• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiobjective optimization of friction welding of UNS S32205 duplex stainless steel

    2015-11-01 07:13:57AJITHBirendrKumrBARIKSATHIYAARAVINDAN
    Defence Technology 2015年2期
    關(guān)鍵詞:念書伯父熟人

    P.M.AJITH,Birendr Kumr BARIK,P.SATHIYA,*,S.ARAVINDAN

    aDepartment of Production Engineering,National Institute of Technology,Tiruchirappalli 620015,Tamilnadu,India

    bDepartment of Mechanical Engineering,Indian Institute of Technology Delhi,New Delhi 110016,India

    ?

    Multiobjective optimization of friction welding of UNS S32205 duplex stainless steel

    P.M.AJITHa,Birendra Kumar BARIKa,P.SATHIYAa,*,S.ARAVINDANb

    aDepartment of Production Engineering,National Institute of Technology,Tiruchirappalli 620015,Tamilnadu,India

    bDepartment of Mechanical Engineering,Indian Institute of Technology Delhi,New Delhi 110016,India

    The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of the neural network,included friction pressure,upsetting pressure,speed and burn-off length.Tensile strength and microhardness were selected as the outputs of the neural networks.The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing.Due to shorter heating time,no secondary phase intermetallic precipitation was observed in the weld joint.A multi-layer perceptron neural network was established for modeling purpose.Five various training algorithms,belonging to three classes,namely gradient descent,genetic algorithm and Levenberg-Marquardt,were used to train artificial neural network.The optimization was carried out by using particle swarm optimization method.Confirmation test was carried out by setting the optimized parameters.In conformation test,maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv,respectively.The metallurgical investigations revealed that base metal,partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.

    Artificial neural network;Duplex stainless steel;Hardness;Tensile test;Friction welding;Particle swarm optimization

    1.Introduction

    Duplex stainless steel has equal phase balance of approximately equal amounts of ferrite and austenite.It has a mixed microstructure consisting of ferrite(bcc)and austenite(fcc)phases.The duplex stainless steel exhibits higher resistance to stress corrosion cracking and has higher strength than austenitic stainless steel.As a result of these positive factors,the duplex stainless steel is widely used in the oil and gas,petrochemical,pulp and paper,and pollution control industries.It is well known that the duplex stainless steel exhibits good weldability,but the melting and solidification associated with fusion welding processes destroy the favorableduplex microstructure of this stainless steel[1,2].A major concern with fusion welding of duplex stainless steel is the formation of detrimental intermetallic phases at elevated temperatures.Sigma and chi phases form in duplex stainless steels at elevated temperature and precipitate preferably in the ferrite.This will considerably affect the toughness of the welded joint[3].The formations of these phases are due to the high chromium and molybdenum contents.The problem mentioned above can be overcome by employing solid state welding process like friction welding.

    Friction welding is a solid state welding process.It makes use of frictional heat generated on the rubbing surfaces to raise the temperature at the interface,which is high enough to cause the two surfaces to be forged together at high pressure.Friction welding has significant economic and technical advantages.The present study utilized a continuous drive friction welding machine.In continuous drive friction welding,oneworkpiece is rotated at nominal constant speed and aligned with the second part at an applied pressure.The rotation and pressure are maintained for a specific period to ensure adequate thermal and mechanical conditioning of the interface region.Thereafter the rotation is stopped by forced braking,and at the same time the pressure is increased to forge the parts together.The application of an axial force maintains an intimate contact between the parts and causes the plastic deformation of the material near the weld interface.

    http://dx.doi.org/10.1016/j.dt.2015.03.001

    2214-9147/Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    The friction welding finds widespread industrial use as a mass production process for the joining of materials.Friction welding process allows welding of several materials that are extremely difficult to fusion weld.The friction welding process parameters play a significant role in making good quality joints[4].To produce a good quality joint,it is important to set up proper welding process parameters.Therefore,identifying the suitable combinations of process input parameters to produce the desired output requires many experiments,making this process time-consuming and costly[5].

    So as to avoid this problem,various optimization methods can be applied to define the desired output variables by developing the mathematical models to specify the relationship among the input parameters and output variables. Generally,the quality of a weld joint is directly influenced by the welding input parameters during the welding process. Therefore,welding can be considered as a multi-input multioutput process.Though several studies have been made on weld quality by considering response variables separately,the report on simultaneous consideration of response variables in friction welding of DSS material is scarce.

    Artificial neural network(ANN)is a modelling technique which is inspired by the structure and functional aspects of biological neural networks.It has been widely used for modelling manufacturing related problems.ANN eliminates the limitations of the classical approaches by extracting the desired information using the input data.Applying ANN to a system needs sufficient input and output data instead of a mathematical equation[6,7].ANN is a good alternative to conventional empirical modeling based on polynomial and linear regressions[8].Employing the neural networks models would lead to time and cost saving by predicting the experimental results[9].Sathiya et al.[10]used the evolutionary computational techniques optimize the friction welding parameters.The suggested methods were used to determine the welding process parameters by which the desired tensile strength and minimized metal loss were obtained in friction welding.They described how to obtain near optimal welding conditions over a wide search space by conducting a smaller number of experiments.Paventhan et al.[11]have done the optimization of friction welding process parameters for joining carbon steel and stainless steel.They developed an empirical relationship to predict the tensile strengths of friction welded AISI 1040 grade medium carbon steel and AISI 304 austenitic stainless steel,incorporating the process parameters,namely friction force,forging force,friction time and forging time which have greater influence on strength of the joint.Response surface methodology was applied to optimize the friction weldingprocessparameterstoattainmaximumtensile strength of the joint.Koen et al.[12]developed a new welding method for fully automatic pipelines girth welding using a new friction welding machine.The proposed new welding procedure,called Friex,is a new variant of the well-known friction welding process.An intermediate ring is rotated between the pipes to be welded to generate the heat necessary to realize the weld.Luo et al.[13]designed a mixed-integrated approach to control the welding flashes in the continuous drive friction welding on small diameter tubes and then eliminate the problems of the inner friction welding flashes.Experimental results show that this mixed-integrated approach is used to reduce the sum of the inner welding flashes to control the crimping direction of the friction welding flashes,which promotes the forming of the outer friction welding flashes. Udayakumar et al.[14],carried out the experimental investigation on super duplex stainless steel and attempted to develop the mathematical models based on response surface methodology in order to predict the corrosion current and impact strength as a function of key input parameters in the friction welding process.They found that the friction force is a significant parameter for changing the impact strength.Friction force and burn-off length have a negative effect on impact strength.As the friction force increases,the impact strength decreases.

    In a very recent investigation,an attempt has been made to optimize the process parameters of activated tungsten inert gas(ATIG)welding process for ASTM/UNS S32205 DSS joints to obtain desirable aspect ratio and average ferrite number(FN). This investigation revealed that,the joints were produced by the optimized process parameters and their average ferrite number(FN)in the weld zone is 71.62,and the ferrite content is approximately 50.674%which is well within the acceptable range[15].

    From the above literatures,a very few investigations were carried out on friction welding and the parameter optimization of duplex stainless steel using evolutionary algorithms like artificial neural networks(multiobjective optimization).The aim of this work is to predict and optimize the friction welding parameters of UNS S32205 duplex stainless steel using ANN and PSO.The input(factors)parameters were friction pressure(FP),upsetting pressure(UP),rotational speed(N)and burnoff length(BOL),and the responses were tensile strength(TS)and hardness.The five training algorithms selected were batch back propagation(BBP),incremental back propagation(IBP),quick propagation(QP),Levenberg-Marquardt(LM),and genetic algorithm(GA).Among the five algorithms,the QP algorithm had a better performance.The QP algorithm was applied to the ANN network for modeling of friction welding parameters and also to study the direct effect of the individual parameters.

    2.Material and methods

    The base material chemical compositions of UNS S32205 duplex stainless steel were analyzed using an optical emission spectrometer,and their values are presented in Table 1.

    Table 1 Base material chemical composition(wt.%).

    The friction welding parameters were chosen based on the preliminary welding trials and their parameter levels were categorized as low,medium and high.The upper and lower limits were identified and the different levels of process parameters are presented in Table 2.

    The friction welding trials were conducted as per the central composite rotatable factorial design consisting of 30 sets of coded conditions[16].The microstructure samples were prepared as per the standard procedure.The samples were prepared by electrolytically etching them in 10%oxalic acid at 9 V for 30 s as per ASTM E3-11.The mechanical characteristics of friction welds were evaluated from tensile tests as per the ASTM E 8 standards.The tensile-tested samples are presented in Fig.1.Microhardness survey was carried out using a HMV-2000 Vickers microhardness tester at 500 g load for 10 s.

    3.Methodology

    Typical ANN model flow chart was used in this study,as shown in Fig.2.The basic steps considered for designing the neural network model are to collect the data required for training the network,designing the network architecture and training the network.

    Alldatasetswereobtainedfromtheexperiments mentioned above and were divided into three parts,i.e.21,5 and 4 data as training data,testing data and validation data,respectively,which are summarized in Table 4.The training data were used to compute the network parameters.The Neural Power professional version 2.5 software tool was employed in this study.The models were developed to establish the input-output correlations of the friction welding of duplex stainless steel(DSS UNS S32205)using the neural networks.ANNs were constructed with layers of units,and thus termed multilayer ANNs.Multilayer perceptron(MLP)neural network consisted of input,hidden and output units.A single hidden layer network was used in this study.The optimum number of neurons in hidden layer was determined by a series of topologies,in which the number of neurons was varied from 1 to 30.The root mean square error(RMSE)was used as the error function.

    Table 2 Upper and lower limits with different levels of the parameters.

    Fig.1.Tensile-tested weld samples.

    Experimental data were used to train the network.Scaled data were passed into the input layer and then were propagated from input layer to hidden layer and finally to the output layer of the network.Every node in hidden or output layer first acted as a summing junction which combined and modified the inputs from the previous layer using the following equation.

    where yiis the net input to node j in hidden or output layer;xiis the input to node j(or output of previous layer);wijis the weight representing the strength of the connection between the ith node and jth node;i is the number of nodes;and bjis the bias associated with node j.

    In order to perform a supervised training,ANN output error between the actual and predicted output results could be evaluated.The following equations were used to find R,DC,AAPD and RSME.DC reflects the degree of fit for themathematical model.The DC shows the level of model fitness. If value of DC is closer to 1,the model is considered as a better design and fits to the actual data.

    Fig.2.Typical ANN model flow chart.

    Table 3 ANN algorithm setting for five learning algorithms.

    where E=experimental value P=predicted value;E- is the mean value of Eiis the mean value of Pi.Coefficient of determination is

    Average absolute percentage deviation(AAPD)is

    So,we considered the ANN model with lowest RMSE,AAPD and highest DC,R as the best ANN design.

    3.1.Optimization procedure

    Particle swarm optimization(PSO)was used to optimize the friction welding parameters and its flow chart for PSO is presented in Fig.3.The trained data obtained from ANN should be imported into PSO as the basic input data.

    4.Results

    4.1.Selection of the best neural network model

    The results for various algorithms are summarized and presented in Table 3.As shown in Table 3,the QP algorithm has a better performance relative to BBP,IBP,LM and GA algorithms.Fig.4 shows the plots of ANN predicted response versus actual response with QP algorithms for the training and testing data.From Fig.4 it is seen that the calculated and observed hardness's and tensile strengths have almost the same values for QP algorithms.

    The percentages of contribution to the individual input parameters are presented in Fig.5.

    Fig.3.Flow chart of PSO.

    Fig.4.Training and testing data with experimental results for TS and mH using QP model.

    From Fig.5,it can be seen that the upsetting pressure is the most significant parameter followed by the friction pressure, speed of rotation and born-off length.The percentage contributions of individual parameter are upsetting pressure of 47.05%,friction pressure of 25.99%,speed of rotation of 21.96%and burn-off length of 4.96%.

    Fig.5.Percentages of contribution to the input parameters using QP model.

    4.2.Effects of process parameters

    The effects of upsetting pressure and friction pressure on tensile strength and microhardness are presented in Fig.6.

    From Fig.6(a)it is seen that the friction pressure varied from 45 MPa to 125 MPa and the upsetting pressure varied from 155 MPa to 185 MPa,and,the hardness and tensile strength increased at maximum friction pressure Maximum tensile strength obtained was 825 MPa at friction pressure of 185 MPa and upsetting pressure of 105 MPa.In Fig.6(b),the obtained maximum microhardness was 323 MPa at friction pressure of 85 MPa and upsetting pressure of 105 MPa.The predicted model using quick propagation algorithm was fitted so well to the actual values for both training and testing set. Therefore,it could be suggested that the model trained with QP algorithm is the most efficient model for this problem;hence this model was applied for further application.It was reported that the quick propagation learning algorithm could be adopted for the training of all the ANN models[17].Thepredicted values of the best model for training and testing set are presented in Table 4.

    Fig.6.Effects of friction pressure and upsetting pressure on TS and Microhardness(mH).

    Table 5 Results of confirmation test.

    From Table 4,it is clearly seen that the testing and training data are very closer to the experimental results.So QP model is the most appropriate method to predict the effect of the individual parameters of friction welding process.The input parameters were obtained from the QP model and fed in to the PSO algorithm to get the optimized values.The optimized values of friction pressure,upsetting pressure,rotational speed and burn-off length are 105 MPa,180 MPa,2000 rpm and 3.9 mm,respectively.The tensile strength of 827.17 MPa and the hardness of 325.61 Hv were obtained.

    4.3.Results of confirmation test

    因?yàn)槌潜緛?lái)是不大的,有許多熟人,也都是來(lái)看燈的都遇到了。其中我們本城里的在哈爾濱念書的幾個(gè)男學(xué)生,他們也來(lái)看燈了。哥哥都認(rèn)識(shí)他們。我也認(rèn)識(shí)他們,因?yàn)檫@時(shí)候我們到哈爾濱念書去了。所以一遇到了我們,他們就和我們?cè)谝黄?,他們出去看燈,看了一?huì),又回到我們的地方,和伯父談話,和哥哥談話。我曉得他們,因?yàn)槲覀兗冶容^有勢(shì)力,他們是很愿和我們講話的。

    In order to further validate the obtained results,the confirmation test was carried out to verify the PSO model results.The results of confirmation test are shown in Table 5.

    From Table 5,it is seen that the results obtained from test is very close to the results of PSO.The photograph and macrograph of optimized friction welded sample are presented in Fig.7(a)and(b).

    The different zones of microstructures for optimized parameters are presented in Fig.8.

    The joint interface is called as the weld zone(WZ)and the adjunct side is called as the partially deformed zone(PDZ)and also unaffected base metal(BM).The percentage of ferrite phase was measured using Fischer Feritscope MP 30 and average ferrite values are presented in Table 6.

    The microhardness test was carried out along the longitudinal direction of the joint interface with load of 500 g and dwell time of 10 s.The microhardness profile is shown in Fig.9.

    Fig.10 presents the SEM fracture surface of the confirmation tensile tested sample.The fracture of tensile weld sample takes place away from the joint interface.

    The XRD pattern of optimized parameter weld zone is presented in Fig.11.

    5.Discussions

    Fig.7.Confirmation test.

    Fig.8.SEM micrograph of different zones of friction weld joint..

    Table 6 Austenite-to-ferrite values in different weld zones.

    In the real time engineering applications of manufacturing industries,the selection of proper process parameters plays a crucial role in making quality products.In this study,the friction welding process parameters were optimized using PSO.The best result was obtained from QP algorithm with 4-4-2 topology that had minimum RMSE and AAP,maximum R and DC for both training and testing sets.From Fig.4,it is seen that a good agreement was made on predicted values with observed values of QP algorithms.Fig.5 shows that the joint performance of the friction welded joint mainly depends on the upsetting and friction pressures.Because of more refined grain formation during the high UP,a large amount of heat is generated.Fig.6(a)and(b)revels that more heat was generated at higher friction pressure and also more soften state was obtained.It was also observed that,when the upsetting pressure was high,less amount of soften material was retained in the weld zone.The grains were finer due to the faster cooling rate in the weld and HAZ regions.Coarse grains were observed at low upsetting pressure because of slow rate of cooling.The weld zone consisted of finer grains,while the adjunct side PDZ had the coarse grains.The refinement of grains in the weld zone was due to dynamic recrystallization and also due to higher temperature in the peripheral region[18].

    Fig.9.Microhardness profile for optimized parameter.

    During the friction welding,heat generated at both ends of the metal rod is high.Due to this,the ends of the rods are in red hot or plastic stage.Later the upsetting pressure is applied and welding is completed with immediate atmospheric air cooling.

    Fig.10.SEM fracture surface of tensile tested sample.

    Fig.11.XRD pattern of optimized parameter weld zone.

    So the simultaneous effect of short time cooling and high upsetting pressure will result in the formation of fine grains in PDZ and WZ regions.Another advantage is of the short timecooling prevents the phase changes.Therefore optimum amount of austenite was reformed.Table 6 reveals that the austenite-to-ferrite ratio is 50:50 in the three zones of the weld like BM,PDZ and WZ.It was found that hardness and tensile strength was mostly influenced by an interactive effect of upsetting pressure and heating pressure.

    From the confirmation experiment it is observed that PSO resultsareingoodagreementwiththeexperimentalresults.The deviationoftheexperimentalvalueswaslessthan2%compared with optimized PSO results of tensile strength and microhardnessvalues.Fig.8(a)and(b)revealthattheweldingcarriedwith the optimized values resulted in nowelding defects like cavities and cracks in the interface.Presence of secondary phases in duplex stainless steel microstructure can be very harmful for its corrosion resistance.No secondary intermetallic phases were found from Fig.8.From Fig.9,it is seen that PDZ has higher hardness values than that of WZ and base material.It is due to therefinementofgrainsoccurringinPDZ.Thiscanbeattributed to work hardening effect caused by heavy deformation in PDZ[19].The measured average grain sizes for BM,PDZ and WZ wereintheorderof28.7,10.6and22.3microns,respectively.In thetensiletestedsample,thefractureoccurredinbasemetaland was away from the joint zone.The tensile strength of the weld jointwasmuchhigherthanthatofthebasemetal(750Mpa).The maximum tensile strength obtained using optimized parameters was 827.17 Mpa and the experimental value was 822 Mpa.The strength and hardness were increased due to grain refinement in WZ and PDZ.It is also revealed that the hardness and tensile strength values are higher in both WZ and PDZ.Fig.10 reveals that the ductile fracturewas appeared and also the dimpleswere found.The dimples were elongated in the stress direction.Due to the high amount of ferrite content and more amounts of dimples present in the weld zone,the tensile strength of the joints is much higher than the strength of base material.Fig.11 reveals that the identified peaks represent the presence of only ferrite and austenite.No other intermetallic phases were identified in the XRD pattern.Less plastic state and slow cooling time restricted the weld zone phase transformation.

    6.Conclusions

    From this investigation the following conclusions are drawn:

    1)The percentage contributions of input parameters are: upsetting pressure=47.05%,friction pressure=25.99%,speed of rotation=21.96%,and burn-off length=4.96%.

    2)PDZ has the finer grain size compared to the weld zone and base material.

    3)Austenite and ferrite phases are present in the weld zone.

    4)The tensile strength of the friction joint(optimized)is higher than the base material strength and the fracture occurred is in ductile nature.

    5)Higher hardness values were obtained in PDZ compared to WZ and BM.This is due to the refinement of grain size in the weld region.

    6)The austenite-to-ferrite ratio is 50:50 for three zones of the weld like BM,PDZ and WZ.

    [1]TMR Stainless.Practical guidelines for the fabrication of duplex stainless steels.London:International Molybdenum Association;2009. p.1-69.

    [2]Jenney Cynthia L,Annette O'Brien.Welding handbookvol.2.Miami F L:AWS:American Welding Society;1991.p.523-30.

    [3]Olson David Leroy,Siewert Thomas A,Liu Stephen,Edwards Glen R. ASM handbook,vol.6.Materials Park:ASM International;1995. p.1130-52.

    [4]Dunkerton SB.Toughness properties of friction welds in steels.Weld J 1986;8:193-201.

    [5]Balamurugan Karupanan,Mishra Mahendra Kumar,Sathiya Paul,Sait Abdullah Naveen.Weldability studies and parameter optimization of AISI 904L super austenitic stainless steel using friction welding.Mater Res 2014;17(4):908-19.

    [6]Mandal S,Sivaprasad PV,Venugopal S,Murthy KPN.Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion.Appl Soft Comput J 2009;9(1):237-44.

    [7]Ali Akcayol M,Cinar Can.Artificial neural network based modeling of heatcatalyticconverterperformance.ApplThermEng 2005;25(14-15):2341-50.

    [8]Erdogan Kose.Modelling of colour perception of different age groups usingartificialneuralnetworks.ExpertSystAppl 2008;34(3):2129-39.

    [9]Shabanzadeh Parvaneh,Norazak Senu,Shameli Kamyar,Ismail Fudziah,Maryam Mohagheghtabar.Application of artificial neural network(ANN)for the prediction of size of silver nano particles prepared by green method.Dig J Nanomater Biostructures 2013;8(2):541-9.

    [10]Sathiya P,Aravindan S,Noorul Haq A,Paneerselvam K.Optimization of friction welding parameters using evolutionary computational techniques.J Mater Process Technol 2009;209(5):2576-84.

    [11]Paventhan R,Lakshminarayanan PR,Balasubramanian V.Optimization of friction welding process parameters for joining carbon steel and stainless steel.J Iron Steel Res Int 2012;19(1):66-71.

    [12]Faes Koen,Dhooge Alfred,De Baets Patrick,Van Der Donckt Eric,De Waele Wim.Parameter optimisation for automatic pipeline girth welding using a new friction welding method.Mater Des 2009;30:581-9.

    [13]Luo J,Ye YH,Xu JJ,Luo JY,Chen SM,Wang XC.A new mixedintegrated approach to control welded flashes forming process of damping-tube-gland in continuous drive friction welding.Mater Des 2009;30:353-8.

    [14]Udayakumar T,Raja K,Afsal Husain TM,Sathiya P.Prediction and optimization of friction welding parameters for super duplex stainless steel(UNS S32760)joints.Mater Des 2014;53:226-35.

    [15]Magudeeswaran G,Nair Sreehari R,Sundar L,Harikannan N.Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds.Def Technol 2014;10:251-60.

    [16]Montgomery DC.Design and analysis of experiments.7th ed.Wiley;2009.

    [17]Jain Sanjay K,Archana Sarkar,Vaibhav Garg.Impact of declining trend offlowonHarikeWetland.India.WaterResourManag 2008;22(4):409-21.

    [18]Satyanarayana VV,Madhusudhan Reddy G,Mohandas T.Dissimilar metal friction welding of austenitic-ferritic stainless steels.J Mater Process Technol 2005;160:128-37.

    [19]Satyanarayana VV,Madhusudhan Reddy G,Mohandas T.Continuous drive friction welding studies on AISI 304 austenitic stainless steel welds.MaterManufProcess2004;19:487-505.http://dx.doi.org/ 10.1081/AMP-120038657.

    4 August 2014;revised 16 February 2015;accepted 3 March 2015

    Available online 27 March 2015

    .Tel.:+91 431 2503510;fax:+91 431 2500133.

    E-mail address:psathiya@nitt.edu(P.SATHIYA).

    Peer review under responsibility of China Ordnance Society.

    Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    猜你喜歡
    念書伯父熟人
    校園“老”熟人,我們的成長(zhǎng)大“師”
    理 想
    理想
    和熟人相處之道
    伯父的黃昏戀
    別忘記跟熟人打招呼
    北方人(2018年6期)2018-01-22 19:41:39
    一張油畫
    我們的路
    意林(2013年2期)2013-05-14 16:49:17
    借給伯父一百元
    文苑·感悟(2012年2期)2012-03-22 08:09:44
    叛徒
    波多野结衣一区麻豆| 香蕉丝袜av| 午夜激情av网站| 精品一区在线观看国产| 80岁老熟妇乱子伦牲交| 99久国产av精品国产电影| av网站在线播放免费| 成人黄色视频免费在线看| 久久女婷五月综合色啪小说| 嫩草影视91久久| 久久精品亚洲熟妇少妇任你| 狂野欧美激情性xxxx| 午夜日本视频在线| 中文字幕人妻丝袜一区二区 | 欧美成人午夜精品| 成年女人毛片免费观看观看9 | 高清av免费在线| 夫妻午夜视频| 中文字幕最新亚洲高清| 精品一区二区免费观看| bbb黄色大片| 黑丝袜美女国产一区| 亚洲美女搞黄在线观看| 久久久欧美国产精品| 九色亚洲精品在线播放| 丝袜美足系列| 成人国产av品久久久| 曰老女人黄片| 亚洲色图综合在线观看| 我的亚洲天堂| 亚洲伊人久久精品综合| 国产精品久久久av美女十八| 青春草国产在线视频| 校园人妻丝袜中文字幕| 搡老乐熟女国产| 色婷婷av一区二区三区视频| 男人操女人黄网站| 大陆偷拍与自拍| 黄色视频在线播放观看不卡| 天堂中文最新版在线下载| 1024香蕉在线观看| 日韩电影二区| 欧美精品高潮呻吟av久久| 亚洲色图综合在线观看| av在线观看视频网站免费| 午夜福利网站1000一区二区三区| 欧美日本中文国产一区发布| 久久精品国产亚洲av涩爱| 捣出白浆h1v1| videosex国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美亚洲日本最大视频资源| 久久这里只有精品19| 99国产综合亚洲精品| 久久鲁丝午夜福利片| 欧美在线黄色| 好男人视频免费观看在线| 国产男女内射视频| 极品人妻少妇av视频| 午夜免费观看性视频| 啦啦啦啦在线视频资源| 女性被躁到高潮视频| 国产成人免费观看mmmm| 美女大奶头黄色视频| 老汉色av国产亚洲站长工具| 国产av一区二区精品久久| 蜜桃国产av成人99| 亚洲精品国产av成人精品| 欧美日韩视频高清一区二区三区二| 日韩不卡一区二区三区视频在线| 精品福利永久在线观看| 看免费成人av毛片| h视频一区二区三区| 晚上一个人看的免费电影| 午夜日韩欧美国产| 99久久精品国产亚洲精品| 日韩制服骚丝袜av| 久久人妻熟女aⅴ| 考比视频在线观看| 精品一区二区三卡| 日韩精品免费视频一区二区三区| 一区二区日韩欧美中文字幕| 欧美黑人欧美精品刺激| 99热全是精品| a级毛片黄视频| 天天躁日日躁夜夜躁夜夜| 王馨瑶露胸无遮挡在线观看| 日韩成人av中文字幕在线观看| 成人漫画全彩无遮挡| 少妇猛男粗大的猛烈进出视频| 一二三四中文在线观看免费高清| 校园人妻丝袜中文字幕| 日日摸夜夜添夜夜爱| 青青草视频在线视频观看| 欧美中文综合在线视频| 亚洲国产欧美在线一区| av又黄又爽大尺度在线免费看| 男女高潮啪啪啪动态图| 日日爽夜夜爽网站| 9191精品国产免费久久| 狂野欧美激情性xxxx| 免费久久久久久久精品成人欧美视频| 天天添夜夜摸| 国产av一区二区精品久久| 欧美黄色片欧美黄色片| 99re6热这里在线精品视频| 十八禁网站网址无遮挡| 高清在线视频一区二区三区| 亚洲五月色婷婷综合| 一级a爱视频在线免费观看| 91精品伊人久久大香线蕉| 青春草亚洲视频在线观看| 成人影院久久| 欧美中文综合在线视频| 久久久国产一区二区| 色综合欧美亚洲国产小说| 国产精品亚洲av一区麻豆 | 美国免费a级毛片| 一级毛片我不卡| 一区二区三区四区激情视频| 中文字幕高清在线视频| 黄色怎么调成土黄色| 久久99热这里只频精品6学生| 日韩av免费高清视频| 桃花免费在线播放| 七月丁香在线播放| 日韩不卡一区二区三区视频在线| 日韩不卡一区二区三区视频在线| 在线观看免费午夜福利视频| 精品一区二区免费观看| 久久久久国产一级毛片高清牌| av又黄又爽大尺度在线免费看| 亚洲av福利一区| 高清av免费在线| 黑人猛操日本美女一级片| 国产精品 欧美亚洲| 亚洲,一卡二卡三卡| 大片免费播放器 马上看| 人妻人人澡人人爽人人| 美国免费a级毛片| 晚上一个人看的免费电影| 日韩精品免费视频一区二区三区| 久久国产精品大桥未久av| 一级,二级,三级黄色视频| 久久精品亚洲av国产电影网| av网站在线播放免费| 国产成人免费无遮挡视频| 免费看av在线观看网站| 亚洲美女搞黄在线观看| 亚洲精品美女久久av网站| 亚洲国产欧美一区二区综合| 国产熟女午夜一区二区三区| 高清av免费在线| av在线播放精品| 亚洲综合精品二区| 纯流量卡能插随身wifi吗| 国产成人午夜福利电影在线观看| 最近最新中文字幕大全免费视频 | 91国产中文字幕| 欧美少妇被猛烈插入视频| 免费在线观看视频国产中文字幕亚洲 | 最近2019中文字幕mv第一页| 在线观看一区二区三区激情| 欧美日本中文国产一区发布| 亚洲美女黄色视频免费看| svipshipincom国产片| 欧美国产精品va在线观看不卡| 欧美人与性动交α欧美精品济南到| 国产激情久久老熟女| 热re99久久国产66热| 如何舔出高潮| 青春草视频在线免费观看| 国产欧美亚洲国产| 久久99精品国语久久久| 日本vs欧美在线观看视频| 久久热在线av| 少妇猛男粗大的猛烈进出视频| 999精品在线视频| 亚洲人成网站在线观看播放| 大话2 男鬼变身卡| 成人国产麻豆网| av天堂久久9| 国产精品嫩草影院av在线观看| 久久ye,这里只有精品| 久久久亚洲精品成人影院| 性少妇av在线| 91精品伊人久久大香线蕉| 国产精品久久久久成人av| 国产精品久久久久久久久免| 日韩一区二区视频免费看| 一级毛片黄色毛片免费观看视频| 国产精品成人在线| 久久综合国产亚洲精品| 黄片播放在线免费| 黄色视频在线播放观看不卡| 99久久人妻综合| 99国产精品免费福利视频| 中文字幕人妻丝袜制服| 日韩伦理黄色片| 亚洲色图综合在线观看| 18禁观看日本| 成年人免费黄色播放视频| 哪个播放器可以免费观看大片| 亚洲综合色网址| 2021少妇久久久久久久久久久| 18禁动态无遮挡网站| 亚洲av电影在线进入| 99精品久久久久人妻精品| av在线播放精品| 婷婷成人精品国产| 欧美老熟妇乱子伦牲交| 在线观看免费日韩欧美大片| e午夜精品久久久久久久| 男男h啪啪无遮挡| av不卡在线播放| 国产一区有黄有色的免费视频| 99精国产麻豆久久婷婷| 99热网站在线观看| 女人爽到高潮嗷嗷叫在线视频| 999精品在线视频| 久久久国产精品麻豆| 欧美日韩一级在线毛片| 综合色丁香网| 如何舔出高潮| 精品酒店卫生间| 国产女主播在线喷水免费视频网站| 国产97色在线日韩免费| 91精品伊人久久大香线蕉| 国产爽快片一区二区三区| 夫妻性生交免费视频一级片| 最黄视频免费看| xxxhd国产人妻xxx| 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| 日韩av不卡免费在线播放| 日本猛色少妇xxxxx猛交久久| 97人妻天天添夜夜摸| 精品一品国产午夜福利视频| 在线看a的网站| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 亚洲欧美色中文字幕在线| 免费观看av网站的网址| 最黄视频免费看| 精品少妇久久久久久888优播| 国产欧美日韩一区二区三区在线| 久久女婷五月综合色啪小说| 精品久久久久久电影网| 日本vs欧美在线观看视频| 久久人人爽av亚洲精品天堂| 日韩一区二区三区影片| 亚洲成av片中文字幕在线观看| 天天添夜夜摸| 国产欧美日韩综合在线一区二区| 777米奇影视久久| 亚洲国产欧美在线一区| 99久国产av精品国产电影| 一本大道久久a久久精品| 九九爱精品视频在线观看| 1024香蕉在线观看| 91国产中文字幕| 观看美女的网站| 老司机靠b影院| 日韩,欧美,国产一区二区三区| 欧美日本中文国产一区发布| 日本午夜av视频| 熟女少妇亚洲综合色aaa.| 午夜激情av网站| 尾随美女入室| 日本av免费视频播放| 人人澡人人妻人| 韩国高清视频一区二区三区| 久久久欧美国产精品| 一级,二级,三级黄色视频| 丰满乱子伦码专区| av女优亚洲男人天堂| 国产免费又黄又爽又色| 免费观看人在逋| 亚洲欧洲国产日韩| 国产成人免费无遮挡视频| 久久久国产欧美日韩av| 老司机影院毛片| 亚洲免费av在线视频| 天堂8中文在线网| 韩国av在线不卡| 午夜福利乱码中文字幕| 亚洲欧美一区二区三区黑人| 一本—道久久a久久精品蜜桃钙片| 亚洲国产最新在线播放| 十八禁高潮呻吟视频| 欧美日韩亚洲综合一区二区三区_| 成人国产av品久久久| 亚洲欧洲国产日韩| 久久国产亚洲av麻豆专区| 美女视频免费永久观看网站| 19禁男女啪啪无遮挡网站| 婷婷色麻豆天堂久久| 两个人看的免费小视频| 免费在线观看视频国产中文字幕亚洲 | 久久99一区二区三区| av网站在线播放免费| 高清欧美精品videossex| 极品少妇高潮喷水抽搐| 久久久久久人妻| 中文乱码字字幕精品一区二区三区| 丝瓜视频免费看黄片| 你懂的网址亚洲精品在线观看| 777米奇影视久久| 人人澡人人妻人| av一本久久久久| 男女边吃奶边做爰视频| 777米奇影视久久| svipshipincom国产片| 成人国产av品久久久| 国产精品一二三区在线看| 日本猛色少妇xxxxx猛交久久| 黑人猛操日本美女一级片| 在线观看国产h片| 欧美日韩亚洲国产一区二区在线观看 | 精品一区在线观看国产| 国产精品国产三级专区第一集| 日韩一本色道免费dvd| 亚洲av日韩在线播放| 成人毛片60女人毛片免费| 久久精品国产亚洲av高清一级| 只有这里有精品99| 777米奇影视久久| 9热在线视频观看99| 国产一区有黄有色的免费视频| 国产欧美亚洲国产| 日本vs欧美在线观看视频| av女优亚洲男人天堂| 1024香蕉在线观看| 国产精品 国内视频| 男女国产视频网站| 免费看av在线观看网站| 十八禁网站网址无遮挡| 日韩精品有码人妻一区| 人妻人人澡人人爽人人| 国产精品久久久av美女十八| 精品少妇黑人巨大在线播放| 老鸭窝网址在线观看| 七月丁香在线播放| 久久精品国产综合久久久| 女的被弄到高潮叫床怎么办| 亚洲视频免费观看视频| 日韩一本色道免费dvd| www.精华液| 午夜激情av网站| 久久久欧美国产精品| 国产精品一国产av| 日日摸夜夜添夜夜爱| 九九爱精品视频在线观看| 黄色视频不卡| 在线观看三级黄色| 秋霞在线观看毛片| 久久久欧美国产精品| 一区在线观看完整版| 在线观看免费高清a一片| 久久国产精品男人的天堂亚洲| 亚洲一区二区三区欧美精品| 男女国产视频网站| 丝袜在线中文字幕| 精品国产一区二区三区久久久樱花| 69精品国产乱码久久久| 啦啦啦中文免费视频观看日本| 久久久久久久大尺度免费视频| 欧美在线黄色| 欧美精品一区二区免费开放| 亚洲,一卡二卡三卡| 欧美黑人精品巨大| 国产一区二区在线观看av| 精品少妇一区二区三区视频日本电影 | 王馨瑶露胸无遮挡在线观看| 欧美黄色片欧美黄色片| 国产成人91sexporn| 99久久综合免费| 亚洲国产毛片av蜜桃av| 国产精品一国产av| av电影中文网址| 久久久国产欧美日韩av| 青草久久国产| 观看美女的网站| 黑人巨大精品欧美一区二区蜜桃| 午夜福利在线免费观看网站| 国产男女内射视频| 亚洲精品国产区一区二| 免费看不卡的av| 婷婷色综合大香蕉| 99久久99久久久精品蜜桃| 国产精品久久久av美女十八| 一区在线观看完整版| 女性被躁到高潮视频| 亚洲国产精品999| 久久这里只有精品19| 99久久99久久久精品蜜桃| 国产亚洲av片在线观看秒播厂| 91aial.com中文字幕在线观看| 亚洲精品国产av成人精品| 久久久久精品人妻al黑| 精品一区二区三区四区五区乱码 | 国产男女内射视频| 国产亚洲一区二区精品| 美女脱内裤让男人舔精品视频| 中国国产av一级| 一个人免费看片子| 免费在线观看黄色视频的| 一级黄片播放器| 国产有黄有色有爽视频| 亚洲成人手机| 国产在线免费精品| 青春草亚洲视频在线观看| 新久久久久国产一级毛片| 国产精品一区二区在线观看99| 久久久久视频综合| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 日本vs欧美在线观看视频| 国产精品嫩草影院av在线观看| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 成人18禁高潮啪啪吃奶动态图| 女的被弄到高潮叫床怎么办| 国产av精品麻豆| 国产亚洲精品第一综合不卡| 最近最新中文字幕大全免费视频 | 精品国产乱码久久久久久小说| 午夜91福利影院| 久久狼人影院| 在线观看免费日韩欧美大片| 国产1区2区3区精品| 亚洲美女搞黄在线观看| 汤姆久久久久久久影院中文字幕| 高清欧美精品videossex| 亚洲欧美成人精品一区二区| 免费在线观看黄色视频的| 一级毛片我不卡| 欧美变态另类bdsm刘玥| 久久久久精品久久久久真实原创| 天天躁日日躁夜夜躁夜夜| 日韩一区二区视频免费看| 欧美日韩福利视频一区二区| 人妻人人澡人人爽人人| 亚洲,欧美精品.| 亚洲天堂av无毛| 一边摸一边抽搐一进一出视频| 日韩一区二区三区影片| 国产在线视频一区二区| www.熟女人妻精品国产| 亚洲国产日韩一区二区| 交换朋友夫妻互换小说| 中文字幕av电影在线播放| 久久国产精品男人的天堂亚洲| 色精品久久人妻99蜜桃| 91精品国产国语对白视频| 80岁老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 晚上一个人看的免费电影| 国产av码专区亚洲av| 国产高清国产精品国产三级| 九九爱精品视频在线观看| 婷婷色综合大香蕉| 国产 精品1| 国产精品.久久久| 男女边吃奶边做爰视频| 国产在线一区二区三区精| 亚洲av日韩在线播放| 黄色怎么调成土黄色| 欧美精品高潮呻吟av久久| 汤姆久久久久久久影院中文字幕| netflix在线观看网站| 国产午夜精品一二区理论片| 十分钟在线观看高清视频www| 亚洲精品国产av蜜桃| 国产精品一区二区在线观看99| √禁漫天堂资源中文www| 亚洲精品成人av观看孕妇| 国产熟女欧美一区二区| 丁香六月欧美| 19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 麻豆乱淫一区二区| 日韩一区二区视频免费看| 国产成人欧美在线观看 | 丝瓜视频免费看黄片| 美女脱内裤让男人舔精品视频| 国产精品免费大片| 18禁观看日本| 亚洲美女黄色视频免费看| 精品国产超薄肉色丝袜足j| 国产黄频视频在线观看| 一级a爱视频在线免费观看| 伊人亚洲综合成人网| 欧美日韩av久久| 亚洲精品aⅴ在线观看| 嫩草影院入口| 国产毛片在线视频| 久久久久精品国产欧美久久久 | 国产在线免费精品| 午夜免费鲁丝| 在线精品无人区一区二区三| www.精华液| 青春草视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 麻豆乱淫一区二区| 欧美黑人欧美精品刺激| 极品人妻少妇av视频| 美女视频免费永久观看网站| 亚洲激情五月婷婷啪啪| 亚洲自偷自拍图片 自拍| 国产成人一区二区在线| 午夜久久久在线观看| 亚洲少妇的诱惑av| 91国产中文字幕| 国产精品99久久99久久久不卡 | 青春草亚洲视频在线观看| 美女午夜性视频免费| 精品久久蜜臀av无| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 热re99久久精品国产66热6| 天堂中文最新版在线下载| 国产一区二区 视频在线| 在线观看免费视频网站a站| 国产国语露脸激情在线看| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜| 精品一区在线观看国产| 国产亚洲av片在线观看秒播厂| 日本午夜av视频| 久久久久精品性色| 夫妻性生交免费视频一级片| 欧美日韩视频高清一区二区三区二| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 纯流量卡能插随身wifi吗| 亚洲精品久久久久久婷婷小说| 夜夜骑夜夜射夜夜干| 国产一区二区激情短视频 | 国产又色又爽无遮挡免| 黑人猛操日本美女一级片| 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| 国产日韩欧美在线精品| 性少妇av在线| 男人舔女人的私密视频| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 久久天躁狠狠躁夜夜2o2o | 国产熟女欧美一区二区| 亚洲国产精品一区三区| avwww免费| 中文字幕色久视频| www.自偷自拍.com| 国产 一区精品| 亚洲三区欧美一区| 一级片免费观看大全| 老司机影院成人| 在线看a的网站| 亚洲婷婷狠狠爱综合网| videosex国产| 高清不卡的av网站| 黑丝袜美女国产一区| 精品少妇内射三级| 国产一区二区激情短视频 | 黄色视频在线播放观看不卡| 成人亚洲欧美一区二区av| 亚洲精品国产一区二区精华液| 亚洲伊人色综图| 一区二区av电影网| 最近2019中文字幕mv第一页| 亚洲av欧美aⅴ国产| 亚洲精品日本国产第一区| 亚洲一码二码三码区别大吗| 在现免费观看毛片| 黄频高清免费视频| av国产久精品久网站免费入址| 亚洲av电影在线进入| 国产免费一区二区三区四区乱码| 亚洲久久久国产精品| 亚洲av电影在线观看一区二区三区| 少妇被粗大的猛进出69影院| 久久综合国产亚洲精品| 欧美人与善性xxx| 久久青草综合色| 性高湖久久久久久久久免费观看| 国产成人免费无遮挡视频| 十八禁网站网址无遮挡| av国产精品久久久久影院| 亚洲中文av在线| 国产成人免费无遮挡视频| 女性生殖器流出的白浆| 99久久99久久久精品蜜桃| 老司机影院毛片| 亚洲国产最新在线播放| 久久女婷五月综合色啪小说| 精品国产国语对白av| 国产男女超爽视频在线观看| 亚洲国产欧美网| 一级毛片黄色毛片免费观看视频| 国产在视频线精品| 国产伦人伦偷精品视频| 五月天丁香电影| 亚洲精品aⅴ在线观看| 欧美精品亚洲一区二区| 婷婷色麻豆天堂久久| 热re99久久精品国产66热6| 99精品久久久久人妻精品| 成年av动漫网址| 国产成人免费观看mmmm| 欧美av亚洲av综合av国产av | 亚洲熟女毛片儿| 波多野结衣一区麻豆| 国产爽快片一区二区三区| 少妇人妻久久综合中文|