic activities were investigated under the total pressure of 3.0 MPa, at the temperature from 300 to 380°C,with the volume ratio of H2to liquid feed at 400.The activity data were collected after 0.5 h duration at each temperature.The liquid products were collected at 1.0 h intervals and analyzed off-line by a gas chromatography (SP 2100,Beijing Beifenruili Analytic Instrument(Group)Co., Ltd.)equipped with a flame ionization detector(FID)and a capillary column(HJ.PONA,50 m×0.20 mm×0.50 μm).The main liquid products of the reaction were biphenyl(BP)and cyclohexylbenzene(CHB)with the S content being converted to H2S.Therefore,the HDS performance of the catalysts can be evaluated by the conversion of DBT.

    3 Results and discussion

    3.1 XRD characterization

    XRD characterization was employed to investigate the impact of the Mo on the bulk phase of metal phosphides in the Mopromoted Ni2P/SBA-15 catalysts.Fig.1 shows the XRD patterns of xMo-Ni2P/SBA-15 catalysts with various Mo contents.For the un-promoted 0Mo-Ni2P/SBA-15 catalyst(Fig.1(a)),a series of diffraction peaks at 2θ of 40.6°,44.5°,47.2°,54.1°,54.9°,74.8°, and 80.1°were observed,which were assigned to Ni2P(JCPDS No.03-0953).After introduction of Mo promoters(Fig.1(b-f)), the intensity of the peaks due to Ni2P phase was diminished. According to the Scherrer equation,the average crystalline size of Ni2P from Fig.1(a)to Fig.1(f)was calculated to be 21.7,20.5, 19.6,18.8,16.3,15.9 nm,respectively(Table 1).These results indicated that the dispersion of the Ni2P phase was improved in the Mo-promoted Ni2P/SBA-15 catalysts.Similar phenomena have been reported by Sun11and Chen17et al.with TEM characterizations.Such phenomena should be related with the different behaviors between Ni and Mo species during H2-TPR process. The precursor of Mo-containing phosphides is more difficult to be reduced than that of Ni2P phase;therefore,improved dispersion of Ni2P was observed after the addition of Mo.17Besides,no new diffraction patterns were detected.That is,no separate phase containing Mo was evident,either due to the low Mo loading or the high dispersion of the formed phases.18,19

    Fig.1 XRD patterns of xMo-Ni2P/SBA-15 catalysts with various Mo contents

    Table1 Pore structure parameters of xMo-Ni2P/SBA-15 catalysts with various Mo contents

    3.2 N2adsorption-desorption

    The xMo-Ni2P/SBA-15 catalysts with various Mo contentswere characterized by the N2adsorption-desorption measurement. Fig.2 illustrated that the isotherms for all of the samples belonged to type IV and exhibited a hysteresis loop,which were typical for the regular mesoporous materials.20These results suggested that the ordered mesoporous structure of Ni2P/SBA-15 catalysts was mainly maintained after the introduction of Mo promoters.

    Fig.2 N2adsorption-desorption isotherms of xMo-Ni2P/SBA-15 catalysts with various Mo contents

    The pore size distribution of the xMo-Ni2P/SBA-15 catalysts was displayed in Fig.3.For the un-promoted 0Mo-Ni2P/SBA-15 catalyst(Fig.3(a)),only one peak was observed with the average size(DBJH)of 6.3 nm,which meant that the formed Ni2Pphase was uniformly distributed inside the mesoporous,consistent with our previous studies.18For the 0.5Mo-Ni2P/SBA-15 and 1Mo-Ni2P/ SBA-15 catalysts(Fig.3(b,c)),similar pore size distribution was observed while the DBJHwas slightly reduced to around 6.0 nm, indicating that the mesopores were well maintained after introducing a low content of Mo promoters.As the Mo content increased to 3%(w),a new aperture was developed with the DBJH= 3.8 nm,which became dominant as the Mo content further increased.The development of a new aperture with a lower DBJHmay be caused by the blockage of the mesoporous with the accumulated metal phosphides.It had been observed previously by our group on the Ni2P/SBA-15 catalysts.21The development of a new aperture with a specific DBJHshould be related with the uniform pore diameter of the SBA-15 support.

    Fig.3 Pore size distributions of xMo-Ni2P/SBA-15 catalysts with various Mo contents

    The pore structure parameters for the characterized samples were summarized in Table 1.It is clear that the pore structure parameters of the Mo-promoted Ni2P/SBA-15 catalysts depend on the content of the added Mo.At low Mo loadings(0.5%,1%,3%, and 5%(w)),a slight increase in the specific surface area and a slight decrease in the pore volume were observed in comparison with the un-promoted 0Mo-Ni2P/SBA-15 catalyst.The slight increase in the specific surface area may be related to the improved dispersion of Ni2P after the introduction of Mo promoters, as suggested by the aforementioned XRD results.The slight decrease of the pore volume should be caused by the larger amount of metal phosphides accumulated in the mesoporous.At high Mo loading(7%(w)),both the specific surface area and the pore volume decreased compared with the un-promoted counterpart, which suggested that the excess of Mo promoters blocked the mesoporous.

    3.3 TEM measurement

    Fig.4 TEM images of xMo-Ni2P/SBA-15 catalysts

    TEM images were taken to investigate the dispersion and morphology of the xMo-Ni2P/SBA-15 catalysts with various Mo contents.Fig.4 shows the TEM images for the 0Mo-Ni2P/SBA-15, 1Mo-Ni2P/SBA-15,and 7Mo-Ni2P/SBA-15 catalysts.All of the catalysts exhibited a well-ordered mesoporous channel structure,which supported the aforementioned N2sorption results.Besides, dark particles were observed in the mesopores,which were assigned as Ni2P phases based on the EDS analysis.On the other hand,some relatively large particles were also noticed on the surface,which was consistent with the crystalline size of Ni2P calculated by Scherrer equation as in XRD analysis.

    3.4 XPS characterization

    XPS characterization was conducted to study the surface property of the Mo-Ni2P/SBA-15 catalysts.Fig.5 shows the XPS spectra of the 1Mo-Ni2P/SBA-15 catalyst.Characteristic Ni 2p peaks were observed at 853.3 and 857.4 eV,corresponding to Niδ+(0<δ<2)in Ni2P and Ni2+in Ni3(PO4)2,respectively.22P 2p XPS peaks were observed at 129.5,133.3,and 135.3 eV.Based on the literature,23the peak at 129.5 eV was ascribed as Pδ-in metal phosphides while the peaks at 133.3 and 135.3 eV were assigned as P5+in Ni3(PO4)2and P2O5,respectively.For Mo 3d XPS spectra, four peaks were observed at 228.4,231.6,232.8,and 236.1 eV. The peaks at 228.4 and 231.6 eV corresponded to Mo 3d5/2and Mo 3d3/2of Moδ+(0<δ<4)while the peaks at 232.8 and 236.1 eV were from Mo 3d5/2and Mo 3d3/2of Mo6+,respectively.24,18

    The binding energy and surface atom concentration of the Mo-Ni2P/SBA-15 catalysts with various Mo contents were summarized in Table 2.Compared with the Ni2P/SBA-15 catalyst,little change was observed in the binding energy of Ni 2p and P 2p in the Mo-Ni2P/SBA-15 catalysts.Mo 3d peaks were detected after the added Mo content increased up to 1.0%(w).Since Niδ+,Pδ-, and Moδ+species are the constituents of metal phosphides,it is crucial to study the concentration ratio of Niδ+/ΣNi,Pδ-/ΣP,and Moδ+/ΣMo on the surface.As revealed in Table 2,after addition of Mo,study the concentration ratio of Niδ+/ΣNi and Pδ-/ΣP increase slightly while study the concentration ratio of Moδ+/ΣMo keeps almost constant.That is,the addition of Mo would promote the formation of nickel phosphides on the surface,which may provide more active sites for the HDS reactions.

    Fig.5 XPS spectra of the 1Mo-Ni2P/SBA-15 catalyst

    Table2 XPS results of xMo-Ni2P/SBA-15 catalysts with various Mo contents

    3.5 Catalytic activity evaluation

    The effect of Mo contents on the DBT conversion of xMo-Ni2P/ SBA-15 catalysts was investigated at reaction temperature from 300 to 380°C.As demonstrated in Fig.6,the DBT conversion increased with the temperature for all of the xMo-Ni2P/SBA-15 catalysts.In a whole,all of the Mo-promoted Ni2P/SBA-15 catalysts exhibited a superior DBT conversion than the un-promoted counterpart.The XRD results have documented that the dispersion of the Ni2Pphases in the Mo-promoted Ni2P/SBA-15 catalysts was improved after the introduction of the Mo promoters,which may explain the superior DBT conversion on the Mo-promoted Ni2P/ SBA-15 catalysts.Among the Mo-promoted Ni2P/SBA-15 cata-lysts,the 1Mo-Ni2P/SBA-15 catalyst exhibited the best activity at temperature from 340 to 380oC while the 7Mo-Ni2P/SBA-15 catalyst exhibited the best activity at lower temperature,which demonstrated that the promotion effect depended on the Mo contents at various temperatures.The addition of Mo leads to the improved dispersion of Ni2P,which benefits the HDS activity.On the other hand,the addition of Mo results in the blockage of the surface Ni species by Mo,which deteriorates the HDS activity. Therefore,an optimal amount of Mo exists in the present work.

    Fig.6 Catalytic activity of xMo-Ni2P/SBA-15 catalysts with various Mo contents for HDS of DBT

    Fig.7 BPand CHB selectivities over xMo-Ni2P/SBA-15 catalysts with various Mo contents

    It is well established that the HDS of DBT proceeds mainly via two parallel reaction pathways.11,25,26One is the direct desulfurization(DDS)with BP as the product.The other is the hydrogenation followed by the desulfurization(HYD)with CHB as the final product.Fig.7 illustrates the selectivity profiles for the HDS of DBT on xMo-Ni2P/SBA-15 catalysts with various Mo contents at reaction temperature from 300 to 380°C.For all of the tested catalysts,the BP selectivity was much higher than the CHB selectivity at each temperature,indicating that DBT was mainly converted via the DDS pathway.After introduction of the Mo promoters,the CHB selectivity was slightly enhanced compared with the un-promoted counterpart.The Mo content was found to have little impact on the BP/CHB selectivity of the Mo-promoted Ni2P/SBA-15 catalysts.A recent study27,28showed that two types of sites,tetrahedral Ni(1)sites and square pyramidal Ni(2)sites, presented in the nickel phosphides.The Ni(1)sites carried out DDS route while the Ni(2)sites were responsible for the HYD route.The present work suggested that the addition of Mo would increase the portion of the Ni(2)sites in the nickel phosphide phases,thus accelerating the HYD route.Sun et al.11reported that the Ni-Mo-P/SiO2catalyst exhibited a slightly higher CHB selectivity than the Ni2P/SiO2catalyst,in agreement with our results.

    Besides,the 1Mo-Ni2P/SBA-15 catalyst has been employed to test the stability up to 50 h at 380°C under 3.0 MPa with the volume ratio of H2to liquid feed at 400.It was found that both the DBT conversion and BP/CHB selectivity possessed a good stability under the current conditions.XRD characterizations confirmed that the phosphide phase and dispersion of the 1Mo-Ni2P/ SBA-15 catalyst were well maintained after the stability test.

    4 Conclusions

    A series of xMo-Ni2P/SBA-15 catalysts with the initial P/Ni molar ratio of 2,the Ni2P content of 40%(w),and the Mo content varying from 0.5%to 7%(w)were prepared by the TPR treatment following the subsequent incipient impregnation method and characterized with XRD and N2sorption for the HDS of DBT reaction.Only Ni2P phases was detected with the Mo contents up to 7%(w).The dispersion of the Ni2P phase was improved after the introduction of Mo promoters.The 0.5Mo-Ni2P/SBA-15 and 1Mo-Ni2P/SBA-15 catalysts showed a narrow pore size distribution with DBJHclose to 6.0 nm,while an extra aperture with DBJH=3.8 nm was developed on the xMo-Ni2P/SBA-15 catalysts with higher Mo contents.All of the Mo-promoted Ni2P/SBA-15 catalysts exhibited a superior DBT conversion than the un-promoted counterpart,which may be related to the improved dispersion of the Ni2P phase.Among the Mo-promoted Ni2P/SBA-15 catalysts,the promotion effect depended on the Mo contents at various temperatures.DBT was mainly converted via the DDS pathway on the tested catalysts.The HYD pathway was slightly enhanced after the addition of Mo promoters.The Mo content had little impact on the selectivity of the Mo-promoted Ni2P/SBA-15 catalysts.

    (1)Song,C.Catal.Today2003,86,211.doi:10.1016/S0920-5861 (03)00412-7

    (2)Babich,I.V.;Moulijn,J.A.Fuel2003,82,607.doi:10.1016/ S0016-2361(02)00324-1

    (3)Stanislaus,A.;Marafi,A.;Rana,M.S.Catal.Today2010,153, 1.doi:10.1016/j.cattod.2010.05.011

    (4)Song,H.;Dai,M.;Song,H.L.Prog.Chem.2012,24,757. [宋 華,代 敏,宋華林.化學(xué)進(jìn)展,2012,24,757.]

    (5)Wei,N.;Ji,S.;Wu,P.;Guo,Y.;Liu,H.;Zhu,J.;Li,C.Catal. Today2009,147S,S66.

    (6)Oyama,S.T.;Gott,T.;Zhao,H.;Lee,Y.K.Catal.Today2009,143,94.doi:10.1016/j.cattod.2008.09.019

    (7)Prins,R.;Bussell,M.E.Catal.Lett.2012,142,1413.doi: 10.1007/s10562-012-0929-7

    (8)Prins,R.;de Beer,V.H.J.;Somorjai,G.A.Catal.Rev.Sci.Eng.1989,31,1.doi:10.1080/01614948909351347

    (9)Tops?e,H.;Clausen,B.S.;Massoth,F.E.Hydrotreating Catalysis.In Science and Technology,Vol.11;Springer:New York,1996.

    (10)Rodriguez,J.A.;Kim,J.Y.;Hanson,J.C.;Sawhill,S.J.; Bussell,M.E.J.Phys.Chem.B2003,107,6276.doi:10.1021/ jp022639q

    (11)Sun,F.;Wu,W.;Wu,Z.;Guo,J.;Wei,Z.;Yang,Y.;Jiang,Z.; Tian,F.;Li,C.J.Catal.2004,228,298.doi:10.1016/j. jcat.2004.09.002

    (12)Wang,R.;Smith,K.J.Appl.Catal.A2009,361,18.doi: 10.1016/j.apcata.2009.03.037

    (13)Oyama,S.T.J.Catal.2003,216,343.doi:10.1016/S0021-9517 (02)00069-6

    (14)Zhao,P.F.;Ji,S.F.;Wei,N.;Ma,Q.;Liu,H.;Li,C.Y.Acta Phys.-Chim.Sin.2011,27,1737.[趙鵬飛,季生福,魏 妮,馬 倩,劉 輝,李成岳.物理化學(xué)學(xué)報(bào),2011,27,1737.]doi: 10.3866/PKU.WHXB20110728

    (15)Li,Q.;Wu,P.;Lan,L.;Ni,W.;Ji,S.Appl.Petrochem.Res.2014,4,209.doi:10.1007/s13203-013-0039-5

    (16)Zhao,D.;Sun,J.;Li,Q.;Stucky,G.D.Chem.Mater.2000,12, 275.doi:10.1021/cm9911363

    (17)Chen,J.;Yang,Y.;Shi,H.;Li,M.;Chu,Y.;Pan,Z.;Yu,X.Fuel2014,129,1.doi:10.1016/j.fuel.2014.03.049

    (18)Guo,Y.N.;Zeng,P.H.;Ji,S.F.;Wei,N.;Liu,H.;Li,C.Y. Chin.J.Catal.2010,31,329.[郭亞男,曾鵬暉,季生福,魏妮,劉 輝,李成岳.催化學(xué)報(bào),2010,31,329.]

    (19)Li,Q.;Wu,P.;Lan,L.;Liu,H.;Ji,S.Catal.Today2013,216, 38.doi:10.1016/j.cattod.2013.06.016

    (20)Wang,Z.J.;Xie,Y.;Liu,C.J.J.Phys.Chem.C2008,112, 19818.

    (21)Huang,X.F.;Ji,S.F.;Wu,P.Y.;Liu,Q.Q.;Liu,H.;Zhu,J.Q.; Li,C.Y.Acta Phys.-Chim.Sin.2008,24,1773.[黃曉凡,季生福,吳平易,劉倩倩,劉 輝,朱吉?dú)J,李成岳.物理化學(xué)學(xué)報(bào),2008,24,1773.]doi:10.3866/PKU.WHXB20081007

    (22)Abu,I.I.;Smith,K.J.J.Catal.2006,241,356.doi:10.1016/j. jcat.2006.05.010

    (23)Cecilia,J.A.;Infantes,M.A.;Rodríguez,C.E.J.Catal.2009,263,4.doi:10.1016/j.jcat.2009.02.013

    (24)Li,Y.P.;Liu,D.P.;Liu,X.;Chai,Y.M.;Liu,C.G.Chin.J. Catal.2006,27,624.[李彥鵬,劉大鵬,劉 曉,柴永明,劉晨光.催化學(xué)報(bào),2006,27,624.]

    (25)Wu,P.Y.;Lan,L.;Ji,S.F.;Wei,N.;Lü,Z.W.;Liu,H.Chin.J. Inorg.Chem.2012,28,565.[吳平易,蘭 玲,季生福,魏妮,呂忠武,劉 輝.無(wú)機(jī)化學(xué)學(xué)報(bào),2012,28,565.]

    (26)Infantes-Molina,A.;Cecilia,J.A.;Pawelec,B.;Fierro,J.L.G.; Rodríguez-Castellón,E.;Jiménez-López,A.Appl.Catal.A2010,390,253.doi:10.1016/j.apcata.2010.10.019

    (27)Zhao,Y.;Xue,M.;Cao,M.;Shen,J.Appl.Catal.B2011,104, 229.doi:10.1016/j.apcatb.2011.03.028

    (28)Oyama,S.T.;Lee,Y.K.J.Catal.2008,258,393.doi:10.1016/j. jcat.2008.06.023

    Preparation,Characterization and Hydrodesulfurization Catalytic Performances of Mo-Ni2P/SBA-15 Catalysts

    WANG Zhou-Jun1WU Ping-Yi1,2LAN Ling2LIU Kun-Hong2HU Ya-Qiong2JI Sheng-Fu1,*
    (1State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029, P.R.China;2Petrochemical Research Institute,PetroChina,Beijing 100195,P.R.China)

    A series of Mo-Ni2P/SBA-15 catalysts with various Mo loadings were prepared by impregnating nickel nitrate,diammonium hydrogen phosphate,and ammonium molybdate onto an SBA-15 support,followed by temperature-programmed reduction(TPR)under H2.The structure of the catalysts was characterized by X-ray diffraction(XRD),N2adsorption-desorption,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).The catalytic performance was evaluated in the hydrodesulfurization(HDS)of dibenzothiophene(DBT).The results indicate that the mesoporous structure was maintained and the Ni2P phase was present in all of the catalysts.The chemical states of Ni were Niδ+and Ni2+,the chemical states of P were Pδ-and P5+,and the chemical states of Mo were Moδ+and Mo6+.Mo was shown to promote the HDS catalytic performance of Ni2P/SBA-15 catalysts.The Mo-Ni2P/SBA-15 catalysts with 1%(w,mass fraction)Mo loading exhibited the highest HDS activity.The conversion of the DBTreached 99.03%under reaction conditions of 380°C and 3.0 MPa.The HDS of DBT proceeded mainly via the direct desulfurization(DDS)pathway over all of the tested Mo-Ni2P/SBA-15 catalysts.

    Mo;Ni2P;Dibenzothiophene;Hydrodesulfurization;Mesoporous

    O643

    10.3866/PKU.WHXB201501094www.whxb.pku.edu.cn

    Received:October 31,2014;Revised:January 7,2015;Published on Web:January 9,2015.

    ?Corresponding author.Email:jisf@mail.buct.edu.cn;Tel:+86-10-64419619.

    The project was supported by the National Key Basic Research Program of China(973)(2006CB202503)and PetroChina Innovation Foundation, China(2010D-5006-0401).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2006CB202503)及中國(guó)石油科技創(chuàng)新基金(2010D-5006-0401)資助

    猜你喜歡
    劉坤北京化工大學(xué)李成
    Effect of thickness on magnetic properties of single domain GdBCO bulk superconductors
    懷念李成章教授
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)流體密封技術(shù)研究中心
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    北京化工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)采編系統(tǒng)正式啟用公告
    碗米成恩斗米成仇:富豪老總魂斷“落魄大哥”
    莊玉庭先負(fù)李成蹊
    棋藝(2016年4期)2016-09-20 05:38:45
    行吟黔境
    誓言超重
    国产在线免费精品| 精品一区在线观看国产| 国精品久久久久久国模美| 国产精品久久久久久精品电影小说| 欧美成人午夜免费资源| 色94色欧美一区二区| 五月伊人婷婷丁香| 91精品国产国语对白视频| 侵犯人妻中文字幕一二三四区| 国产成人精品一,二区| 夫妻性生交免费视频一级片| 日本wwww免费看| 青青草视频在线视频观看| 精品一区二区三区视频在线| 久久久精品免费免费高清| 天堂中文最新版在线下载| 人人妻人人澡人人看| 最近中文字幕高清免费大全6| 久久久久国产精品人妻一区二区| 蜜桃在线观看..| 国产女主播在线喷水免费视频网站| 最近最新中文字幕免费大全7| 丝袜美足系列| 欧美另类一区| 日韩 亚洲 欧美在线| 精品一区二区三卡| 欧美精品人与动牲交sv欧美| 2018国产大陆天天弄谢| 精品卡一卡二卡四卡免费| 中文字幕亚洲精品专区| 欧美最新免费一区二区三区| 成人国语在线视频| 一本久久精品| 日韩视频在线欧美| 男女边摸边吃奶| 高清av免费在线| 亚洲av免费高清在线观看| 91成人精品电影| 欧美最新免费一区二区三区| 国产欧美另类精品又又久久亚洲欧美| a 毛片基地| 一级爰片在线观看| 国产永久视频网站| 中文字幕最新亚洲高清| 超碰97精品在线观看| 亚洲,欧美精品.| 国产极品天堂在线| 午夜免费鲁丝| 老熟女久久久| 大话2 男鬼变身卡| 国产视频首页在线观看| 成人二区视频| 国产精品.久久久| 久久精品国产自在天天线| 亚洲精品久久午夜乱码| 久久久久久久大尺度免费视频| 国产探花极品一区二区| 成人国产麻豆网| 黄色毛片三级朝国网站| 亚洲少妇的诱惑av| 国产成人精品无人区| 一边亲一边摸免费视频| 少妇熟女欧美另类| 亚洲国产日韩一区二区| 美女国产视频在线观看| 丰满少妇做爰视频| 国产日韩欧美在线精品| 国产成人精品久久久久久| xxx大片免费视频| 热99国产精品久久久久久7| 国产成人精品一,二区| 日韩成人伦理影院| 伊人亚洲综合成人网| 亚洲伊人久久精品综合| 国产综合精华液| 免费看av在线观看网站| 久久久久久久久久人人人人人人| 五月玫瑰六月丁香| 麻豆乱淫一区二区| 国产探花极品一区二区| 久久久久精品久久久久真实原创| 亚洲国产最新在线播放| 久久这里有精品视频免费| 日韩人妻精品一区2区三区| 男女国产视频网站| 午夜精品国产一区二区电影| 久久女婷五月综合色啪小说| 中文精品一卡2卡3卡4更新| 女性被躁到高潮视频| 久久婷婷青草| 亚洲天堂av无毛| 久久国产亚洲av麻豆专区| 女的被弄到高潮叫床怎么办| 熟女电影av网| 搡女人真爽免费视频火全软件| videossex国产| 国产精品麻豆人妻色哟哟久久| 亚洲欧美精品自产自拍| 亚洲精品国产色婷婷电影| a级毛色黄片| 成年人免费黄色播放视频| 免费在线观看黄色视频的| 国产成人免费无遮挡视频| 另类精品久久| 国产一级毛片在线| 2018国产大陆天天弄谢| √禁漫天堂资源中文www| 天堂中文最新版在线下载| 欧美精品人与动牲交sv欧美| 黄片无遮挡物在线观看| 亚洲国产av影院在线观看| 99久久中文字幕三级久久日本| 亚洲av电影在线观看一区二区三区| 欧美日韩视频高清一区二区三区二| av不卡在线播放| 国产精品久久久久久精品古装| 久久国产精品男人的天堂亚洲 | 人人妻人人澡人人爽人人夜夜| 22中文网久久字幕| 免费观看a级毛片全部| 欧美另类一区| 日韩欧美精品免费久久| 久久久久久久国产电影| 人人妻人人爽人人添夜夜欢视频| 制服丝袜香蕉在线| 免费高清在线观看视频在线观看| 国产一区二区在线观看av| 久久青草综合色| 国产黄色视频一区二区在线观看| 老司机亚洲免费影院| 欧美另类一区| 好男人视频免费观看在线| 亚洲av在线观看美女高潮| 国产一区二区三区综合在线观看 | 日日爽夜夜爽网站| 亚洲五月色婷婷综合| 精品一品国产午夜福利视频| 久久久国产精品麻豆| 亚洲av欧美aⅴ国产| 99热国产这里只有精品6| 久久久久人妻精品一区果冻| 色婷婷久久久亚洲欧美| 少妇精品久久久久久久| 成人亚洲精品一区在线观看| 国产 一区精品| 夫妻午夜视频| 久久久久网色| 91成人精品电影| 国产免费现黄频在线看| 婷婷色综合大香蕉| 亚洲国产最新在线播放| 婷婷成人精品国产| 赤兔流量卡办理| 男女下面插进去视频免费观看 | 水蜜桃什么品种好| 中文字幕免费在线视频6| 美女中出高潮动态图| 老司机影院毛片| av免费观看日本| 久久影院123| 男人爽女人下面视频在线观看| 涩涩av久久男人的天堂| 90打野战视频偷拍视频| 一区在线观看完整版| 久久热在线av| 侵犯人妻中文字幕一二三四区| 成年动漫av网址| 免费观看在线日韩| 国产成人91sexporn| 好男人视频免费观看在线| 久久久久久人妻| www.av在线官网国产| 国产精品国产三级专区第一集| 看免费av毛片| 免费人成在线观看视频色| 香蕉国产在线看| 天堂8中文在线网| 国产精品蜜桃在线观看| 伦理电影大哥的女人| 亚洲av福利一区| 韩国高清视频一区二区三区| 国产成人精品无人区| 人人妻人人添人人爽欧美一区卜| 精品亚洲成国产av| 久久99精品国语久久久| 2021少妇久久久久久久久久久| 国产精品不卡视频一区二区| 国产精品人妻久久久影院| 黄网站色视频无遮挡免费观看| 久久女婷五月综合色啪小说| 欧美日韩视频高清一区二区三区二| 精品人妻一区二区三区麻豆| 久久99蜜桃精品久久| 国产免费一区二区三区四区乱码| 尾随美女入室| 亚洲美女视频黄频| 国产69精品久久久久777片| 精品视频人人做人人爽| 免费女性裸体啪啪无遮挡网站| 欧美少妇被猛烈插入视频| 老司机影院成人| 另类亚洲欧美激情| 日韩大片免费观看网站| 亚洲精品国产av蜜桃| 交换朋友夫妻互换小说| 免费观看无遮挡的男女| 亚洲精品一二三| 亚洲国产精品专区欧美| 国产无遮挡羞羞视频在线观看| 免费女性裸体啪啪无遮挡网站| 99久久中文字幕三级久久日本| 建设人人有责人人尽责人人享有的| 色网站视频免费| 久久影院123| 黄色 视频免费看| 国产成人精品久久久久久| 久久青草综合色| 成人综合一区亚洲| 亚洲国产精品专区欧美| 亚洲国产成人一精品久久久| 免费人妻精品一区二区三区视频| 人妻少妇偷人精品九色| 国产高清不卡午夜福利| 亚洲 欧美一区二区三区| 日韩精品免费视频一区二区三区 | 亚洲综合精品二区| av有码第一页| 青青草视频在线视频观看| 亚洲第一av免费看| 免费播放大片免费观看视频在线观看| 国产亚洲一区二区精品| 成人毛片a级毛片在线播放| 亚洲 欧美一区二区三区| 国产色婷婷99| 99久久中文字幕三级久久日本| 超碰97精品在线观看| 免费观看在线日韩| 欧美日韩国产mv在线观看视频| 中国美白少妇内射xxxbb| 国产一区亚洲一区在线观看| 国产在线一区二区三区精| 只有这里有精品99| 亚洲国产精品成人久久小说| 免费观看av网站的网址| 亚洲成人手机| 国产在线视频一区二区| 亚洲欧洲日产国产| 又黄又爽又刺激的免费视频.| 两性夫妻黄色片 | 色网站视频免费| 人人澡人人妻人| 国产xxxxx性猛交| 亚洲精品乱码久久久久久按摩| 精品卡一卡二卡四卡免费| 亚洲国产精品999| 亚洲综合色网址| 99久久人妻综合| 国产黄频视频在线观看| 免费黄色在线免费观看| 免费观看av网站的网址| 咕卡用的链子| 亚洲经典国产精华液单| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 欧美精品av麻豆av| 久久这里有精品视频免费| 亚洲av男天堂| 九九爱精品视频在线观看| 国产黄色免费在线视频| 最近2019中文字幕mv第一页| 国产免费一级a男人的天堂| 丝袜美足系列| 亚洲精品美女久久久久99蜜臀 | 国产欧美亚洲国产| 午夜免费鲁丝| 伦精品一区二区三区| 一级a做视频免费观看| 亚洲精品一区蜜桃| 视频区图区小说| 国产精品国产三级国产专区5o| 大话2 男鬼变身卡| av电影中文网址| 国产成人精品福利久久| 天美传媒精品一区二区| kizo精华| 国产精品欧美亚洲77777| 乱码一卡2卡4卡精品| 99香蕉大伊视频| 麻豆精品久久久久久蜜桃| 高清黄色对白视频在线免费看| 精品卡一卡二卡四卡免费| 不卡视频在线观看欧美| 欧美日韩视频高清一区二区三区二| 人妻 亚洲 视频| 精品午夜福利在线看| 乱人伦中国视频| 观看av在线不卡| 欧美成人午夜精品| 一级,二级,三级黄色视频| 日本欧美国产在线视频| 久久久久久久久久久免费av| 久久99热这里只频精品6学生| 国产免费又黄又爽又色| 自拍欧美九色日韩亚洲蝌蚪91| 韩国精品一区二区三区 | 国产一区有黄有色的免费视频| 亚洲美女视频黄频| 人人妻人人添人人爽欧美一区卜| 久久av网站| 多毛熟女@视频| 国产日韩欧美在线精品| 国产一区二区在线观看av| 亚洲精品中文字幕在线视频| 两性夫妻黄色片 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人手机| 成人免费观看视频高清| 久久青草综合色| 中国美白少妇内射xxxbb| 免费av中文字幕在线| 国产免费又黄又爽又色| 自拍欧美九色日韩亚洲蝌蚪91| 91成人精品电影| 精品久久久久久电影网| 亚洲国产精品国产精品| 视频区图区小说| 久久久久久人人人人人| 免费在线观看黄色视频的| 婷婷色av中文字幕| 观看av在线不卡| 欧美3d第一页| 午夜福利在线观看免费完整高清在| av国产久精品久网站免费入址| 亚洲,欧美,日韩| 久久ye,这里只有精品| 日韩一区二区视频免费看| 777米奇影视久久| 久久久a久久爽久久v久久| 精品一区二区免费观看| 伊人久久国产一区二区| 成人国产av品久久久| 国产精品熟女久久久久浪| 九九在线视频观看精品| 国产在视频线精品| 国产成人精品久久久久久| 日韩欧美精品免费久久| 免费av不卡在线播放| 91精品国产国语对白视频| av视频免费观看在线观看| 色哟哟·www| 欧美97在线视频| 亚洲精品色激情综合| 久久久a久久爽久久v久久| 亚洲av.av天堂| 久久精品国产a三级三级三级| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 男女午夜视频在线观看 | 赤兔流量卡办理| 免费av中文字幕在线| 日韩视频在线欧美| 一本色道久久久久久精品综合| 涩涩av久久男人的天堂| 一级毛片 在线播放| 三级国产精品片| 日韩人妻精品一区2区三区| 一本大道久久a久久精品| 久久国产精品大桥未久av| 久久午夜福利片| 国产成人精品在线电影| 一本久久精品| 午夜福利网站1000一区二区三区| 最近2019中文字幕mv第一页| 免费人妻精品一区二区三区视频| 蜜桃国产av成人99| 国产欧美日韩综合在线一区二区| 久久精品国产a三级三级三级| 久久这里只有精品19| 久久精品国产a三级三级三级| 日韩制服骚丝袜av| 99久久人妻综合| av片东京热男人的天堂| 一级爰片在线观看| 国产一区二区在线观看日韩| 天天躁夜夜躁狠狠躁躁| 美女国产视频在线观看| 亚洲第一av免费看| 欧美少妇被猛烈插入视频| 另类亚洲欧美激情| 日韩成人av中文字幕在线观看| 十八禁网站网址无遮挡| 18禁在线无遮挡免费观看视频| 久久女婷五月综合色啪小说| 99久久精品国产国产毛片| 大话2 男鬼变身卡| 97精品久久久久久久久久精品| 亚洲av国产av综合av卡| 欧美亚洲日本最大视频资源| 日韩精品有码人妻一区| 久久久国产欧美日韩av| 色哟哟·www| 免费看不卡的av| 人人澡人人妻人| 黄色配什么色好看| 日韩欧美精品免费久久| 久久人妻熟女aⅴ| 精品国产国语对白av| 在线天堂最新版资源| 99久久精品国产国产毛片| 国产成人精品无人区| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的| 亚洲色图 男人天堂 中文字幕 | 超色免费av| 成人二区视频| 精品一区二区免费观看| 男人添女人高潮全过程视频| 久久影院123| 日本黄色日本黄色录像| 精品国产国语对白av| 天堂中文最新版在线下载| 下体分泌物呈黄色| 黄片无遮挡物在线观看| 欧美成人午夜免费资源| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区日韩欧美中文字幕 | 秋霞伦理黄片| 人人澡人人妻人| 精品酒店卫生间| 性色avwww在线观看| 日本黄大片高清| 51国产日韩欧美| 日本av免费视频播放| 久久久久久人妻| 中国三级夫妇交换| 考比视频在线观看| 久久精品久久精品一区二区三区| 插逼视频在线观看| 最近2019中文字幕mv第一页| 国产熟女午夜一区二区三区| 丁香六月天网| 男女高潮啪啪啪动态图| 免费大片黄手机在线观看| 国产免费一区二区三区四区乱码| 永久免费av网站大全| 亚洲精品成人av观看孕妇| 一区在线观看完整版| 精品亚洲乱码少妇综合久久| 有码 亚洲区| 18禁国产床啪视频网站| 在线观看免费高清a一片| 国产有黄有色有爽视频| 亚洲人与动物交配视频| 69精品国产乱码久久久| 又黄又爽又刺激的免费视频.| 欧美另类一区| 大香蕉久久网| 在线 av 中文字幕| 在线观看免费日韩欧美大片| 欧美成人午夜免费资源| 日韩av免费高清视频| 人妻一区二区av| 大片免费播放器 马上看| 亚洲av日韩在线播放| 韩国av在线不卡| 看非洲黑人一级黄片| tube8黄色片| 国国产精品蜜臀av免费| 久久久久精品久久久久真实原创| 如何舔出高潮| 亚洲成国产人片在线观看| 午夜免费观看性视频| 国产成人av激情在线播放| 国产免费现黄频在线看| 亚洲欧美中文字幕日韩二区| 亚洲色图 男人天堂 中文字幕 | 26uuu在线亚洲综合色| 国产精品麻豆人妻色哟哟久久| 国产片内射在线| 国产在线免费精品| 久久久久网色| 国产熟女午夜一区二区三区| av在线老鸭窝| 搡老乐熟女国产| 成年人免费黄色播放视频| 中文字幕精品免费在线观看视频 | 内地一区二区视频在线| 亚洲内射少妇av| 久久久久精品人妻al黑| 99久国产av精品国产电影| 18在线观看网站| 内地一区二区视频在线| 色哟哟·www| 久久鲁丝午夜福利片| 欧美 亚洲 国产 日韩一| 欧美亚洲 丝袜 人妻 在线| 欧美成人午夜免费资源| √禁漫天堂资源中文www| 久久久久国产网址| 亚洲精品国产av成人精品| 丝袜人妻中文字幕| 国产成人aa在线观看| 少妇被粗大猛烈的视频| 男女无遮挡免费网站观看| 亚洲精品久久午夜乱码| 寂寞人妻少妇视频99o| 啦啦啦啦在线视频资源| 一本—道久久a久久精品蜜桃钙片| 精品一区二区三卡| av在线播放精品| 在线看a的网站| 啦啦啦啦在线视频资源| 各种免费的搞黄视频| 久久av网站| 亚洲综合精品二区| 中文欧美无线码| av在线老鸭窝| 色视频在线一区二区三区| 狠狠婷婷综合久久久久久88av| 亚洲五月色婷婷综合| 精品一区二区三区四区五区乱码 | 久久久国产一区二区| 国产精品不卡视频一区二区| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 国产日韩欧美亚洲二区| 青春草亚洲视频在线观看| 久久久久精品人妻al黑| 精品一区二区三区视频在线| 26uuu在线亚洲综合色| 久久婷婷青草| 国产精品久久久久久av不卡| 亚洲精品视频女| 亚洲伊人色综图| 久久ye,这里只有精品| 黑丝袜美女国产一区| 欧美成人午夜精品| 中国三级夫妇交换| 亚洲在久久综合| 亚洲精品日本国产第一区| 久久99蜜桃精品久久| tube8黄色片| 校园人妻丝袜中文字幕| 国产女主播在线喷水免费视频网站| 亚洲国产成人一精品久久久| 国产亚洲午夜精品一区二区久久| 成人亚洲精品一区在线观看| 国产精品久久久久成人av| 国产 一区精品| 亚洲三级黄色毛片| 91精品国产国语对白视频| 男女啪啪激烈高潮av片| 极品少妇高潮喷水抽搐| 青青草视频在线视频观看| 国产成人精品久久久久久| 晚上一个人看的免费电影| 日本猛色少妇xxxxx猛交久久| av有码第一页| 免费黄色在线免费观看| 色吧在线观看| 捣出白浆h1v1| 午夜激情av网站| 极品人妻少妇av视频| 中国美白少妇内射xxxbb| 国产亚洲精品久久久com| 香蕉国产在线看| 男女无遮挡免费网站观看| 男男h啪啪无遮挡| 日产精品乱码卡一卡2卡三| 日本91视频免费播放| 亚洲精品久久午夜乱码| 22中文网久久字幕| 新久久久久国产一级毛片| 色视频在线一区二区三区| 欧美精品一区二区大全| 亚洲精品一区蜜桃| 天堂8中文在线网| 午夜福利网站1000一区二区三区| 亚洲美女搞黄在线观看| 成人18禁高潮啪啪吃奶动态图| 久久人妻熟女aⅴ| 三上悠亚av全集在线观看| 伦理电影免费视频| 国产精品久久久久久久电影| 女的被弄到高潮叫床怎么办| av一本久久久久| 免费女性裸体啪啪无遮挡网站| 18禁动态无遮挡网站| 国产亚洲最大av| 亚洲第一区二区三区不卡| 中文字幕免费在线视频6| 久久久久人妻精品一区果冻| 制服丝袜香蕉在线| 九九爱精品视频在线观看| 国产成人精品婷婷| 人人妻人人澡人人爽人人夜夜| 激情视频va一区二区三区| 2018国产大陆天天弄谢| 色网站视频免费| 飞空精品影院首页| 亚洲精品国产色婷婷电影| 成年美女黄网站色视频大全免费| 纯流量卡能插随身wifi吗| 国产视频首页在线观看| 制服丝袜香蕉在线| 99久久人妻综合| 日韩成人av中文字幕在线观看| 国产精品 国内视频| 国产色爽女视频免费观看| 国产免费视频播放在线视频| 久久99精品国语久久久| 免费人成在线观看视频色| av电影中文网址|