• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    抗菌醫(yī)藥左氧氟沙星在有機(jī)電致發(fā)光二極管中的應(yīng)用

    2015-12-29 11:18:54苗艷勤高志翔武鈺鈴杜曉剛李源浩劉慧慧賈虎生劉旭光
    物理化學(xué)學(xué)報(bào) 2015年3期
    關(guān)鍵詞:電致發(fā)光山西大同載流子

    苗艷勤 高志翔 武鈺鈴 杜曉剛 李源浩劉慧慧 賈虎生 王 華,* 劉旭光

    (1太原理工大學(xué)新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,太原030024;2山西大同大學(xué)物理與電子科學(xué)學(xué)院,山西大同037009;3太原理工大學(xué)新材料工程技術(shù)研究中心,太原030024;4太原理工大學(xué)材料科學(xué)與工程學(xué)院,太原030024;5太原理工大學(xué)化學(xué)化工學(xué)院,太原030024)

    抗菌醫(yī)藥左氧氟沙星在有機(jī)電致發(fā)光二極管中的應(yīng)用

    苗艷勤1,3高志翔2武鈺鈴1,3杜曉剛1,3李源浩1,3劉慧慧1,3賈虎生1,4,*王 華1,3,*劉旭光5

    (1太原理工大學(xué)新材料界面科學(xué)與工程教育部重點(diǎn)實(shí)驗(yàn)室,太原030024;2山西大同大學(xué)物理與電子科學(xué)學(xué)院,山西大同037009;3太原理工大學(xué)新材料工程技術(shù)研究中心,太原030024;4太原理工大學(xué)材料科學(xué)與工程學(xué)院,太原030024;5太原理工大學(xué)化學(xué)化工學(xué)院,太原030024)

    左氧氟沙星(LOFX)是一種知名的抗菌藥物,它的價(jià)格非常便宜,且有成熟的合成和純化技術(shù).本文中首次將LOFX作為一種藍(lán)光發(fā)光材料和電子傳輸材料應(yīng)用于有機(jī)電致發(fā)光器件(OLED)中.通過熱重分析、UVVis吸收光譜、發(fā)射光譜以及循環(huán)伏安曲線詳細(xì)地表征了LOFX的熱學(xué)及光物理特性.LOFX有高的分解溫度,為327°C;HOMO、LUMO能級分別為-6.2和-3.2 eV,光學(xué)帶隙為3.0 eV.以LOFX作為客體材料,摻雜在主體材料4,4'-二(9-咔唑)聯(lián)苯(CBP)中制備了藍(lán)光OLED,該器件的電致發(fā)光(EL)發(fā)射峰位于452 nm,最大亮度為2315 cd·m-2.進(jìn)一步,選擇8-羥基喹啉鋁(Alq3)作為參考材料,分別以LOFX和Alq3作為電子傳輸材料制備了結(jié)構(gòu)相同的單載流子器件和綠色磷光OLED.在相同的電壓下,以LOFX作為電子傳輸材料的單載流子器件的電流密度比以Alq3作為電子傳輸材料的單載流子器件更高.同時(shí),以LOFX作為電子傳輸材料的綠色磷光OLED獲得更高的器件效率.從這些EL性能可以看出,LOFX同時(shí)也是一很好的電子傳輸材料.

    有機(jī)電致發(fā)光器件;左氧氟沙星;藍(lán)光發(fā)光材料;電子傳輸材料;電致發(fā)光光譜;電致發(fā)光性能

    1 Introduction

    Organic light-emitting diodes(OLEDs)have attracted attention because of applications to full-color flat-panel displays,lighting, and sensor.1-7The fabrication cost is one of the important factors for the mass-production OLED companies.Organic materials, which are less-expensive and established in the synthesis and purification technologies,are preferable for the mass production of OLED devices.In our research to find such a material,beyond the field of chemical compounds for conventional light emitting semiconductors,we have extended our attention to a field of medicament and noticed a blue fluorescence emitting antimicrobial medicament,levofloxacin.

    Levofloxacin C18H20FN3O4((S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methylpiperazin-1-yl)-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid,called LOFX hereafter)is an oral broad spectrum antibiotic of the fluoroquinolone drug,which is widely used in the treatment of certain bacterial infections including pneumonia,urinary tract infections,and abdominal infections.8-12A blue emission has been reported for LOFX.13The molecular structure is shown in Fig.1.

    Fig.1 Molecular structures of materials involved in this paper

    Gunasekaran et al.14have reported that the intense absorption bands from LOFX were observed at 323,281,and 255 nm.The absorption bands which appeared below 323 nm were confirmed from the photoluminescence excitation(PLE)spectra of LOFX in solution,which contain the 330 and 286 nm PLE bands corresponding to the 323 and 281 nm absorption bands,respectively.13Here,the 286 nm band is attributed to π-π*transition,while the 330 nm band to the n-π*transition.14

    Although the infrared vibrational,UV-Vis absorption,photoluminescence(PL),and PLE spectra have been reported for LOFX,13,14the optical properties have not fully established yet.Its application to OLED has never been examined.In the present paper,we report the detailed optical properties of LOFX and the possibility of application to OLED materials.

    Here,we investigate the physical properties(spectroscopic properties,electronic energy levels,and thermal stability)of LOFX,and fabricate three types of OLEDs,which are named as blue-light Device series-B,electron-only Device series-E,and green-light Device series-G,to examine whether LOFX is useful as OLED materials such as blue emitter and electron transporter. Molecular structures of all materials involved in this paper are shown in Fig.1.Schematic device structures and the energy levels of functional materials used in this work are shown in Fig.2.

    2 Experimental details

    LOFX was purchased from J&K Chemical and other materials involved in devices were purchased from Luminescence Technology Corp.The purity of all materials is>98%and directly used without further purification.

    The thermogravimetry analysis(TGA)of LOFX was performed in a NETZSCH STA409CTGAsystem at a ramping rate of 10°C· min-1under an argon flow of 10 mL·min-1from room temperature to 600°C.The differential scanning calorimetry(DSC)of LOFX was performed in a NETZSCH STA409C TGAsystem at a ramping rate of 10°C·min-1under an argon flow rate of 10 mL·min-1from room temperature to 300°C.The UV-Vis absorption spectrum of LOFX aqueous solution(10-5mol·L-1)was recorded by Hitachi U3900 UV-Vis spectrophotometer.The photoluminescence spectrum of LOFX solid powder was measured by Cary Eclipse fluorescence spectrophotometer.The photoluminescence quantum yield(PLQY)of LOFX was measured by a FluoroMax-4 fluorescence spectrophotometer equipped with an integrating sphere. To examine the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)energies,the cyclic voltammetry(CV)curve was measured with Autolab/PG STAT302 electrochemical workstation in a three-electrode cell containing tetrabutyl perchloric acid amine(TBAP)(0.1 mol·L-1in the mixed solution of acetonitrile and methylene chloride(2:1, molar ratio))as an electrolyte at the scan speed of 50 mV·s-1.A platinum wire,a platinum electrode,and a calomel electrode were used as a working electrode,a counter electrode,and a reference electrode,respectively.

    OLEDs with the emission area of 3 mm×3 mm were fabricated on the pre-patterned indium tin oxide(ITO)glass substrate with sheet resistance of 15 Ω·□-1.ITO substrates were cleaned by ultrasonication in baths of detergent water,deionized water,and acetone for 15 min successively,and then blown dry nitrogen and treated with UV ozone for 8 min,respectively.Then,the substrates were transferred into a vacuum chamber for sequential deposition of all organic functional layers by thermal evaporation below a vacuum of 5×10-4Pa.The deposition rate for organic materials,LiF,and Al were about 0.1,0.01,and 0.6 nm·s-1,respectively.The device performances of OLEDs were characterized by Keithley 2400 source meter combined with Photo Research PR655 spectrometer simultaneously.All measurements were performed at room temperature in ambient atmosphere without device encapsulation.

    Fig.2 Schematic device structures of Device series-B,Device series-E,and Device series-G,and the energy levels of functional materials used in these devices

    3 Results and discussion

    3.1 Physical properties of LOFX

    Fig.3 shows the UV-Vis absorption and PL spectra of LOFX in deionized water.Absorption begins from about 400 nm,giving an absorption band with peak at 302 nm and a sideband at about 330 nm.Much intense band continues from about 230 nm.An intense PL band with peak at 445 nm is observed.Our absorption spectrum of LOFX in solution is consistent with the PLE spectrum of LOFX in aqueous solution by Polishchuk et al.13,although our PL spectrum is shifted from 485.3 nm13to 445 nm.However,our absorption spectrum is not consistent with the absorption spectrum by Gunasekaran et al.14who observed an absorption band at 400 nm.It seems that the 400 nm band is due to an aggregate.

    The thermal stability is an important factor for organic electroluminescent materials.Fig.4(a)shows the TG and differential thermogravimetry(DTG)curves of LOFX,and Fig.4(b)shows the DSC curves of LOFX.In TG curve,a 5%weight loss was observed at 327°C,indicating a high decomposition temperature (Td)and good thermal stability of LOFX.Meanwhile,in DSC curve,LOFX exhibited a high glass transition termperature(Tg) of 161°C.The high Tgand Tdvalues render LOFX an OLED material capable of forming stable amorphous films through vacuum thermal evaporation and upon heating.15

    Fig.3 UV-Vis absorption and PLspectra of LOFX in deionized water solution excited at 360 nm,compared with the electroluminescence(EL)spectrum

    Fig.4 (a)TG and DTG curves of LOFX;(b)DSC curve of LOFX

    Fig.5 shows the CV curve of LOFX.From the CV curve,two oxidation peaks at about 1.0 and 1.5 V can be observed.The oxidation peaks at about 1.0 V and the onset oxidation potential at about 0.8 V should be ascribed to the oxidation of acetonitrile. And the oxidation peak at about 1.5 V and onset oxidation potential at about 1.4 V should be assigned to the oxidation of LOFX.There is an empirical equation EHOMO=-(Eoxonset+4.8)(eV), where Eoxonsetstands for the onset potential for oxidation,the potential of saturated calomel electrode(SCE)relative to the vacuum level is 4.8 eV.16,17Therefore,the HOMO level is-6.2 eV for LOFX.From the absorption spectrum of LOFX(see Fig.3),the wavelength of absorption edge(λedge)is above 414 nm.The optical gap(Eg)was obtained according to the following equation:Eg= 1240/λedge.18So,the Egof LOFX is 3.0 eV,and ELUMO=Eg+EHOMO, is-3.2 eV.Here,the LUMO level of LOFX is lower than that of Alq3(-3.0 eV)but higher than the work function of Al(-4.1 eV),indicating that LOFX has an electron transport characteristic.

    Fig.5 CV curve of LOFX

    3.2 LOFX as blue-light emitting material in OLED

    From above experimental results,it can be seen that LOFX expresses remarkable blue fluorescence effect,indicates that LOFX has potential application in OLED.Further,we measured the fluorescence quantum yield of LOFX solid powders,pure LOFX film,and CBP doped with 1%LOFX film(in mass fraction).The results indicate that CBP doped with 1%LOFX film shows a high PLQY of 12.53%,is higher than those of LOFX solid powders(5.54%)and pure LOFX film(6.25%).It is expected that LOFX is doped into host material to structure high performance device.For identifying it,a series of blue light OLED(Device series-B)(see Fig.2)are fabricated using LOFX as blue emitter with the device configuration of indium tin oxide (ITO)/NPB(40 nm)/CBP(10 nm)/CBP:wLOFX(30 nm)/Bphen (40 nm)/LiF(1 nm)/Al(200 nm),where the concentrations(in w, mass fraction)of LOFX are changed as 0.5%,0.8%,1.0%,and 2.0%.Here,NPB is N,N′-bis-(naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine,which is used as hole transport layer(HTL); CBP is 4,4'-bis(carbazol-9-yl)biphenyl,which is used as the exciton-block layer;Bphen is 4,7-diphenyl-1,10-phenanthroline, which is used as electron transport layer(ETL).The layer of CBP doped with 1.0%LOFX is a light emitting layer(EML),while LiF and Al are used as electron injection layer(EIL)and cathode, respectively.

    Fig.6(a)shows the luminance-voltage(L-V)curves of Device series-B with different doping concentrations of LOFX in CBP.As doping concentrations increase from 0.5%to 1%,the maximum luminance of Device series-B increases from 1593 cd·m-2at 0.5% to 2315 cd·m-2at 1%.When doping concentration is 2%,the maximum luminance of Device series-B lowers to 736.8 cd·m-2. Lower doping concentrations limit radioactive recombination on dopant sites and induce in inadequate utilization of excited energy origined form CBP.On the contrary,higher doping concentrations result in serious concentration quenching of LOFX.19So,the optimum doping concentration of LOFX in CBP is determined to be 1.0%.The Device series-B(w=1.0%)exhibited a turn-on voltage,defined as the voltage measured at 1 cd·m-2,of around 4.5 V and a maximum luminance of 2315 cd·m-2driven by voltage of 7.5 V.

    Fig.6(b)shows the EL spectra of Device series-B(w=1.0%) driven by various bias voltages,inset is the photograph of Device series-B(w=1.0%)under voltage of 8 V.An EL band with emission peak at 452 nm due to LOFX is observed clearly when driven voltage is above 6 V.The EL band red-shifted by 7 nm from the PL band(Fig.3)observed in solution owing to a solid state effect.20From Fig.6(b),it can be seen that no obvious EL band shift was observed by changing the operating voltage.The Device series-B(w=1.0%)emitted a pure blue light with com-mission international del′eclairage(CIE)1931 coordinates coordinates of(0.17,0.14)at 7-10 V,which is close to the National Television System Committee(NTSC)blue standard.21These EL performances indicate that LOFX as blue emitter is useful for OLEDs.

    Fig.6 (a)Luminance-voltage(L-V)curves of Device series-B with different doping concentrations of LOFX in CBP;(b)EL spectra of Device series-B(w=1.0%)at various voltages with CIE coordinates

    3.3 LOFX as electron transport material in OLED

    Further,we investigate if LOFX is useful as electron transporting material in OLEDs.To check this point,we investigated the current density-voltage characteristic by fabricating an electron-carrier-only OLED(called Device E-2)with structure of ITO/Bphen(30 nm)/LOFX(30 nm)/Bphen(30 nm)/LiF(1 nm)/Al (200 nm)(see Fig.2).We compare its characteristics with another electron-carrier-only OLED(called Device E-1)based on Alq3, which is well-known as good electron transporting material. Device E-1 has the quite similar layer structure as Device E-2,i.e., ITO/Bphen(30 nm)/Alq3(30 nm)/Bphen(30 nm)/LiF(1 nm)/Al (200 nm)(see Fig.2).The current densities of these two devices are plotted against applied voltage in Fig.7.Device E-2 with LOFX has higher current density than Device E-1 withAlq3at the same driving voltage.Device E-2 has much lower turn-on voltage than Device E-1.From these results,LOFX is confirmed its superiority toAlq3in electron-transporting capability.

    Fig.7 Current density-voltage curves of Device E-1 and Device E-2

    To further check the electron-transporting superiority of LOFX to Alq3,we fabricate two green-emitting OLEDs with Ir(ppy)3((fac-tris(2-phenylpyridine)iridium)emitter(Devices G-1 and G-2).Devices G-1 and G-2 have the same structure except ETL layer,i.e.,ITO/NPB(40 nm)/BP:Ir(ppy)3(8%,30 nm)/Bphen(10 nm)/Alq3or LOFX(20 nm)/Bphen(10 nm)/LiF(1 nm)/Al(200 nm)(see Fig.2),respectively,where NPB is used as HTL,CBP: Ir(ppy)3complex)as EML,and Bphen adjacent to LiF as EIL. Fig.8(a,b,c,d)show the luminance-voltage,current densityvoltage,current efficiency-current density,and power efficiencyvoltage characteristics of Device G-1 with Alq3and G-2 with LOFX,respectively.For Devices G-1 and G-2,the turn-on voltages are 3.5 and 4.0 V,the high luminance of 36267 cd·m-2at 7.5 V and 36600 cd·m-2at 8.5 V,the maximum current efficiency of 15 cd·A-1at 47.5 mA·cm-2and 17.7 cd·A-1at 16.7 mA·cm-2,the maximum power efficiency of 8.86 lm·W-1at 4.5 V and 9.96 lm· W-1at 5.5 V,respectively.The current efficiency is higher at low current densities of 8-200 mA·cm-2in Device G-2 than that in Device G-1(Fig.8(a,c)),and the maximum power efficiency is also higher in Device G-2 than that in Device G-1(Fig.8(d)).One of the reasons of higher efficiency of Device G-2 than Device G-1 is higher electron transport of LOFX than Alq3.Another reason is that Device G-2 blocks holes more efficiently thanAlq3because LOFX has lower HOMO level(-6.2 eV)thanAlq3(-5.8 eV).

    Regarding the low operational voltage,Alq3is superior to LOFX.This is understood by higher electron injection barrier(0.2 eV)at LOFX/Bphen interface relative to the barrier(0 eV)atAlq3/ Bphen interface,leading to more difficulty to enter electrons from cathode to EML in Device G-2 than that in Device G-1.

    The maximum current efficiency of Device G-2 with LOFX is superior to Device G-1 withAlq3.However the efficiency of 17.7 cd·A-1is smaller than the conventional efficiencies of OLEDs with phosphorescence Ir(ppy)3.For example,Baldo et al.22obtained 28 cd·A-1using an OLED with EML of CBP doped with 6%Ir(ppy)3.

    To find this reason,we examine the EL spectra of Device G-2 carefully by semi-log plotting.As seen in Fig.9,a small EL band appears at about 445 nm besides the 510 nm EL band due to Ir(ppy)3.We compare the PL spectrum of NPB neat film with the EL spectra(Fig.9).NPB gives PL band with peak at about 445 nm,which coincides with the weak band.Therefore the 445 nm EL band is attributable to NPB.This indicates that electrons fromcathode are leaked to the NPB layer.This leakage is understood from the energy level diagram of Device G-2 which shows that the energy gap(0.2 eV)of LUMO energy between CBP of EML and NPB of HTL is small(Fig.2).

    Device G-2 is more enhanced the roll-off effect than Device G-1.This is understood as follows.Better electron transportation leads to higher triplet-triplet annihilation and roll-off.23-25It is suggested that the electron injection to EML is better to LOFX layer than to Alq3layer because of better electron transportation in LOFX layer than in Alq3layer as mentioned above.This leads to higher electron accumulation in EML with phosphorescent Ir(ppy)3emitter of Device G-2 at high current densities than in EML of Device G-1,resulting in stronger roll-off for Device G-2 than for Device G-1.In this way,the superior of LOFX electron transportation toAlq3is confirmed from the roll-off.

    Fig.8 (a)Current density-voltage curves,(b)luminance-voltage characteristic,(c)current efficiency-current density curves,and (d)power efficiency-voltage curves of Devices G-1 and G-2

    Fig.9 Semi-log plotted ELspectra of Device G-2 at various voltages,compared with the PLspectrum of NPB neat film excited at 350 nm

    4 Conclusions

    To investigate whether LOFX,well-known as an antimicrobial medicament,is useful as OLED materials such as blue emitter and electron transporter,we have studied the spectroscopic properties, electronic energy levels,thermal stability,electroluminescence, and OLED characteristics.LOFX shows a blue PL band at 446 nm,HOMO and LUMO energies of-6.2 and-3.2 eV,respectively,and high molecule decomposition temperature(Td)at 327°C. The blue OLED with LOFX emitter shows a pure blue emission with a peak at 452 nm and a maximum luminance of 2315 cd·m-2. Further,LOFX is found to be higher in electron-transporting ability thanAlq3,which was obtained using the electron-transportonly device.In the case that LOFX is used as ETL in green emitting OLED with Ir(ppy)3,the maximum current density of 17.7 cd·A-1and the maximum power efficiency of 9.96 lm·W-1are obtained,which are higher than 15.0 cd·A-1and 8.86 lm·W-1in the OLED with ETL of Alq3.The current efficiency is lower than the conventional efficiency of OLEDs with Ir(ppy)3.This is attributed to leakage of electrons from EMLto HTLof NPB in the present OLED device.From the EL performances,it is suggested that LOFX can act as a desired bifunctional material:not only a pure blue emitter,but also a excellent electron transport material in OLED devices,which is useful for OLEDs.

    References

    (1)Kido,J.;Kimura,M.;Nagai,K.Science1995,267,1332.doi: 10.1126/science.267.5202.1332

    (2)D′Andrade,B.W.;Forrest,S.R.Adv.Mater.2004,16,1585.

    (3)Yu,S.J.;Suo,F.;Li,W.Z.;Lin,H.;Li,L.;Jiang,Y.D.Acta Phys.-Chim.Sin.2007,23,1821.[于勝軍,鎖 釩,黎威志,林 慧,李 璐,蔣亞東.物理化學(xué)學(xué)報(bào),2007,23,1821.] doi:10.3866/PKU.WHXB20071132

    (4)Shinar,J.;Shinar,R.J.Phys.D:Appl.Phys.2008,41,133001/ 1.doi:10.1088/0022-3727/41/13/133001

    (5)Reineke,S.;Lindner,F.;Schwartz,G.;Seidler,N.;Walzer,K.; Lüssem,B.;Leo,K.Nature2009,459,234.doi:10.1038/ nature08003

    (6)Xiao,L.X.;Hu,S.Y.;Kong,S.;Chen,Z.J.;Qu,B.;Gong,Q. H.Acta Phys.-Chim.Sin.2011,27,977.[肖立新,胡雙元,孔 勝,陳志堅(jiān),曲 波,龔旗煌.物理化學(xué)學(xué)報(bào),2011,27, 977.]doi:10.3866/PKU.WHXB20110325

    (7)Chang,Y.L.;Song,Y.;Wang,Z.B.;Helander,M.G.;Qiu,J.; Chai,L.;Liu,Z.W.;Scholes,G.D.;Lu,Z.H.Adv.Funct. Mater.2013,23,705.doi:10.1002/adfm.v23.6

    (8)Nelson,J.M.;Chiller,T.M.;Powers,J.H.;Angulo,F.J.Clin. Infect.Dis.2007,44,977.doi:10.1086/512369

    (9)Mandell,L.A.;Wunderink,R.G.;Anzueto,A.Clin.Infect.Dis.2007,44,S27.

    (10)Solomkin,J.S.;Mazuski,J.E.;Bradley,J.S.Clin.Infect.Dis.2010,50,133.doi:10.1086/648977

    (11)Chien,S.C.;Wong,F.A.;Fowler,C.L.;Callery-D′Amico,S. V.;Williams,R.R.;Nayak,R.;Chow,A.T.Antimicrob.Agents Chemother.1998,42,4885.

    (12)Zhang,J.L.;Yang,X.Z.;Han,Y.;Li,W.;Wang,J.K.Fluid Phase Equilib.2012,335,1.doi:10.1016/j.fluid.2012.05.027

    (13)Polishchuk,A.V.;Karaseva,E.T.;proskurina,N.A.;Karasev, V.E.High Energy Chem.2008,42,459.doi:10.1134/ S0018143908060076

    (14)Gunasekaran,S.;Rajalakshmi,K.;Kumaresan,S.Spectroc. Acta Pt.A-Molec.Biomolec.Spectr.2013,112,351. doi:10.1016/j.saa.2013.04.074

    (15)Lin,M.S.;Chi,L.C.;Chang,H.W.;Huang,Y.H.;Tien,K.C.; Chen,C.C.;Chang,C.H.;Wu,C.C.;Chaskar,A.;Chou,S.H.; Ting,H.C.;Wong,K.T.;Liu,Y.H.;Chi,Y.J.Chem.Mater.2012,22,870.doi:10.1039/c1jm13323c

    (16)Pomrnerehne,J.;Vestweber,H.;Gun,W.;Muhrt,R.F.;Basler, H.;Porsch,M.;Daub,J.Adv.Mater.1995,7,551.

    (17)Zhuang,J.Y.;Su,W.M.;Li,W.F.;Zhou,Y.Y.;Shen,Q.;Zhou, M.Org.Electron.2012,13,2210.doi:10.1016/j. orgel.2012.06.025

    (18)Bredas,J.L.;Silbey,R.;Boudreaux,D.S.;Chance,R.R.J.Am. Chem.Soc.1983,105,6555.doi:10.1021/ja00360a004

    (19)Lüssem,B.;Riede,M.;Leo,K.Phys.Status Solidi A2013,210, 9.doi:10.1002/pssa.v210.1

    (20)Bulovic,V.;Deshpande,R.;Thompson,M.E.;Forrest,S.R. Chem.Phys.Lett.1999,308,317.doi:10.1016/S0009-2614(99) 00580-1

    (21)Kang,G.W.;Ahn,Y.J.;Lim,J.T.;Lee,C.H.Synth.Met.2003,137,987.

    (22)Baldo,M.;Lamansky,S.;Burrows,P.E.;Thompson,M.E.; Forrest,S.R.Appl.Phys.Lett.1999,75,4.doi:10.1063/ 1.124258

    (23)Baldo,M.A.;Adachi,C.;Forrest,S.R.Phys.Rev.B2000,62, 10967.doi:10.1103/PhysRevB.62.10967

    (24)Ern,V.;Merrifield,R.E.Phys.Rev.Lett.1968,21,609.doi: 10.1103/PhysRevLett.21.609

    (25)Kondakova,M.E.;Deaton,J.C.;Pawlik,T.D.;Giesen,D.J.; Kondakov,D.Y.;Young,R.H.;Royster,T.L.;Comfort,D.L.; Shore,J.D.J.Appl.Phys.2010,107,014515/1.doi:10.1063/ 1.3275053

    Antimicrobial Drug Levofloxacin Applied to an Organic Light-Emitting Diode

    MIAO Yan-Qin1,3GAO Zhi-Xiang2WU Yu-Ling1,3DU Xiao-Gang1,3LI Yuan-Hao1,3LIU Hui-Hui1,3JIAHu-Sheng1,4,*WANG Hua1,3,*LIU Xu-Guang5
    (1Key Laboratory of Interface Science and Engineering in Advanced Materials,Ministry of Education,Taiyuan University of Technology,Taiyuan 030024,P.R.China;2School of Physical Science and Electronics,Shanxi Datong University,Datong 037009, Shanxi Province,P.R.China;3Research Center of Advanced Materials Science and Technology,Taiyuan University of Technology, Taiyuan 030024,P.R.China;4College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024, P.R.China;5College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,P.R.China)

    Levofloxacin(LOFX)is a well-known and inexpensive antimicrobial drug that can be easily synthesized and purified.We report the first application of LOFX to an organic light emitting diode(OLED).Its thermal and photophysical properties were thoroughly investigated using thermogravimetric analysis(TGA), UV-Vis absorption spectra,emission spectra,and cyclic voltammetry.LOFX has HOMO and LUMO energiesof-6.2 and-3.2 eV,respectively,and high molecule decomposition temperature(Td)of 327°C.An OLED with a LOFX emitter shows electroluminescence(EL)at 452 nm and maximum luminance of 2315 cd·A-1,which can be used in a white OLED.To investigate the electron transporting ability of LOFX,an electron-carrier only OLED was made.In addition,a green OLED based on Ir(ppy)3(fac-tris(2-phenylpyridine)iridium)with electron transporting layer of LOFX was made,comparing with that with electron transporting layer of tris(8-hydroxyquinoline)aluminum(Alq3).The former exhibited higher device efficiencies than that of the latter.The results show that LOFX has a higher electron transport ability thanAlq3.?Editorial office ofActa Physico-Chimica Sinica

    Organic light-emitting diode;Levofloxacin;Blue-light emitting material;Electron transport material;Electroluminescence spectrum;Electroluminescence performance

    O649

    10.3866/PKU.WHXB201501051www.whxb.pku.edu.cn

    Received:October 27,2014;Revised:January 4,2015;Published on Web:January 5,2015.

    ?Corresponding authors.WANG Hua,Email:wanghua001@tyut.edu.cn;Tel:+86-13613477492.JIAHu-Sheng,Email:jia_husheng@126.con;

    Tel:+86-351-6014852.

    The project was supported by the Program for New Century Excellent Talents in University of Ministry of Education of China(NCET-13-0927),

    International Science&Technology Cooperation Program of China(2012DFR50460),National Natural Science Foundation of China(61307029, 21101111),and Shanxi Provincial Key Innovative Research Team in Science and Technology,China(2012041011).

    教育部新世紀(jì)人才計(jì)劃(NCET-13-0927),科技部國際科技合作專項(xiàng)項(xiàng)目(2012DFR50460),國家自然科學(xué)基金(61307029,21101111)和山西省科技創(chuàng)新重點(diǎn)團(tuán)隊(duì)項(xiàng)目(2012041011)資助

    猜你喜歡
    電致發(fā)光山西大同載流子
    全噴涂逐層組裝實(shí)現(xiàn)可穿戴電子織物高亮電致發(fā)光
    Cd0.96Zn0.04Te 光致載流子動(dòng)力學(xué)特性的太赫茲光譜研究*
    山西大同 黃花菜豐收在望
    Sb2Se3 薄膜表面和界面超快載流子動(dòng)力學(xué)的瞬態(tài)反射光譜分析*
    《山西大同大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡則
    山西大同大學(xué)采礦研究所簡介
    山西大同邀客共賞“小黃花大產(chǎn)業(yè)”
    ZnO納米晶摻雜的有機(jī)電致發(fā)光特性
    利用CASTEP計(jì)算載流子有效質(zhì)量的可靠性分析
    兩種紅光銥配合物的合成和電致發(fā)光性能研究
    99热国产这里只有精品6| 久久香蕉激情| 亚洲精品在线美女| 高潮久久久久久久久久久不卡| 国产国语露脸激情在线看| 国产成人精品在线电影| 欧美精品高潮呻吟av久久| 国产亚洲精品一区二区www | 国产av国产精品国产| 亚洲视频免费观看视频| 亚洲自偷自拍图片 自拍| 午夜成年电影在线免费观看| av又黄又爽大尺度在线免费看| 女性生殖器流出的白浆| 极品少妇高潮喷水抽搐| 国产深夜福利视频在线观看| 午夜激情av网站| 欧美日韩福利视频一区二区| 久热爱精品视频在线9| 成人国产av品久久久| 五月天丁香电影| kizo精华| 9热在线视频观看99| 亚洲欧洲精品一区二区精品久久久| 男女下面插进去视频免费观看| 亚洲人成77777在线视频| 一本一本久久a久久精品综合妖精| 777久久人妻少妇嫩草av网站| 丰满迷人的少妇在线观看| 成人免费观看视频高清| 欧美av亚洲av综合av国产av| 亚洲欧美精品综合一区二区三区| 日本wwww免费看| 国产精品久久久人人做人人爽| 国产亚洲一区二区精品| 亚洲成人手机| 日本av免费视频播放| 岛国毛片在线播放| 国产真人三级小视频在线观看| 久久久精品区二区三区| 老司机深夜福利视频在线观看 | 亚洲专区中文字幕在线| 亚洲三区欧美一区| 天堂8中文在线网| e午夜精品久久久久久久| 久久久水蜜桃国产精品网| av在线app专区| 精品少妇一区二区三区视频日本电影| 免费一级毛片在线播放高清视频 | 免费在线观看黄色视频的| www.av在线官网国产| 精品第一国产精品| 国内毛片毛片毛片毛片毛片| 成人亚洲精品一区在线观看| 国产在线免费精品| 日韩制服丝袜自拍偷拍| 咕卡用的链子| 午夜91福利影院| 91大片在线观看| 乱人伦中国视频| av一本久久久久| 欧美黄色淫秽网站| 日韩大片免费观看网站| 老司机福利观看| 视频区图区小说| 久久天躁狠狠躁夜夜2o2o| 精品国产一区二区三区四区第35| 欧美精品啪啪一区二区三区 | netflix在线观看网站| 午夜免费鲁丝| av网站在线播放免费| 久久香蕉激情| 1024视频免费在线观看| 99re6热这里在线精品视频| 国产av一区二区精品久久| 欧美97在线视频| 不卡一级毛片| 欧美激情久久久久久爽电影 | 国产精品久久久久久精品古装| 亚洲欧美日韩另类电影网站| 精品久久久精品久久久| 91老司机精品| 在线av久久热| 久久精品久久久久久噜噜老黄| 国产色视频综合| 国产成人影院久久av| 母亲3免费完整高清在线观看| 日韩视频一区二区在线观看| 一区福利在线观看| 久久久久久免费高清国产稀缺| 久热爱精品视频在线9| 国产成人a∨麻豆精品| 久久午夜综合久久蜜桃| 色综合欧美亚洲国产小说| 日韩制服骚丝袜av| 两性夫妻黄色片| 国产精品久久久久久人妻精品电影 | 免费av中文字幕在线| 夜夜夜夜夜久久久久| 大香蕉久久成人网| 交换朋友夫妻互换小说| 成人亚洲精品一区在线观看| 亚洲成av片中文字幕在线观看| 亚洲国产看品久久| 午夜福利视频在线观看免费| 999久久久国产精品视频| 久久人人爽人人片av| 老熟妇乱子伦视频在线观看 | 每晚都被弄得嗷嗷叫到高潮| 下体分泌物呈黄色| 午夜福利在线免费观看网站| 丝瓜视频免费看黄片| 97精品久久久久久久久久精品| 男人爽女人下面视频在线观看| 岛国在线观看网站| 久久影院123| 亚洲avbb在线观看| 中文字幕人妻熟女乱码| 色婷婷av一区二区三区视频| 99香蕉大伊视频| 最黄视频免费看| a在线观看视频网站| 亚洲一区二区三区欧美精品| 免费看十八禁软件| 欧美日韩一级在线毛片| 中文字幕人妻丝袜制服| 深夜精品福利| 青春草视频在线免费观看| 韩国精品一区二区三区| 免费少妇av软件| 国产伦理片在线播放av一区| av视频免费观看在线观看| 亚洲专区中文字幕在线| 亚洲成人免费电影在线观看| 欧美激情久久久久久爽电影 | 精品一品国产午夜福利视频| 国产精品香港三级国产av潘金莲| 日韩 欧美 亚洲 中文字幕| 午夜福利视频在线观看免费| 新久久久久国产一级毛片| 天天影视国产精品| 亚洲av美国av| 成人亚洲精品一区在线观看| 1024香蕉在线观看| 亚洲国产毛片av蜜桃av| 丝袜喷水一区| 欧美黑人精品巨大| 考比视频在线观看| 国产在线观看jvid| 国产日韩欧美在线精品| 91成人精品电影| 日韩视频在线欧美| 欧美黑人精品巨大| 1024香蕉在线观看| 午夜福利,免费看| 黄色视频不卡| 91麻豆精品激情在线观看国产 | 99热全是精品| 成年人午夜在线观看视频| 美女国产高潮福利片在线看| 亚洲欧美清纯卡通| 老汉色∧v一级毛片| 亚洲全国av大片| 亚洲av成人不卡在线观看播放网 | 91av网站免费观看| 黄频高清免费视频| 免费女性裸体啪啪无遮挡网站| 天天操日日干夜夜撸| 一区在线观看完整版| 伊人亚洲综合成人网| 久久99一区二区三区| 久久性视频一级片| 老司机福利观看| 婷婷丁香在线五月| 国产人伦9x9x在线观看| 国产精品免费大片| 亚洲情色 制服丝袜| 99久久综合免费| 一级黄色大片毛片| 亚洲专区国产一区二区| 黑人巨大精品欧美一区二区mp4| 国产在线一区二区三区精| 久久亚洲精品不卡| 国产亚洲欧美在线一区二区| videosex国产| 亚洲第一青青草原| 久久狼人影院| 久久精品国产亚洲av香蕉五月 | 在线av久久热| 后天国语完整版免费观看| 如日韩欧美国产精品一区二区三区| 中文欧美无线码| 久久久精品国产亚洲av高清涩受| 中文字幕人妻熟女乱码| 午夜成年电影在线免费观看| 99久久99久久久精品蜜桃| 亚洲自偷自拍图片 自拍| 午夜日韩欧美国产| 男人爽女人下面视频在线观看| 男人爽女人下面视频在线观看| 秋霞在线观看毛片| 久久久久久久国产电影| 欧美精品高潮呻吟av久久| 午夜福利视频精品| av一本久久久久| 久久国产精品人妻蜜桃| 中文字幕av电影在线播放| 国产99久久九九免费精品| 亚洲国产精品成人久久小说| 亚洲精品国产区一区二| 建设人人有责人人尽责人人享有的| 久久久久久久大尺度免费视频| 国产日韩欧美亚洲二区| av欧美777| 国产在线免费精品| 国产成人精品久久二区二区91| 国产色视频综合| 日本vs欧美在线观看视频| 中文精品一卡2卡3卡4更新| 国产区一区二久久| 日本av手机在线免费观看| 99久久综合免费| 亚洲自偷自拍图片 自拍| 亚洲精品一卡2卡三卡4卡5卡 | 97在线人人人人妻| 男女无遮挡免费网站观看| 日韩欧美一区二区三区在线观看 | 天堂中文最新版在线下载| 亚洲七黄色美女视频| 成年人黄色毛片网站| 国产欧美日韩一区二区精品| 久久精品久久久久久噜噜老黄| 亚洲成国产人片在线观看| 制服人妻中文乱码| 欧美乱码精品一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲伊人色综图| 一区二区日韩欧美中文字幕| 国产精品.久久久| 两性夫妻黄色片| 亚洲综合色网址| 国产男人的电影天堂91| 亚洲avbb在线观看| 国产日韩一区二区三区精品不卡| 50天的宝宝边吃奶边哭怎么回事| 国产精品1区2区在线观看. | 免费在线观看完整版高清| 十八禁网站网址无遮挡| 老司机影院毛片| 久久精品亚洲av国产电影网| 免费观看a级毛片全部| e午夜精品久久久久久久| 亚洲精品久久午夜乱码| 国产精品一二三区在线看| 99久久人妻综合| 蜜桃在线观看..| 亚洲欧美精品自产自拍| 日本av免费视频播放| 精品久久久久久电影网| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 成年动漫av网址| 91成年电影在线观看| 伊人亚洲综合成人网| 亚洲av男天堂| 黑人欧美特级aaaaaa片| 一区二区三区四区激情视频| 欧美性长视频在线观看| 啦啦啦中文免费视频观看日本| 亚洲专区国产一区二区| 午夜视频精品福利| 一个人免费看片子| 国产在线视频一区二区| 色精品久久人妻99蜜桃| 两人在一起打扑克的视频| 久久99热这里只频精品6学生| 亚洲午夜精品一区,二区,三区| 91字幕亚洲| 亚洲,欧美精品.| 精品福利永久在线观看| 两人在一起打扑克的视频| 国产免费视频播放在线视频| 国产精品免费视频内射| 男女无遮挡免费网站观看| 国产在线免费精品| 亚洲精品久久久久久婷婷小说| 国产97色在线日韩免费| 黑人欧美特级aaaaaa片| 在线十欧美十亚洲十日本专区| 中文字幕制服av| 国产又色又爽无遮挡免| 国产av精品麻豆| 国产欧美日韩一区二区精品| 国产激情久久老熟女| 99九九在线精品视频| 蜜桃国产av成人99| 亚洲精品久久成人aⅴ小说| 久久久国产精品麻豆| 亚洲五月婷婷丁香| 亚洲成国产人片在线观看| 国产av国产精品国产| 精品少妇一区二区三区视频日本电影| 午夜福利视频在线观看免费| 久久久久精品人妻al黑| 久久天躁狠狠躁夜夜2o2o| 一本色道久久久久久精品综合| 日日爽夜夜爽网站| 国产精品一二三区在线看| 男女无遮挡免费网站观看| 精品国产一区二区三区久久久樱花| 桃红色精品国产亚洲av| 欧美日韩亚洲国产一区二区在线观看 | 欧美一级毛片孕妇| 欧美久久黑人一区二区| 国产亚洲精品一区二区www | 欧美精品人与动牲交sv欧美| 欧美黄色淫秽网站| 看免费av毛片| 精品福利观看| 久久亚洲精品不卡| 国产成人精品无人区| 最新在线观看一区二区三区| 亚洲欧美日韩高清在线视频 | 丰满迷人的少妇在线观看| 王馨瑶露胸无遮挡在线观看| 日本五十路高清| 国产精品一区二区在线观看99| 日本vs欧美在线观看视频| 久久青草综合色| av不卡在线播放| 午夜福利视频在线观看免费| 久久天堂一区二区三区四区| 久久免费观看电影| 亚洲欧美成人综合另类久久久| 精品一区二区三区av网在线观看 | 中文精品一卡2卡3卡4更新| av不卡在线播放| 免费少妇av软件| 亚洲国产精品一区二区三区在线| 女人精品久久久久毛片| 在线观看舔阴道视频| 亚洲国产毛片av蜜桃av| 国产精品久久久久久人妻精品电影 | 在线永久观看黄色视频| 91成年电影在线观看| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| 999精品在线视频| 色94色欧美一区二区| 各种免费的搞黄视频| 人妻人人澡人人爽人人| 国产深夜福利视频在线观看| 欧美激情极品国产一区二区三区| 日本av免费视频播放| 黄色a级毛片大全视频| 悠悠久久av| 国产伦理片在线播放av一区| 18在线观看网站| 我的亚洲天堂| 免费在线观看影片大全网站| 91精品三级在线观看| 黄片大片在线免费观看| 亚洲国产精品一区三区| 日韩一区二区三区影片| 蜜桃在线观看..| 国产黄色免费在线视频| av一本久久久久| 又紧又爽又黄一区二区| 亚洲精品久久成人aⅴ小说| 交换朋友夫妻互换小说| 熟女少妇亚洲综合色aaa.| 欧美国产精品va在线观看不卡| 国产成人系列免费观看| 日本a在线网址| 大片电影免费在线观看免费| 老熟妇乱子伦视频在线观看 | 成年动漫av网址| 一区二区av电影网| 亚洲精品国产av成人精品| av天堂在线播放| 香蕉丝袜av| 婷婷丁香在线五月| 下体分泌物呈黄色| 午夜福利一区二区在线看| 亚洲精品自拍成人| 青青草视频在线视频观看| 999久久久精品免费观看国产| www.av在线官网国产| 美女主播在线视频| 午夜福利影视在线免费观看| 国产成人系列免费观看| 亚洲精品自拍成人| 亚洲综合色网址| 少妇 在线观看| 午夜免费成人在线视频| 男女下面插进去视频免费观看| 欧美大码av| www.自偷自拍.com| 成人亚洲精品一区在线观看| 国产精品亚洲av一区麻豆| 五月天丁香电影| 考比视频在线观看| 黄色片一级片一级黄色片| 手机成人av网站| 国产精品九九99| 一本色道久久久久久精品综合| 老司机影院成人| tube8黄色片| 免费女性裸体啪啪无遮挡网站| 国产区一区二久久| 国产精品99久久99久久久不卡| 十八禁网站免费在线| 大码成人一级视频| 老汉色∧v一级毛片| 国产精品av久久久久免费| 成人三级做爰电影| 亚洲中文字幕日韩| 日韩,欧美,国产一区二区三区| 一进一出抽搐动态| 欧美国产精品va在线观看不卡| 99国产精品免费福利视频| 国产福利在线免费观看视频| 亚洲精品av麻豆狂野| 精品一品国产午夜福利视频| 精品熟女少妇八av免费久了| 一本大道久久a久久精品| 免费在线观看完整版高清| 亚洲欧美成人综合另类久久久| 在线 av 中文字幕| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 女性被躁到高潮视频| 久久久水蜜桃国产精品网| 成人国语在线视频| 国产精品一二三区在线看| 91av网站免费观看| 在线亚洲精品国产二区图片欧美| 国产伦人伦偷精品视频| 欧美久久黑人一区二区| 99久久人妻综合| 男女边摸边吃奶| 久久国产亚洲av麻豆专区| av在线老鸭窝| 亚洲一区二区三区欧美精品| 丁香六月欧美| 久热这里只有精品99| 男女下面插进去视频免费观看| 国产成人精品无人区| 9色porny在线观看| 99国产极品粉嫩在线观看| 亚洲一码二码三码区别大吗| 中文字幕最新亚洲高清| 成人国产一区最新在线观看| 精品福利永久在线观看| 国产片内射在线| 12—13女人毛片做爰片一| 最近最新中文字幕大全免费视频| 我的亚洲天堂| 国产成人系列免费观看| 久9热在线精品视频| 国产老妇伦熟女老妇高清| 美女高潮到喷水免费观看| 国产亚洲午夜精品一区二区久久| 女人被躁到高潮嗷嗷叫费观| 国产精品自产拍在线观看55亚洲 | 欧美亚洲日本最大视频资源| 51午夜福利影视在线观看| 黄色a级毛片大全视频| 日韩电影二区| 成人手机av| 夜夜骑夜夜射夜夜干| 男女床上黄色一级片免费看| 欧美一级毛片孕妇| 午夜精品国产一区二区电影| 亚洲av国产av综合av卡| av不卡在线播放| 成人免费观看视频高清| 国产精品免费大片| 国产精品久久久久久精品古装| 久久人妻福利社区极品人妻图片| 搡老乐熟女国产| av天堂在线播放| 黄片大片在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产黄色免费在线视频| 亚洲精品国产av成人精品| 免费在线观看完整版高清| 中文字幕色久视频| 久久久久久久大尺度免费视频| av网站免费在线观看视频| 久久精品国产综合久久久| 十八禁网站免费在线| 久久久精品94久久精品| videos熟女内射| 成人黄色视频免费在线看| 色老头精品视频在线观看| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 午夜福利视频在线观看免费| 亚洲一卡2卡3卡4卡5卡精品中文| 97精品久久久久久久久久精品| 欧美在线一区亚洲| 亚洲av成人一区二区三| 久久久国产精品麻豆| 国产成人免费无遮挡视频| 精品乱码久久久久久99久播| 黑人猛操日本美女一级片| 搡老岳熟女国产| 极品人妻少妇av视频| 三上悠亚av全集在线观看| 久久精品亚洲av国产电影网| 丝袜脚勾引网站| 91av网站免费观看| 精品第一国产精品| 男女午夜视频在线观看| 男人的好看免费观看在线视频 | 我的老师免费观看完整版| 黑人操中国人逼视频| 午夜福利成人在线免费观看| 一级毛片精品| 97碰自拍视频| 香蕉丝袜av| 少妇的丰满在线观看| 亚洲午夜精品一区,二区,三区| 久久精品夜夜夜夜夜久久蜜豆 | 女人被狂操c到高潮| 91九色精品人成在线观看| 国产精品综合久久久久久久免费| 久久久精品欧美日韩精品| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播放欧美日韩| 精品欧美国产一区二区三| 91字幕亚洲| 老司机午夜福利在线观看视频| 国产av一区二区精品久久| 欧美最黄视频在线播放免费| 露出奶头的视频| 欧美日韩国产亚洲二区| 久久天躁狠狠躁夜夜2o2o| 日本成人三级电影网站| 久久久久国内视频| 久久欧美精品欧美久久欧美| 国产成人啪精品午夜网站| 麻豆国产97在线/欧美 | 久久精品综合一区二区三区| 亚洲一区中文字幕在线| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品第一综合不卡| 天堂影院成人在线观看| 中文字幕熟女人妻在线| 精品福利观看| 女警被强在线播放| 亚洲精品久久成人aⅴ小说| 99精品在免费线老司机午夜| 搡老妇女老女人老熟妇| 欧美日韩黄片免| 国产区一区二久久| 国产91精品成人一区二区三区| 久久久久久久久中文| 老鸭窝网址在线观看| 国产爱豆传媒在线观看 | 亚洲国产欧洲综合997久久,| 亚洲专区字幕在线| 成人手机av| 国产三级中文精品| 国产精品 欧美亚洲| 国产av不卡久久| 日韩国内少妇激情av| 亚洲aⅴ乱码一区二区在线播放 | 一本一本综合久久| 少妇人妻一区二区三区视频| 正在播放国产对白刺激| 欧美黑人欧美精品刺激| 可以在线观看毛片的网站| 亚洲一码二码三码区别大吗| 夜夜看夜夜爽夜夜摸| 51午夜福利影视在线观看| 亚洲午夜精品一区,二区,三区| 午夜精品久久久久久毛片777| 啦啦啦免费观看视频1| 欧美日韩亚洲国产一区二区在线观看| 每晚都被弄得嗷嗷叫到高潮| av视频在线观看入口| 亚洲一区中文字幕在线| 国产成人一区二区三区免费视频网站| 久久精品aⅴ一区二区三区四区| 国产激情偷乱视频一区二区| a级毛片在线看网站| 亚洲av成人不卡在线观看播放网| www.熟女人妻精品国产| 嫩草影院精品99| 熟女电影av网| 少妇的丰满在线观看| 日韩三级视频一区二区三区| 亚洲色图av天堂| 国产成人av教育| 欧美午夜高清在线| 9191精品国产免费久久| 一本久久中文字幕| 少妇人妻一区二区三区视频| 国产精品野战在线观看| 午夜福利在线观看吧| 久久久久亚洲av毛片大全| 久久午夜综合久久蜜桃| 日本免费a在线| 黄色 视频免费看| 美女扒开内裤让男人捅视频| 欧美日韩中文字幕国产精品一区二区三区| 国产精品99久久99久久久不卡| x7x7x7水蜜桃| 亚洲男人天堂网一区| 在线十欧美十亚洲十日本专区| 在线观看免费午夜福利视频| 黄色女人牲交| 国产亚洲精品一区二区www|