• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and pitting corrosion resistance of AA2219 Al-Cu alloy friction stir welds-Effect of tool profile

    2015-11-01 07:13:54ChVENKATARAOMADHUSUDHANREDDYSRINIVASARAO
    Defence Technology 2015年2期

    Ch VENKATA RAO,G.MADHUSUDHAN REDDY,K.SRINIVASA RAO,*

    aDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    ?

    Microstructure and pitting corrosion resistance of AA2219 Al-Cu alloy friction stir welds-Effect of tool profile

    Ch VENKATA RAOa,G.MADHUSUDHAN REDDYb,K.SRINIVASA RAOa,*

    aDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    AA2219 Al-Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Even though the mechanical properties of the base metal are better,but the alloy suffers from poor mechanical and corrosion properties during fusion welding.To overcome the problems of fusion welding,friction stir welding(FSW)is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties. Tool profile is one of the important variables which affect the performance of the friction stir weld.In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminium-copper alloy was studied.Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile.Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW.It was found that the microstructure changes,such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour.Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones.Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone(TMAZ)and heat affected zone(HAZ).

    AA2219 Al-Cu alloy;Friction stir welding;Microstructure and pitting corrosion

    1.Introduction

    Friction stir welding(FSW),an innovative solid state welding technique,has found widely used in defence and aerospace applications[1].This environment-friendly and energy-efficient technique can be used to join high strength aluminium alloys and other metallic materials that are difficultto join using conventional welding processes.In FSW,a rotating tool produces frictional heat causing local plastic deformation[2].Functions of two main parts of the tool,shoulder and pin are to generate heat for material softening and material flow control for defect free weld.Generally it is considered that the final microstructure in a given zone of friction stir weld is strongly influenced by the peak temperature and material flow.It is also a known fact that the age hardenable AA2219 Al-Cu alloy is sensitive to the microstructure changes during welding.Understanding of effect of material flow on microstructure changes is very limited with respect to aluminium alloys[3-6].Tool pin profile strongly influences the change of microstructure in various zones offriction stir welds and thus plays an important role in corrosion behaviour.Microstructure heterogeneity in the friction stir welds is significant in determining the corrosion properties of AA2219 alloy owing to the galvanic coupling between the noble CuAl2 precipitate and the surrounding matrix.Any attempt to improve corrosion resistance generally affects the mechanical properties of aluminium alloy welds[7-10].Most of the previous investigations on the design of tool geometry were focused on optimizing the tool pin profile with respect to microstructure and mechanical properties[11-14].However the studies related to the effect of tool profile on the microstructure and corrosion behaviour of welds are scarce[15]. Keeping in view of the above facts,the present investigation is aimed at studying the microstructure changes in various zones and the pitting corrosion behaviour of AA2219 alloy FS welds made using two tool profiles,smooth type conical and flat type triangle.

    Table 1 Chemical composition of AA2219 alloy.

    2.Material and methods

    In the present investigation,the high-strength aluminiumcopper alloy AA2219-T87 rolled plates of which dimensions are 240 mm×160 mm×7 mm were used for friction stir welding experiments.The chemical composition of the parent metal is given in Table 1.The plates were welded in single pass,normal to the rolling direction,by using the conical and triangle pin profile tools(Fig.1)on a position controlled friction stir welding machine.Fig.2 shows the weld beads of conical and triangle profiles.

    Fig.1.Geometry of tool profiles.

    Fig.2.Weld beads of FS welds of both profiles.

    Keller's reagent is used for etching polished surfaces and theopticalmicrographsarerecorded.Studiesonthe strengthening precipitates were carried out using a 120 kV transmission electron microscope(TEM).The electron backscattered diffraction(EBSD)imaging was carried out using high resolution scanning electron microscope(SEM)equipped with TSL and EBSD system.The EBSD was operated at an accelerating voltage of 20 kVand imaging was performed at a step size of 0-1.0 μm.Line intercept method was employed for measurement of grain size.Vickers hardness testing of the weld joints was carried under the load of 2 kgf.Differential scanning calorimetry(DSC)was carried out for the welds by extracting 10 mg of metal from the stirred region.The extracted metal/sample was subjected to heating rate of 10°C/ min in the range from ambient temperature(35°C)to 550°C to estimate the fraction of precipitates dissolved during friction stir welding.The DSC was also carried out for the base metal for comparison,by following a similar procedure. Potentiodynamic polarization tests were carried out to determine the critical pitting corrosion potential Epitfrom the recoded polarization curve.

    3.Results and discussion

    3.1.Microstructure

    Optical micrographs of AA2219 friction stir welds with base metal are shown in Figs.3 and 4.Base metal microstructure(Fig.3(a))reveals the elongated grain characteristics of the rolled plate with some dark intermetallic particles.The optical micrographs of three microscopically distinct regions,viz WN(weld nugget),TMAZ and HAZ on the advancing side(AS)and the retreating side(RS)of weld made using conical tool,are given in Fig.3.The nugget region has experienced high temperatures and extensive plastic deformation and is characterizedbydynamicallyrecrystallizedgrains.The deformation extent of the plastic material and the flow of the material affect the microstructure and the properties of the nugget.Pin geometry affects the weld nugget microstructure significantly.Specifically the weld made using triangle toolprofile(Fig.4)shows very fine grain distribution compared to the weld made using conical tool profile.

    Fig.3.Optical micrographs of AA2219 FS welds with conical tool profile.(a)Base material,(b)AHAZ,(c)ATMAZ,(d)Weld nugget,(e)RTMAZ,(f)RHAZ.

    TMAZ is characterized by a highly deformed structure which may result from the insufficient deformation strain,temperature and recrystallization resistance of the base alloy. One of the important characteristics of FSW is the different relative speeds of plastic material on advanced side and retreating side,which results in the different structures.

    It can be seen that the microstructures change smoothly from nugget to TMAZ.In the weld made using triangle tool,the nugget grain experienced high temperatures and turbulent material flow resulting in severe plastic deformation.Very fine grains are formed due to dynamic recrystallization compared to weld nugget made using conical tool(Figs.3(d)and 4(d)). The triangle tool has little influence on the material flowing out of diameter of the pin,so the pin speed between nugget and TMAZ is very high.The material flow is insufficient in TMAZ.The temperature and plastic deformation in TMAZ is not as much as those in nugget.Therefore the shape of the weld nugget and the TMAZ zone is only dependent on the shape and the geometry of welding tool and not on the welding parameters.

    Fig.4.Optical micrographs of AA2219 FS welds with triangle tool profile.(a)Base material(b)AHAZ(c)ATMAZ,(d)Weld nugget,(e)RTMAZ(f)RHAZ.

    Fig.5.Transmission electron micrographs of AA2219 FS welds with conical profile.(a)Base material,(b)AHAZ,(c)ATMAZ,(d)Weld nugget,(e)RTMAZ,(f)RHAZ.

    Transmission electron micrographs of various zones of friction sir welds of AA2219-T87 alloy made using the triangle and conical profile tools are shown in Figs.5 and 6 θ′and θ′′phases of the densely distributed plate-like semicoherent and coherent strengthening precipitates are observed in TEM micrographs of base metal.TEM studies clearly reveal the morphology of precipitates(CuAl2)in weld nugget,TMAZ and HAZ.It can be seen that the relative precipitate coarsening occurs in the HAZ and TMAZ of weld made using triangle profile compared to the weld made using conical profile.Similarly relative higher rate of dissolution of precipitates was observed in the nugget zone of weld made using triangle tool compared to the weld made using conical profile tool.Higher amount of heat generation in the preparation of FS welds using triangle profile tool may be the reason for greater dissolution of precipitates in nugget zone and coarsening of precipitates in TMAZ and HAZ zones.

    3.2.Electron backscattered diffraction study

    The grain sizes obtained in the welds,produced by two tool pin profiles,were measured using EBSD through the line intercept method,and the EBSD images are shown in Figs.7 and 8.Grain size of weld nugget with triangle profile was found to be finer(0.67 μm)compared to that with conical profile(3.6 μm).This may be attributed to higher amount ofheat produced in triangle profile.Grain sizes of various zones are given in Table 2.And similar trend is also observed in the other regions of the weld.High stacking fault energy materials,such as aluminium alloy,undergo continuous dynamic recrystallization during high temperature deformation.Figs.9 and 10 show the SEM/EBSD images of grain boundary misorientation in the five identified weld zones of conical and triangle tools,respectively.The dynamic recrystallization is caused by local frictional heating and severe plastic strain.

    Fig.6.Transmission electron micrographs of AA2219 FS welds with triangle profile.(a)Base material,(b)AHAZ,(c)ATMAZ,(d)Weld nugget,(e)RTMAZ,(f)RHAZ.

    Fig.7.EBSD images of AA2219 FS welds with conical profile.(a)Base material,(b)AHAZ,(c)ATMAZ,(d)Weld nugget,(e)RTMAZ,(f)RHAZ.

    Fig.8.EBSD images of AA2219 FS welds with triangle profile.(a)Base material,(b)AHAZ,(c)ATMAZ,(d)Weld nugget,(e)RTMAZ,(f)RHAZ.

    Table 2 Average grain sizes of different regions of AA2219 FS welds.

    Grain boundary misorientation is divided into two classes,namely Low Angle Grain Boundary LAGB (misorientation<15 deg.)and High Angle Grain Boundary HAGB(misorientation>15 deg.).The values for different zones are given in Fig.11.It is very clear that there is a substantial increase in the number of LAGBs in TMAZ of triangle tool profile compared to conical profile.The increase of LAGBs in TMAZ can be attributed to dynamic recovery,whereby a large number of sub grains with low angle intergranular boundaries are formed.

    Fig.9.Grain boundary misorientation images of AA2219 FS welds with conical tool profile.(a)Base material,(b)AHAZ,(c)ATMAZ,(d)Weld nugget,(e)RTMAZ,(f)RHAZ.

    Fig.10.Grain boundary misorientation images of AA2219 FS welds with triangle tool profile.(a)Base material,(b)AHAZ,(c)ATMAZ,(d)Weld nugget,(e)RTMAZ,(f)RHAZ.

    Fig.11.Grain boundary misorientation distribution in FS welds(C-Conical,T-Triangle).

    Fig.12.DSC traces for weld nugget.

    Table 3 Percentage of precipitates dissolved in FSW.

    3.3.Differential scanning calorimetry(DSC)

    DSC studies were carried out to quantify the amount of precipitates dissolved in nugget zone during friction stir welding and also in base metal for comparison purpose.The difference between the areas under the endothermic peaks of the base metal and welded metal,divided by the area under the endothermic peak of base metal,gives the fraction of precipitates present after welding(x).From this,the fraction of second phase dissolved during welding for a given tool pin profile weld is calculated by subtracting_x_from unity[10]. The DSC traces of two tool pin profile welds and the base metal are shown in Fig.12.The graph clearly reveals that the endothermic peaks are obtained at temperatures between 542°C and 544°C,which correspond to the complete dissolution of precipitates as may be observed from phase diagram. The amount of precipitates dissolved was estimated from DSC traces by considering the area within the endothermic peak corresponding to the precipitate dissolution for the particular tool pin profile weld.The amount of precipitates dissolved during FSW is presented in Table 3.The calculation shows that the dissolution is relatively higher in the case of triangle tool pin profile welds as compared to other tool pin profile weld.This may be due to relatively higher peak temperature.

    3.4.Hardness study

    Hardness values of various zones of welds are given in Table 4.An examination of the data clearly demonstrates that the hardness values are considerably affected by the geometryof tool pin.This may be attributed to fine grain microstructure in triangle tool profile due to sufficient heat and material flow available compared to that of weld made using conical tool profile.This result is in agreement with optical,TEM observations and the results of grain size and orientation measurement using EBSD.

    Table 4 Vickers hardness values(VHN)of 2219 Al-T87 alloys FS welds.

    3.5.Pitting corrosion study

    The potentiodynamic polarization curves of the welds in the various regions are shown in Fig.13.The intermetallics are the initiation sites for pitting in Al-Cu alloys.The pitting is due to a local dissolution of the matrix due to galvanic coupling between intermetallics and surrounding matrix.The intermetallics containing Cu and Fe are cathodic with respect to the matrix and promote the dissolution of the matrix.Better corrosion resistance of TMAZ/HAZ and the weld nugget regions in 2xxx series aluminium alloys have been reported earlier[16].The dissolution of precipitates in the weld nugget and the coarsening of precipitates in the TMAZ/HAZ regions seem to be the factors responsible for the improved corrosion resistance as well as the nobler corrosion potentials in these two regions.The Epitvalues(mV)of nugget zone(NZ),and the advancing(A)and retreating(R)sides of TMAZ and HAZ are given in Table 5.The weld nugget seems to have turned into a cathode and was completely protected from corrosion damage.It is clearly noticed that the relatively low positive Epitvalues are recorded in NZ,TMAZ and HAZ of the friction stir weld of triangle tool profile.Comparatively uniform pitting corrosion resistance was observed throughout the cross section of the both tool profiles resulted.This is attributed to the dissolution/coarsening of the strengthening precipitates in the nugget region and finely disintegrated eutectics which are evenly distributed in the TMAZ of triangle profile.The typical micrographs after pitting corrosion are shown in Fig.14.Pit density of weld nugget is higher for conical profile compared to that for triangular profile,which is in agreement with the observed pit potential values.

    4.Conclusions

    1)EBSD analysis indicated a continuous dynamic recrystallization process leading to the formation of equiaxed grain structure in the weld nugget of triangle profile.Selection of tool profile is important in achieving the better combination of mechanical properties and corrosion resistance of AA2219 aluminium-copper alloy friction stir welds.

    Fig.13.Potentio-dynamic polarization of AA2219 FS welds in different zones.(a)Base metal,(b)A-HAZ,(c)A-TMAZ,(d)Weld Nugget,(e)R-TMAZ,(f)R-HAZ.

    Table 5 Epit Values of AA2219-T87 Al alloy FS welds.

    2)DSC study established that the rate of heat generation as well as the peak temperature is relatively higher in the case of triangle pin profile compared to conical profile and also dissolution of precipitates.TEM studies also confirmed the dissolution of precipitates.

    Fig.14.Optical micrographs after pitting corrosion.(a)Base metal(b)WN of conical(c)WN of triangle.

    3)The general corrosion resistance of the weld nugget was better than that of the parent AA2219 alloy in 3.5%NaClsolution and was attributed to the dissolution or coarsening of the strengthening precipitates in the nugget region and the consequent reduction in the galvanic coupling.

    4)Tool profile has been found to affect the microstructure,mechanical properties,and corrosion resistance of friction stir welds of AA2219 Al-Cu alloy in various zones significantly.

    Acknowledgements

    The authors would like to thank Dr.A.Ghokale,Director,Defence Metallurgical Research Laboratory,Hyderabad,India for his continued encouragement and permission to publish this work.

    [1]Thomas WM,Nicholas ED,Needham JC,Murch MG,Temple smith P,Dawas CJ.International Patent application No.PCT/GB92/02203 G.B PatApplNo.9125978.8,Dec.1991;U.SOct.1995:Patent Appl.No.5460317.

    [2]Friggard O,Grong O,Bjorneklett B,Middling OT.In:Proceedings in 1stIntentional Symposium on friction stir welding.Thousand Oaks,CA,USA:TWI;June 1999.

    [3]Fratini L,Buffa G,Palmeri D,Hua J,Shivpuri R.Material flow in FSW of AA7075-T6 butt joints:numerical simulations and experimental verifications.Sci Technol Weld Join 2006;11(4):412-21.

    [4]Nandan R,DebRoy T,Bhadeshia HKDH.Recent advances in friction-stir welding process weldment structure and properties.Prog Mater Sci 2008;53:980-1023.

    [5]Chao YJ,Qi X,Tang W.Heat transfer in friction stir welding:experimental and numerical studies.ASME J Manuf Sci 2003;125:138-45.

    [6]Mishra RS,Ma ZY.Friction stir welding and processing.Mater Sci Eng 2005;50:1-78.

    [7]Thomas WM,Johnson KI,Wiesner CS.Friction stir welding-recent developments in tool and process technologies.Adv Eng Mater 2003;5:485-90.

    [8]Zhao Yan-hua,Lin San-bao,Wu Lin,Qu Fu-xing.The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloys.Mater Lett 2005;59(23):2948-52.

    [9]Yan Junhui,Sutton MA,Reynolds AP.Process-structure-property relationships for nugget and heat affected zone regions of AA2524-T351 friction stir welds.Sci Technol Weld Join 2005;10(6):725-36.

    [10]Surekha K,Murty BS,Prasad Rao K.Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminium alloy.Solid State Sci 2009;11:907.

    [11]Hattingh DG,Blignault C,Van Niekerk TI,James MN.Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool.J Mater Process Technol 2008;203(1-3):46-57.

    [12]RamanjaneyuluK,MadhusudhanReddyG,VenugopalRaoA,Markandeya R.Structure-property correlation of AA2014 friction stir welds-role of tool pin profile.J Mater Eng Perform 2013;22:2224-40.

    [13]Nicholas ED,Thomas WM.A review of friction processes for aerospace applications.Int J Mater Prod Technol 1998;13(1-2):45-55.

    [14]Threadgill PL,Leonard AJ,Shercliff HR,Withers PJ.Friction stir welding of aluminium alloys.Int Mater Rev 2009;54(2):49-93.

    [15]Paglia CS,Buchheit RG.A look in the corrosion of aluminium alloy friction stir welds.Scr Mater 2008;58:383-7.

    [16]Srinivasa Rao K,Prasad Rao K.Pitting corrosion of heat-treatable aluminium alloys and welds:a review.Trans Indian Inst Metals 2004;576.5s93-610.

    30 September 2014;revised 19 October 2014;accepted 20 October 2014

    Available online 13 February 2015

    .

    E-mailaddresses:venkat.auce@gmail.com(C.VENKATARAO),gmreddy_dmrl@yahoo.com(G.MADHUSUDHAN REDDY),arunaraok@ yahoo.com(K.SRINIVASA RAO).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2014.10.003

    2214-9147/Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    国产高清激情床上av| 美女cb高潮喷水在线观看| 国产伦精品一区二区三区视频9| 国产高清三级在线| 麻豆乱淫一区二区| 免费观看精品视频网站| 久久亚洲国产成人精品v| 国产精品人妻久久久久久| 成人性生交大片免费视频hd| 最近视频中文字幕2019在线8| 色综合亚洲欧美另类图片| ponron亚洲| 亚洲欧美日韩东京热| 久久久久性生活片| 波多野结衣高清作品| 国产乱人视频| 欧美高清性xxxxhd video| 啦啦啦啦在线视频资源| 午夜精品在线福利| 九九热线精品视视频播放| 亚洲精品一卡2卡三卡4卡5卡| 日韩大尺度精品在线看网址| 欧美极品一区二区三区四区| 美女cb高潮喷水在线观看| 亚洲av一区综合| 成年版毛片免费区| 伦精品一区二区三区| 欧美最黄视频在线播放免费| 欧美一区二区亚洲| 国产精品,欧美在线| 日韩欧美 国产精品| 伦精品一区二区三区| 日本一本二区三区精品| 能在线免费观看的黄片| av视频在线观看入口| 嫩草影院精品99| 国产精品国产三级国产av玫瑰| 深夜a级毛片| 日韩av不卡免费在线播放| 亚洲最大成人中文| 免费观看的影片在线观看| 日韩欧美免费精品| 国产伦精品一区二区三区视频9| av在线观看视频网站免费| a级一级毛片免费在线观看| 国产欧美日韩精品一区二区| 亚洲成人久久性| 99国产极品粉嫩在线观看| 美女免费视频网站| 一区福利在线观看| 精品午夜福利在线看| 久久久精品94久久精品| 国产男人的电影天堂91| 噜噜噜噜噜久久久久久91| 天堂动漫精品| 久久人人爽人人爽人人片va| 变态另类丝袜制服| 激情 狠狠 欧美| 成人午夜高清在线视频| 最近手机中文字幕大全| aaaaa片日本免费| 俺也久久电影网| 亚洲av第一区精品v没综合| 国产精品人妻久久久影院| 你懂的网址亚洲精品在线观看 | 国产在线男女| 老司机福利观看| 老司机福利观看| 色视频www国产| 久久草成人影院| 成年免费大片在线观看| 亚洲欧美中文字幕日韩二区| 最近手机中文字幕大全| 18禁裸乳无遮挡免费网站照片| 18禁在线无遮挡免费观看视频 | 又爽又黄a免费视频| 久久人人爽人人片av| 最近在线观看免费完整版| 在线免费十八禁| 99热全是精品| 亚洲久久久久久中文字幕| 久久久欧美国产精品| 嫩草影视91久久| 色综合站精品国产| 日本欧美国产在线视频| 色av中文字幕| 亚洲国产精品久久男人天堂| 直男gayav资源| 久久精品国产亚洲av天美| 国产 一区 欧美 日韩| 黄色欧美视频在线观看| 国产色婷婷99| 国产欧美日韩精品一区二区| 亚洲国产日韩欧美精品在线观看| 亚洲成人av在线免费| 亚洲精品一区av在线观看| 丰满人妻一区二区三区视频av| 中国国产av一级| 久久久久九九精品影院| 一级黄片播放器| 精品人妻一区二区三区麻豆 | 最近中文字幕高清免费大全6| 狂野欧美激情性xxxx在线观看| 一区二区三区免费毛片| 18禁裸乳无遮挡免费网站照片| 国产精品嫩草影院av在线观看| 一本一本综合久久| 国产单亲对白刺激| 在线观看66精品国产| 高清日韩中文字幕在线| 日韩亚洲欧美综合| 久久精品国产鲁丝片午夜精品| 欧美高清成人免费视频www| 婷婷精品国产亚洲av| 国产一级毛片七仙女欲春2| 神马国产精品三级电影在线观看| eeuss影院久久| 成人国产麻豆网| 97超视频在线观看视频| 天堂√8在线中文| 深夜精品福利| 日韩欧美免费精品| 特大巨黑吊av在线直播| 中国美白少妇内射xxxbb| 国产高清不卡午夜福利| 波多野结衣高清无吗| 日韩一本色道免费dvd| 日日啪夜夜撸| 日日撸夜夜添| 国产成人福利小说| 欧美性感艳星| 一个人观看的视频www高清免费观看| 最近2019中文字幕mv第一页| 欧美一级a爱片免费观看看| 国产黄片美女视频| 国产男靠女视频免费网站| 久久热精品热| 色在线成人网| 免费av毛片视频| 丰满人妻一区二区三区视频av| 久久精品影院6| 丰满乱子伦码专区| 69人妻影院| 午夜激情福利司机影院| 日韩大尺度精品在线看网址| 白带黄色成豆腐渣| 在线a可以看的网站| 精品一区二区三区人妻视频| 成人av一区二区三区在线看| 日韩av不卡免费在线播放| 国产男靠女视频免费网站| 色综合亚洲欧美另类图片| 久久人人爽人人爽人人片va| 天天躁日日操中文字幕| 免费观看精品视频网站| 久久精品久久久久久噜噜老黄 | 有码 亚洲区| 国产美女午夜福利| 直男gayav资源| 特级一级黄色大片| 欧美不卡视频在线免费观看| 你懂的网址亚洲精品在线观看 | 卡戴珊不雅视频在线播放| 国产精品嫩草影院av在线观看| 日本撒尿小便嘘嘘汇集6| 老师上课跳d突然被开到最大视频| 天堂网av新在线| 精品一区二区三区人妻视频| 一个人免费在线观看电影| 色av中文字幕| 日韩成人伦理影院| 国产女主播在线喷水免费视频网站 | 日本a在线网址| 日本一二三区视频观看| 精品午夜福利视频在线观看一区| 国产69精品久久久久777片| 日韩欧美精品免费久久| 色视频www国产| 欧美激情久久久久久爽电影| 日本精品一区二区三区蜜桃| 18禁裸乳无遮挡免费网站照片| 欧美高清性xxxxhd video| 午夜免费男女啪啪视频观看 | 国产欧美日韩精品亚洲av| av卡一久久| 99久国产av精品| 国产激情偷乱视频一区二区| 亚洲国产高清在线一区二区三| 少妇的逼好多水| 欧美3d第一页| 一级黄色大片毛片| 欧美一区二区国产精品久久精品| 久久精品国产鲁丝片午夜精品| 欧美三级亚洲精品| av免费在线看不卡| 69av精品久久久久久| 日韩av在线大香蕉| aaaaa片日本免费| 蜜桃久久精品国产亚洲av| 欧美激情国产日韩精品一区| 欧美三级亚洲精品| 色噜噜av男人的天堂激情| 国产成人91sexporn| av视频在线观看入口| 精品久久久久久久久久免费视频| 一级a爱片免费观看的视频| 中国美女看黄片| 乱码一卡2卡4卡精品| 亚洲精品一卡2卡三卡4卡5卡| 亚洲自拍偷在线| 久久中文看片网| 日日干狠狠操夜夜爽| 麻豆国产av国片精品| 亚洲三级黄色毛片| 国产伦在线观看视频一区| 中文亚洲av片在线观看爽| 精品人妻视频免费看| 亚洲性夜色夜夜综合| 蜜桃亚洲精品一区二区三区| 少妇高潮的动态图| 精品人妻视频免费看| 亚洲av成人av| 久久综合国产亚洲精品| 国产成人影院久久av| 蜜桃亚洲精品一区二区三区| 99热精品在线国产| 亚洲人成网站在线播放欧美日韩| 男女啪啪激烈高潮av片| 色综合亚洲欧美另类图片| 亚洲七黄色美女视频| 极品教师在线视频| 久久久久免费精品人妻一区二区| 在线观看免费视频日本深夜| 亚洲熟妇熟女久久| 国产欧美日韩一区二区精品| 99久久成人亚洲精品观看| 亚洲中文字幕一区二区三区有码在线看| 国产成人91sexporn| 一本一本综合久久| 中文字幕av在线有码专区| 2021天堂中文幕一二区在线观| 日日摸夜夜添夜夜爱| 欧美高清性xxxxhd video| 精品福利观看| 久久久久久久久久黄片| 亚洲国产精品成人久久小说 | 晚上一个人看的免费电影| 麻豆一二三区av精品| 日韩人妻高清精品专区| 99热网站在线观看| 国产成人a∨麻豆精品| 免费人成在线观看视频色| 99久久中文字幕三级久久日本| 日韩精品有码人妻一区| 亚洲精品久久国产高清桃花| 级片在线观看| 在线a可以看的网站| 国产av在哪里看| av免费在线看不卡| 亚洲av熟女| 国产美女午夜福利| 欧美国产日韩亚洲一区| 真人做人爱边吃奶动态| 欧美激情久久久久久爽电影| 老熟妇仑乱视频hdxx| 少妇被粗大猛烈的视频| 女生性感内裤真人,穿戴方法视频| 性色avwww在线观看| 中出人妻视频一区二区| 黄色欧美视频在线观看| 黄色一级大片看看| 国产女主播在线喷水免费视频网站 | 在线播放国产精品三级| 中文字幕av在线有码专区| 国产高清不卡午夜福利| 欧美又色又爽又黄视频| 美女xxoo啪啪120秒动态图| 色视频www国产| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久伊人网av| 一级毛片电影观看 | 亚洲av中文字字幕乱码综合| 婷婷精品国产亚洲av在线| 我要搜黄色片| 国产91av在线免费观看| 欧美日韩综合久久久久久| 精品午夜福利在线看| 久久久色成人| 99热这里只有是精品50| 欧美区成人在线视频| 亚州av有码| 国产真实乱freesex| 日韩欧美在线乱码| 婷婷色综合大香蕉| 久久午夜福利片| 国产精品一区二区免费欧美| av在线蜜桃| 深爱激情五月婷婷| 午夜精品国产一区二区电影 | 午夜精品在线福利| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 色av中文字幕| 国产熟女欧美一区二区| 国产精品无大码| 一级毛片电影观看 | 午夜免费男女啪啪视频观看 | 欧美高清成人免费视频www| 亚州av有码| 亚洲不卡免费看| 国产精品无大码| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看 | 国产精品野战在线观看| 麻豆久久精品国产亚洲av| 成年女人永久免费观看视频| 国产人妻一区二区三区在| 亚洲丝袜综合中文字幕| 中文亚洲av片在线观看爽| 国产成人福利小说| 最近在线观看免费完整版| 最近最新中文字幕大全电影3| 成人亚洲欧美一区二区av| 日本精品一区二区三区蜜桃| 精品无人区乱码1区二区| 99视频精品全部免费 在线| 国产高清有码在线观看视频| 日本熟妇午夜| 欧美性感艳星| 中文在线观看免费www的网站| 欧美一区二区精品小视频在线| 欧美性感艳星| 男人狂女人下面高潮的视频| 国产老妇女一区| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| 特大巨黑吊av在线直播| 色噜噜av男人的天堂激情| 极品教师在线视频| 色噜噜av男人的天堂激情| 久久精品国产99精品国产亚洲性色| 波多野结衣高清无吗| 男人的好看免费观看在线视频| 国产伦精品一区二区三区四那| 最好的美女福利视频网| a级毛片免费高清观看在线播放| 久久精品国产亚洲网站| 国产免费男女视频| 亚洲国产精品sss在线观看| 99国产精品一区二区蜜桃av| 久久久国产成人免费| 亚洲国产精品久久男人天堂| h日本视频在线播放| 久久久久久大精品| 久久久欧美国产精品| 女生性感内裤真人,穿戴方法视频| 黄色欧美视频在线观看| 99在线人妻在线中文字幕| 淫妇啪啪啪对白视频| 日韩精品青青久久久久久| 国产黄色小视频在线观看| 一级av片app| 国产白丝娇喘喷水9色精品| 一区福利在线观看| 午夜福利视频1000在线观看| 在线播放国产精品三级| 两个人的视频大全免费| 变态另类丝袜制服| 国产精品久久视频播放| 亚洲人成网站在线播| 日韩欧美 国产精品| 亚洲国产精品成人久久小说 | 日本 av在线| 人妻久久中文字幕网| 亚洲自拍偷在线| 男人和女人高潮做爰伦理| 欧美日韩国产亚洲二区| 亚洲乱码一区二区免费版| 欧美激情在线99| 亚洲国产精品久久男人天堂| 一进一出抽搐gif免费好疼| 狠狠狠狠99中文字幕| 内地一区二区视频在线| 搞女人的毛片| 日韩制服骚丝袜av| 给我免费播放毛片高清在线观看| 91狼人影院| 欧美日韩乱码在线| 亚洲av五月六月丁香网| 91久久精品国产一区二区成人| 免费无遮挡裸体视频| 色播亚洲综合网| 国产激情偷乱视频一区二区| 精品一区二区免费观看| 1024手机看黄色片| 18禁黄网站禁片免费观看直播| 日本精品一区二区三区蜜桃| 麻豆乱淫一区二区| 欧美不卡视频在线免费观看| 一a级毛片在线观看| 久久久久九九精品影院| 18+在线观看网站| 国产精品国产三级国产av玫瑰| 乱码一卡2卡4卡精品| 亚洲av免费在线观看| 精品国内亚洲2022精品成人| 丰满乱子伦码专区| 日韩欧美在线乱码| 久久久久久国产a免费观看| 男女那种视频在线观看| 97人妻精品一区二区三区麻豆| 一夜夜www| 免费观看精品视频网站| 婷婷精品国产亚洲av在线| 午夜免费激情av| 国产伦精品一区二区三区四那| 色在线成人网| 插阴视频在线观看视频| 国产 一区 欧美 日韩| 日韩av不卡免费在线播放| 色哟哟·www| 日本三级黄在线观看| 22中文网久久字幕| 亚洲av一区综合| 亚洲美女搞黄在线观看 | 两个人视频免费观看高清| 欧美不卡视频在线免费观看| 春色校园在线视频观看| 国产高清视频在线播放一区| 久久久久性生活片| 一a级毛片在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区三区四区久久| 免费人成在线观看视频色| 亚洲最大成人av| 亚洲,欧美,日韩| 免费观看人在逋| 在线播放无遮挡| 男女边吃奶边做爰视频| 成人二区视频| 久久热精品热| 成人无遮挡网站| 免费一级毛片在线播放高清视频| 亚洲成人中文字幕在线播放| 国产麻豆成人av免费视频| 又黄又爽又免费观看的视频| 亚洲av成人av| 女人被狂操c到高潮| 亚洲成人av在线免费| 亚洲最大成人av| 成年av动漫网址| 神马国产精品三级电影在线观看| 男人狂女人下面高潮的视频| 国内精品宾馆在线| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久 | 男女下面进入的视频免费午夜| 亚洲国产精品国产精品| 国产一区二区在线av高清观看| 国产午夜精品论理片| 毛片一级片免费看久久久久| 国产精品一区二区性色av| 最近的中文字幕免费完整| 国产男靠女视频免费网站| 麻豆精品久久久久久蜜桃| 久久热精品热| 在现免费观看毛片| 精品久久久久久久人妻蜜臀av| 一进一出好大好爽视频| 成人av在线播放网站| 精品一区二区三区视频在线观看免费| 一个人免费在线观看电影| 国产精品人妻久久久久久| 亚洲国产欧洲综合997久久,| 亚洲久久久久久中文字幕| 亚洲激情五月婷婷啪啪| 久99久视频精品免费| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| 三级男女做爰猛烈吃奶摸视频| 男人的好看免费观看在线视频| 国产一级毛片七仙女欲春2| 99热全是精品| 久久亚洲精品不卡| 国产av麻豆久久久久久久| 国产亚洲91精品色在线| 午夜久久久久精精品| 菩萨蛮人人尽说江南好唐韦庄 | 一本精品99久久精品77| 欧美日韩精品成人综合77777| 麻豆乱淫一区二区| 此物有八面人人有两片| 在线免费十八禁| 国产女主播在线喷水免费视频网站 | 99国产极品粉嫩在线观看| 国产黄色视频一区二区在线观看 | 亚洲不卡免费看| 亚洲国产欧洲综合997久久,| 成人永久免费在线观看视频| 亚洲精品国产av成人精品 | 日韩 亚洲 欧美在线| 国产一级毛片七仙女欲春2| 午夜免费激情av| 老熟妇乱子伦视频在线观看| 黄色视频,在线免费观看| 亚洲人成网站高清观看| 国产一区二区在线观看日韩| 欧美成人精品欧美一级黄| av在线观看视频网站免费| 亚洲国产色片| 欧美区成人在线视频| 69人妻影院| 两性午夜刺激爽爽歪歪视频在线观看| 色哟哟·www| 午夜精品一区二区三区免费看| 波多野结衣高清作品| 国产精品不卡视频一区二区| 午夜老司机福利剧场| 天天躁夜夜躁狠狠久久av| 欧美极品一区二区三区四区| 亚洲精品色激情综合| 亚洲欧美成人精品一区二区| 97热精品久久久久久| 国产熟女欧美一区二区| 国产亚洲精品久久久com| 免费观看在线日韩| 在线观看午夜福利视频| .国产精品久久| 狠狠狠狠99中文字幕| 免费看光身美女| 中国国产av一级| 内射极品少妇av片p| 中国国产av一级| 日日摸夜夜添夜夜添av毛片| 精品久久国产蜜桃| 青春草视频在线免费观看| 亚洲熟妇熟女久久| 亚洲在线自拍视频| 在线免费观看的www视频| 国产乱人视频| 2021天堂中文幕一二区在线观| 97超级碰碰碰精品色视频在线观看| 国产av在哪里看| 日本黄色片子视频| 日日啪夜夜撸| 99久久精品国产国产毛片| 国产熟女欧美一区二区| 免费看美女性在线毛片视频| 欧美高清成人免费视频www| 国产高清视频在线观看网站| 99精品在免费线老司机午夜| 哪里可以看免费的av片| 亚洲三级黄色毛片| 国产av不卡久久| 大又大粗又爽又黄少妇毛片口| 女人十人毛片免费观看3o分钟| 女的被弄到高潮叫床怎么办| 久久亚洲国产成人精品v| 国产精品久久久久久亚洲av鲁大| 亚洲高清免费不卡视频| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频 | 嫩草影院新地址| 国产探花极品一区二区| 国产成人a∨麻豆精品| 欧美不卡视频在线免费观看| 18禁在线播放成人免费| 亚洲国产日韩欧美精品在线观看| 露出奶头的视频| 啦啦啦观看免费观看视频高清| 久久久久久伊人网av| 国产伦一二天堂av在线观看| 国产私拍福利视频在线观看| 乱码一卡2卡4卡精品| 免费电影在线观看免费观看| 欧美高清性xxxxhd video| 国产高清激情床上av| 老司机福利观看| 国产高清激情床上av| 亚洲图色成人| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 国产成人91sexporn| 最新在线观看一区二区三区| 国产午夜精品久久久久久一区二区三区 | 51国产日韩欧美| 国内少妇人妻偷人精品xxx网站| 夜夜夜夜夜久久久久| av国产免费在线观看| 国产精品久久久久久久久免| 亚洲精品亚洲一区二区| 国产麻豆成人av免费视频| 国产爱豆传媒在线观看| 成人性生交大片免费视频hd| 午夜影院日韩av| 亚洲av不卡在线观看| 国产不卡一卡二| 国产在视频线在精品| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 国产高清激情床上av| 精品人妻一区二区三区麻豆 | av卡一久久| 变态另类成人亚洲欧美熟女| 日韩高清综合在线| 三级经典国产精品| av视频在线观看入口| .国产精品久久| 插阴视频在线观看视频| 成人特级黄色片久久久久久久| 久久久色成人|