• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone-Effect of post weld heat treatment and addition of boron carbide

    2015-11-01 07:13:58VIJAYAKUMARMADHUSUDHANREDDYSRINIVASARAO
    Defence Technology 2015年2期

    P.VIJAYA KUMAR,G.MADHUSUDHAN REDDY,K.SRINIVASA RAO*

    aDepartment of Mechanical Engineering,R.I.T.,Visakhapatnam,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    cDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    ?

    Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone-Effect of post weld heat treatment and addition of boron carbide

    P.VIJAYA KUMARa,G.MADHUSUDHAN REDDYb,K.SRINIVASA RAOc,*

    aDepartment of Mechanical Engineering,R.I.T.,Visakhapatnam,India

    bDefence Metallurgical Research Laboratory,Hyderabad,India

    cDepartment of Metallurgical Engineering,Andhra University,Visakhapatnam,India

    Friction stir welding(FSW)of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA)post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position. The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.

    FSW;AA7075;Post weld heat treatment;Pitting corrosion

    1.Introduction

    High strength aluminum alloys are utilized extensively in the defense,aerospace,automotive and structural applications. AA7075 alloy is a high strength aluminum alloy of the 7000 series family based on Al-Zn-Mg system,in which Mg combines with Zn,and forms the strengthening precipitates,such as MgZn2and Mg3Zn,contribute to the improvement inmechanical properties.Their strength is derived from the precipitation of η′phase(semi-coherent MgZn2)in the grain interiors and of η phase(non-coherent MgZn2)along the grain boundaries[1,2].The attributes such as high durability,low density,superior cryogenic properties and response to age hardening made these alloys as a safe choice for fabricating armor plates,transportable bridges,girders,vehicles for military and railway transport systems,storage tanks,naval and marine applications.The fusion welding of AA7075 alloys is unattractive as the weld nugget shows poor microstructural and mechanical properties due to the presence of brittle dendritic structure,porosity,distortion and residual stresses,alloy segregation,hot cracking and hydrogen entrapment.Friction stir welding(FSW)is an autogenous solid state weldingtechnique where the joints are produced in solid state.The problem with fusion welded joints is overcome by using the FSW as there is no melting and recasting of the base material. Even though the joints of FSW show better mechanical properties than the fusion welded joints,the nugget zone(NZ)suffersfromsofteningandpoorcorrosionresistance. Abnormal grain growth and thermal cycles,wide precipitatefree zones(PFZs)and coarse precipitates are the causes for poor corrosion resistance of NZ.The dissolution of grain boundary phases along the grain boundaries in the weld nugget zone where the Cu-Zn rich precipitates exists also contributes to corrosion in NZ.The onion ring bands that are created during FSW cause microstructural discontinuities in NZ leading to corrosion.

    The literature review[3-10]revealed that the post weld heat treatments(PWHT)have been in use for improving the mechanical properties and corrosion resistance of NZ of friction stir welded(FSWed)joint in the high strength aluminum alloys.As-welded joints of 7xxx series aluminum alloys were treated in peak-aged condition(T6)for improving the strength and hardness but suffer from poor corrosion resistance due to precipitate free zones(PFZs)at the grain boundaries.Retrogression and reaging(RRA)is a specially developed heat treatment and has been studied by many authors for improving the corrosion resistance of FSWed AA7075 alloys[11,12]. With RRA treatment,corrosion resistance is improved due to reduced dislocation density in the nugget,increased grain boundary precipitate size,spacing and the presence of high volume fraction of η′with small amounts of η precipitates[13].The dissolution of GP zones during retrogression and the segregation of η′phase during subsequent re-aging reduce the hardness,but the rupture toughness is improved[14-16].The η′particles are responsible for the strength of the alloy while the η precipitates located at grain boundaries are responsible for the corrosion resistance of alloy.The corrosion resistance of the alloy improves with the increase in volume fraction of grain boundary precipitates.Dissolution of grain boundary precipitates during retrogression and re-precipitation in the matrix during re-aging improve the corrosion resistance.RRA of FSWed AA7075 alloy shown improved corrosion resistance,but with the expense of the joint strength[17].As the 7xxx series aluminum alloy products are used in the harsh environments like military,marine and aerospace,further improvement of corrosion resistance and strength of the joints is needed.The mechanical properties and corrosion resistance of the aluminum alloy were improved by changing the chemical composition of the weld nugget.This can be achieved by the introduction of nano sized ceramic particles with the aid of FSW process.The literature on this research area of FSW is limited.Many authors reported that post weld heat treatments like peak aging(T6),retrogression and reaging(RRA)improve weld properties with modification of size,shape and distribution of secondary strengthening particles[18].The present study is significant as the studies related to microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone effected by post weld heat treatment and addition of boron carbide have notbeen reported so far.In view of the above facts,the present work has been aimed to improve the pitting corrosion resistance and mechanical properties of the friction stir welds of AA7075 alloy by using post weld heat treatments viz.T6,RRA and addition of boron carbide(B4C)nano particles.B4C was chosen for reinforcement due to its density(2.52 g/cm3)and elastic modulus of(427 GPa).

    Table 1 Chemical composition of AA7075 Alloy.

    2.Experimental details

    30 μm-sized B4C powder was ball-milled in a high energy planetary ball mill in wet mode using toluene as a liquid medium for 15 h.After the ball milling,the particle size was measured with XRD and was found to be 60 nm.The material used in this study was AA7075 alloy rolled plates with 8 mm thickness.Chemical composition of the base metal is given in Table1.Thedimensionsoftheplateswere 240 mm×150 mm×8 mm.The top surface of the plate was drilled with 1 mm diameter drill at a distance of 2 mm in a zigzag form,as shown in Fig.1.The holes are drilled along the length of the tool travel on the plates.The depth of the holes was 4 mm.The 60 nm-sized B4C powder was filled in the drilled holes made on the plates.Initially the powder-filled holes of the plates were closed with the help of friction stir processing(FSP)tool.After processing with FSP tool,the processed region was then friction stirred with FSW tool.The FSP and FSW tools used for making the joint with the nano powder are shown in Fig.1.The schematic representation of plates with holes for FSW is shown in Fig.1.The optimum process parameters used for FSWare given in Table 2.Friction stir welding of same alloy was performed under the same welding conditions without the addition of the B4C particles for comparative study.The samples were extracted from the welded plates for metallography,hardness measurement,andcorrosion studies.All the samples are heat treated to T6 and RRA conditions.Heat treatment procedure is given in Table 3. Optical and electron microscopy studies are carried out to study the microstructural features of base metal and friction stir welded samples.The Vicker's hardness of the samples was measured with 1 kgf load and 15 s as dwell time.

    Fig.1.Preparation of plates and tools used for FSW.

    Table 2 Process parameters of friction stir welding.

    Table 3 Post weld heat treatment procedures.

    Software based electrochemical system of GILL AC was used to perform potentiodynamic polarization tests to study the pitting corrosion behaviors of the AA7075 aluminum alloys before and after friction stir welding.The potential at which current increased drastically was considered to be the critical pitting corrosion potential Epit.Specimens exhibiting relatively more positive potential were considered to have better pitting corrosion resistance.All the above tests were conducted in 3.5%NaCl and the polarization graphs were recorded.

    3.Results and discussion

    3.1.Microstructure

    Fig.2 shows the optical micrographs of grain structure developed in the base AA 7075 aluminum alloy and clearly reveals the elongated pancake shaped grains.The TEM micrographs of AA 7075 aluminum alloy in different tempers are given in Fig.3.Grain boundary precipitates(MgZn2)are observed in all three conditions with different morphologies. In T6 condition,the microstructure has relatively coarse and closely spaced precipitates along the grain boundaries and fine precipitates within the grains.On the other hand,in RRA the grain boundary precipitates are continuous and coarser than those of T6 condition due to the formation of additional grain boundary precipitates during the initial phase of retrogression. The optical micrographs of nugget zone without boron carbide are given in Fig.4.The fine and equiaxed recrystallized grain structure in the nugget was developed due to tool stirring action and temperature.The grain structure shows finer grains compared to the base metal.

    The microstructure of the nugget zone with carbide powder reinforcement(Fig.5)shows the dynamic recrystallization due to severe plastic deformation.The finely dispersed B4C particles are accumulated at the grain boundaries of the welds. These reinforcement particles at the grain boundaries along with the strengthening precipitates(MgZn2,Mg3Zn)are the main contributors to the improvement of hardness and corrosion resistance.The movement of dislocations in the matrix is arrested more effectively by the nano B4C particles.The size of the B4C particles was further reduced due to the tool force and the stirring action.These finer particles also restrict the grain growth in the nugget zone.

    Figs.6-8 shows the SEM images of the nugget zone in aswelded,T6 and RRA conditions.The As welded nugget zone in the Fig.6 shows dynamically recrystallized structure due to the frictional heat and the presence of B4C nano particles. There was no significant grain growth in the nugget zone as the reinforcement particles acted as barriers to the grain boundary migration.The fine grain structure in the nugget zone was observed due to the presence of low angle boundaries and B4C reinforcements which supports the nucleation of fine grains.Agglomeration of B4C particles at the grain boundaries was also observed in the as welded nugget zone.

    Fig.2.Optical micrographs of AA7075 alloy base metal.

    Fig.3.TEM photographs of AA7075 alloy base metal.

    Fig.4.Optical micrographs of nugget zone without B4C powder.

    In T6 condition(Fig.7),a uniform and continuous grain structure was observed.The continuous fine grain structure and thepresenceofparticlerichandstrengtheningprecipitatesatthe grain boundaries are the causes of increased hardness.In RRA post weld condition,the grain boundaries were discontinuous and the reinforcement particles were dispersed around thegrain boundaries.Grain coarsening was also evident,as shown in Fig.8.The particle rich and particle free regions were observed intheRRAsampleduetothedevelopmentofnonuniformgrain structure.The particle free region undergoes the grain growth and the particle rich region resists the grain growth.

    3.2.Hardness measurements

    From Table 4 and Fig.9,the hardness of nugget zone is relatively low and may be attributed to the softening of the nugget zone and the dissolution and distribution of strengthening precipitates.It is evident that,after PWHT,the hardness was high in peak aged condition(T6)in the nugget zone of the welds.The hardness was improved significantly with the addition of nano B4C powders in the nugget zone(NZ).These B4C particles acts as reinforcement particles in NZ and are agglomeratedatthegrainboundaries,leadingtothe improvement of the hardness.With RRA treatment on FSW AA7075 alloy without B4C particles,there was a slight reduction in the hardness values.The reduction in hardness may be due to the dissolution of GP zones during retrogression and growth and segregation of η′phase during subsequent reaging.

    Fig.5.Optical micrographs of nugget zone with the addition of B4C.

    Fig.6.SEM photographs of nugget zone with the addition of B4C in as-welded condition.

    Fig.7.SEM photographs of nugget zone with the addition of B4C in PWHT T6 condition.

    Fig.8.SEM photographs of nugget zone with the addition of B4C in PWHT RRA condition.

    Table 4 Vicker's hardness values.

    Fig.9.Variation of hardness in nugget zone.

    The hardness difference between the T6 and RRA conditions in NZ with the addition of B4C nano particle was very less.Refs.[19-23]reported on FSW and FSP of aluminum metal matrix composites with an aim to improve the mechanical properties and to improve the surface characteristics. During FSW of aluminum composites,the dispersoids or strengthening particles in the matrix are distributed uniformly throughout the weld nugget region due to the stirring action of the tool.

    When hard nano particles are added to the base aluminum alloy with the aid of FSW,the fine particles are expected to be agglomerated and uniformly distributed in the nugget region of the joint.In the present investigation,the reinforcement of B4C nano particles in the weld nugget improved the hardness significantly,and the hardness in RRA condition is very close to that in T6 condition.

    3.3.Pitting corrosion

    The pitting potential values of weld nugget zone with and without B4C nano powder are given in Table 5.Potentiodynamic polarization curves are shown in Fig.10(a)-(c). The resistance to pitting corrosion was improved in the weld nugget formed by reinforcing B4C particles.The hard particles act as insulators and prevent the galvanic coupling between the matrix and the precipitates,thereby improving the resistance to pitting corrosion.The pitting corrosion resistance was found to be improved significantly by the addition of B4C nano particles.The density of finer particles also increases the chances of segregation at the grain boundaries,thereby improving the resistance to pitting corrosion.There was asignificant improvement of pitting corrosion resistance in RRA condition due to the combined effect of reinforcements and microstructural changes of the nugget to RRA treatment. Redistribution of grain boundary precipitates,elimination of PFZs and more number of coherent precipitates in the matrix are the microstructural features that help in improving the pitting corrosion resistance.Fig.11 shows the optical micrographs of specimens after pitting corrosion testing.It is evident that the pit formation is less in the RRA sample compared to as-welded and T6 samples,which is clear indication of improved pitting corrosion resistance.

    Table 5 Pitting potential values(mV)of base metal and nugget zone.

    Fig.10.Potentio-dynamic polarization curves.

    Fig.11.Optical micrographs of nugget zone with B4C after pitting corrosion test.

    4.Conclusions

    1)Friction stir welding of AA7075 alloy with the addition of boron carbide powder resulted in the improved hardness and refinement of microstructure in nugget zone.

    2)Microstructure of nugget zone was found to be responsive to the post weld heat treatments of peak-aging(T6),retrogression and RRA.

    3)RRA treatment with the addition of boron carbide powder resulted in improvement in hardness of weld nugget and the increased hardness is attributed to the uniform distribution of strengthening precipitates in the matrix and particle strengthening.

    4)Pitting corrosion resistance of friction stir weld nugget was significantly improved in RRA condition of the weld nugget with the addition of B4C powder.

    5)Optimum combination of strength and corrosion resistance of armor grade AA7075 alloy friction stir weld can be achieved by the addition of B4C powder and post weld heat treatment of retrogression and re-aging.

    Acknowledgments

    The authors would like to thank Dr.A.Ghokale,Director,Defense Metallurgical Research Laboratory,Hyderabad,India for his continued encouragement and permission to publish this work.

    [1]Fuller Christian B,Mahoney Murray W,Calabrese Mike.Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds.Mater Sci Eng A 2010;527(9):2233-40.

    [2]BahramiMohsen,DehganiKamran,GiviMohammadKazem Besharati.A novel approach to develop aluminum matrix nanocomposite employing friction stir welding technique.Mater Des 2014;53:217-25.

    [3]Sharma Chaitanya,Dwivedi Dheerendra Kumar,Kumar Pradeep.Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of AA7039 aluminum alloy.Mater Des 2012;36:379-90.

    [4]Azimzadegan T,Khalaj GH,Kaykha MM,Heidari AR.Ageing behavior of friction stir welding AA7075-T6 aluminum alloy.Comput Eng Syst Appl 2011;Vol.II:183-7.

    [5]Venugopal T,Srinivasa Rao K,Prasad Rao K.Studies on friction stir weldedAA7075aluminumalloy.TransIndianInstMetals 2004;57(6):659-63.

    [6]Pumchan Wichai.The influences of the friction stir welding on the microstructure and hardness of aluminum 6063 and 7075.In:2011 International Conference on Advanced Materials Engineering IPCSIT15;2011.p.31-5.

    [7]Choi Don-Hyun,Kim Yong-Il,Kim Dae-Up.Effect of SiC particles on microstructure and mechanical property of friction stir processed AA6061-T4.Trans Nonferrous Metal Soc China 2012;22(s3):s614-8.

    [8]Mahoney MW,Rhodes CG,F(xiàn)lintoff JG.Properties of friction-stir-welded 7075 T651 aluminum.Metallurgical Mater Trans A 1998;29A:1955.

    [9]Srinivasa Rao K,PrasadRao K.Pitting corrosion of heat-treatable aluminium alloys and welds:a review.Trans Indian Inst Metals 2004;576:593-610.

    [10]Hassan KHz AA,Norman AF,Price DA.Stability of nugget zone grain structures in high strength Al alloy friction stir welds during solution treatment.Acta Mater 2003;51(7):1923-36.

    [11]Holt RT,Raizenne MD,Wallace W.RRA heat treatment of large Al 7075-T6 components.In:RTO AVT Workshop on“New Metallic Materials for the Structure of Aging Aircraft”;1999.7:1-7:12.

    [12]Karaaslan A,Kaya I,Atapek H.Effect of aging temperature and of retrogression treatment time on the microstructure and mechanical propertiesofalloyAA7075.MetalSciHeatTreat 2007;49(9-10):443-7.

    [13]Yeni C,Sayer S,Ertugrul O,Pakdil M.Effect of post-weld aging on the mechanical and microstructural properties of friction stir welded aluminum alloy 7075.Archives Mater Sci Eng 2008;34(2):105-9.

    [14]Su Jian-Qing,Nelson Tracy W,Sterling Colin J.Microstructure evolution during FSW/FSP of high strength aluminum alloys.Mater Sci Eng A 2005;405(1-2):277-86.

    [15]Gan Yong X,Solomon Daniel,Reinbolt Michael.Friction stir processing of particle reinforced composite materials.Materials 2010;3(1):329-50.

    [16]Ramesh R,Murugan N.Microstructure and metallurgical properties of aluminium 7075-T651 alloy/B4C 4%vol.surface composite by friction stir processing.Adv Mater Manuf Charact 2013;3(1):301-6.

    [17]Zaid HR,Hatab AM,Ibrahim AMA.Properties enhancement of Al-Zn-Mg alloy by retrogression and re-aging heat treatment.J Min Metal 2011;47(1).B:31-35.

    [18]Kashani-Bozorg SF,Jazayeri K.Formation of Al/B4C surface nano composite layers on 7075 Al alloy employing friction stir processing. AIP Conf Proc 2008;1136(1):715-9.

    [19]Cioffi F.Friction stir welding of thick plates of aluminum alloy matrix composite with a high volume fraction of ceramic reinforcement. Compos Part A 2013;54:117-23.

    [20]Shafiei-Zarghani A.Microstructures and mechanical properties of Al/ Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng A 2009;500:84-91.

    [21]Bahrami Mohsen,Givi Mohammad Kazem Besharati.On the role of pin geometry in microstructure and mechanical properties of AA7075/SiC nano-composite fabricated by friction stir welding technique.Mater Des 2014;53:519-27.

    [22]Kalaiselvan K.Role of friction stir welding parameters on tensile strength of AA6061-B4C composite joints.Trans Nonferrous Mater Soc China 2013;23:616-24.

    [23]Bisadi Hossein,Abasi Asghar.Fabrication of Al7075/TiB2 surface composite via friction stir processing.Am J Mater Sci 2011;1(2):67-70.

    27 September 2014;revised 27 November 2014;accepted 15 January 2015

    Available online 16 March 2015

    .

    E-mail addresses:vijayakumarrit@gmail.com (P.VIJAYA KUMAR),gmreddy_dmrl@yahoo.com(G.MADHUSUDHAN REDDY),arunaraok@ yahoo.com(K.SRINIVASA RAO).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.01.002

    2214-9147/Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    又爽又黄a免费视频| 街头女战士在线观看网站| 精品午夜福利在线看| 色视频在线一区二区三区| av女优亚洲男人天堂| av在线app专区| 国产成人精品福利久久| 亚洲成人中文字幕在线播放| 精品少妇久久久久久888优播| 在现免费观看毛片| 久久久a久久爽久久v久久| 在线精品无人区一区二区三 | 日本黄色片子视频| 国产伦理片在线播放av一区| 自拍偷自拍亚洲精品老妇| 亚洲国产欧美人成| 国产老妇伦熟女老妇高清| 中文字幕人妻熟人妻熟丝袜美| 欧美激情极品国产一区二区三区 | 美女内射精品一级片tv| 六月丁香七月| 99久国产av精品国产电影| 老司机影院成人| 一级av片app| 伊人久久国产一区二区| 99热这里只有是精品50| 赤兔流量卡办理| 国产一区二区三区综合在线观看 | 精品久久久久久电影网| 各种免费的搞黄视频| 色哟哟·www| 成人18禁高潮啪啪吃奶动态图 | 人妻制服诱惑在线中文字幕| 欧美日韩一区二区视频在线观看视频在线| 亚洲美女视频黄频| 亚洲综合精品二区| 青春草视频在线免费观看| 欧美三级亚洲精品| 97在线视频观看| 中文乱码字字幕精品一区二区三区| 国产成人精品一,二区| 国产熟女欧美一区二区| 国产男人的电影天堂91| 国产美女午夜福利| 人人妻人人爽人人添夜夜欢视频 | 少妇人妻久久综合中文| 欧美成人一区二区免费高清观看| 国产精品麻豆人妻色哟哟久久| 最近中文字幕2019免费版| 日本vs欧美在线观看视频 | 国产亚洲av片在线观看秒播厂| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件| 国产av国产精品国产| 美女视频免费永久观看网站| h日本视频在线播放| 久久精品久久久久久噜噜老黄| 亚洲,一卡二卡三卡| 国产精品久久久久久精品古装| 久久久久久久久久成人| 精品国产三级普通话版| 美女福利国产在线 | 国产精品福利在线免费观看| av在线播放精品| 精品99又大又爽又粗少妇毛片| 色综合色国产| 一本一本综合久久| 国产 一区 欧美 日韩| 黑丝袜美女国产一区| 免费高清在线观看视频在线观看| 国产精品av视频在线免费观看| 超碰av人人做人人爽久久| 久久韩国三级中文字幕| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 高清日韩中文字幕在线| 日韩免费高清中文字幕av| tube8黄色片| 夜夜看夜夜爽夜夜摸| 99热网站在线观看| 熟女人妻精品中文字幕| 久久久久久久久久成人| 久久久久久伊人网av| 亚洲综合精品二区| 亚洲国产精品国产精品| 永久网站在线| 搡老乐熟女国产| a级毛色黄片| 亚洲久久久国产精品| 少妇人妻一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| 中文字幕免费在线视频6| 国产成人精品福利久久| 国产亚洲91精品色在线| 国产乱来视频区| 国产探花极品一区二区| 爱豆传媒免费全集在线观看| 日韩一区二区三区影片| 黄色日韩在线| 国产精品免费大片| 国产精品久久久久久久久免| 国产av码专区亚洲av| 各种免费的搞黄视频| 亚洲国产精品成人久久小说| 亚洲最大成人中文| 国产精品国产三级专区第一集| 亚洲美女黄色视频免费看| 日韩在线高清观看一区二区三区| 成人免费观看视频高清| 天天躁夜夜躁狠狠久久av| 精品久久久久久电影网| 国产免费一区二区三区四区乱码| 免费黄网站久久成人精品| 大香蕉久久网| 日韩伦理黄色片| 久久 成人 亚洲| 亚洲av不卡在线观看| 人妻制服诱惑在线中文字幕| 久久国产乱子免费精品| 色吧在线观看| 天天躁日日操中文字幕| 亚洲人成网站在线播| 国产 一区 欧美 日韩| 伊人久久精品亚洲午夜| 久久久久精品久久久久真实原创| 日韩av免费高清视频| 日本爱情动作片www.在线观看| 青春草国产在线视频| 国产精品国产av在线观看| 国产有黄有色有爽视频| 26uuu在线亚洲综合色| 美女主播在线视频| 亚洲伊人久久精品综合| 91精品国产国语对白视频| 99久国产av精品国产电影| 中文字幕免费在线视频6| 波野结衣二区三区在线| 男女下面进入的视频免费午夜| 麻豆国产97在线/欧美| 国模一区二区三区四区视频| 久久久久久久国产电影| 免费大片黄手机在线观看| 黄片无遮挡物在线观看| 高清av免费在线| av在线播放精品| 大香蕉97超碰在线| 免费黄网站久久成人精品| 欧美老熟妇乱子伦牲交| 亚洲色图av天堂| 日韩人妻高清精品专区| 国产成人免费观看mmmm| 国产综合精华液| 简卡轻食公司| 涩涩av久久男人的天堂| 国产在线免费精品| 街头女战士在线观看网站| 黑人猛操日本美女一级片| 高清欧美精品videossex| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av涩爱| 久久久亚洲精品成人影院| 亚洲国产欧美在线一区| 亚洲欧美清纯卡通| 又爽又黄a免费视频| 国产成人精品福利久久| av又黄又爽大尺度在线免费看| 午夜激情福利司机影院| 国产有黄有色有爽视频| 嫩草影院新地址| 高清在线视频一区二区三区| 国产精品偷伦视频观看了| 一区二区三区免费毛片| 熟女av电影| 亚洲av成人精品一二三区| 在现免费观看毛片| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久久久免| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 美女中出高潮动态图| 中文欧美无线码| 性色avwww在线观看| 久热这里只有精品99| 欧美bdsm另类| 免费黄色在线免费观看| 国产av码专区亚洲av| 日韩强制内射视频| av在线老鸭窝| 日韩伦理黄色片| 国产淫片久久久久久久久| 欧美人与善性xxx| 色吧在线观看| 中文字幕免费在线视频6| 永久免费av网站大全| 日本av手机在线免费观看| 精品亚洲成国产av| 国产 一区精品| 美女cb高潮喷水在线观看| 国产成人午夜福利电影在线观看| 亚洲精品色激情综合| 性色av一级| 午夜福利视频精品| 久热这里只有精品99| 在线观看一区二区三区| 久久人人爽人人片av| 久久女婷五月综合色啪小说| 亚洲av电影在线观看一区二区三区| 国产久久久一区二区三区| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 人人妻人人看人人澡| 精品一区二区免费观看| 男人狂女人下面高潮的视频| 天天躁夜夜躁狠狠久久av| 91精品伊人久久大香线蕉| 99久久精品一区二区三区| 精品国产三级普通话版| 久久人人爽人人片av| 99精国产麻豆久久婷婷| av在线播放精品| 午夜免费观看性视频| 在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 高清午夜精品一区二区三区| 久久6这里有精品| 免费人成在线观看视频色| 久久精品国产自在天天线| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久| 国产视频首页在线观看| 免费少妇av软件| 亚洲天堂av无毛| 成年人午夜在线观看视频| 亚洲最大成人中文| 一级二级三级毛片免费看| 免费黄频网站在线观看国产| 精品国产三级普通话版| 美女视频免费永久观看网站| 亚洲av国产av综合av卡| 久久久色成人| 大陆偷拍与自拍| 亚洲国产精品一区三区| av视频免费观看在线观看| 九九久久精品国产亚洲av麻豆| 少妇熟女欧美另类| 中文天堂在线官网| 日本一二三区视频观看| 欧美最新免费一区二区三区| 久久久久久久精品精品| 日韩欧美一区视频在线观看 | 日韩av免费高清视频| 国产久久久一区二区三区| 亚洲真实伦在线观看| 国内精品宾馆在线| 插逼视频在线观看| 久久韩国三级中文字幕| 成人高潮视频无遮挡免费网站| 日本猛色少妇xxxxx猛交久久| 国产深夜福利视频在线观看| 免费观看a级毛片全部| 男人爽女人下面视频在线观看| 黄色一级大片看看| 一级毛片久久久久久久久女| 欧美高清成人免费视频www| 一级毛片 在线播放| 亚洲精品中文字幕在线视频 | 自拍偷自拍亚洲精品老妇| 色婷婷久久久亚洲欧美| 亚洲电影在线观看av| 国产高清有码在线观看视频| 国产又色又爽无遮挡免| 97在线视频观看| 丝袜喷水一区| 久久久久久久久大av| 免费看日本二区| 日韩一本色道免费dvd| 日韩免费高清中文字幕av| 人人妻人人爽人人添夜夜欢视频 | 精品午夜福利在线看| 好男人视频免费观看在线| 新久久久久国产一级毛片| 亚洲精品自拍成人| 在线免费十八禁| 大陆偷拍与自拍| 高清不卡的av网站| 欧美老熟妇乱子伦牲交| 国产国拍精品亚洲av在线观看| 丝瓜视频免费看黄片| 国产黄频视频在线观看| 日韩一区二区三区影片| freevideosex欧美| 日韩 亚洲 欧美在线| 亚洲国产高清在线一区二区三| 美女福利国产在线 | 日韩av免费高清视频| 精品亚洲成a人片在线观看 | 亚洲av中文字字幕乱码综合| 有码 亚洲区| av在线老鸭窝| 国产精品一及| 狠狠精品人妻久久久久久综合| 欧美xxⅹ黑人| 亚洲av电影在线观看一区二区三区| 18禁动态无遮挡网站| 伊人久久精品亚洲午夜| 久久99热这里只有精品18| 下体分泌物呈黄色| 亚洲精品aⅴ在线观看| 丰满少妇做爰视频| h日本视频在线播放| 免费观看性生交大片5| 另类亚洲欧美激情| 国产精品爽爽va在线观看网站| 日本欧美视频一区| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久大尺度免费视频| 国产精品福利在线免费观看| 妹子高潮喷水视频| 久久99蜜桃精品久久| 熟女人妻精品中文字幕| 国产乱人视频| 亚洲人与动物交配视频| 亚洲一区二区三区欧美精品| 亚洲精品成人av观看孕妇| 国产女主播在线喷水免费视频网站| 春色校园在线视频观看| 天堂中文最新版在线下载| 丰满少妇做爰视频| 国产精品久久久久久久电影| 夜夜骑夜夜射夜夜干| 色网站视频免费| av卡一久久| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区成人| 伦精品一区二区三区| 国产视频首页在线观看| 熟女av电影| 国产精品爽爽va在线观看网站| 国产伦精品一区二区三区四那| 国产亚洲欧美精品永久| 精品视频人人做人人爽| 色哟哟·www| 久久精品熟女亚洲av麻豆精品| av又黄又爽大尺度在线免费看| 免费黄频网站在线观看国产| 日韩大片免费观看网站| 国产高清三级在线| 精品午夜福利在线看| 亚洲国产毛片av蜜桃av| 一级片'在线观看视频| 国产成人精品一,二区| 亚洲精品乱久久久久久| 亚洲av成人精品一区久久| 爱豆传媒免费全集在线观看| 国产免费又黄又爽又色| 高清av免费在线| 青春草视频在线免费观看| 欧美精品国产亚洲| 成年女人在线观看亚洲视频| 欧美另类一区| 欧美高清成人免费视频www| 国产视频首页在线观看| 欧美+日韩+精品| 亚洲国产精品一区三区| 国产成人freesex在线| 观看美女的网站| 日日摸夜夜添夜夜添av毛片| 超碰av人人做人人爽久久| 国产成人一区二区在线| 久久精品久久精品一区二区三区| 欧美激情极品国产一区二区三区 | 国产黄片视频在线免费观看| 看免费成人av毛片| 美女内射精品一级片tv| 亚洲电影在线观看av| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 亚洲精品日本国产第一区| 午夜福利网站1000一区二区三区| 国产 精品1| 久久久久久九九精品二区国产| 欧美精品亚洲一区二区| 久久久午夜欧美精品| 亚洲精品成人av观看孕妇| 2022亚洲国产成人精品| 啦啦啦啦在线视频资源| 最新中文字幕久久久久| 乱码一卡2卡4卡精品| 七月丁香在线播放| 亚洲第一av免费看| 成人特级av手机在线观看| 久热这里只有精品99| 国产视频首页在线观看| 伊人久久精品亚洲午夜| 亚洲婷婷狠狠爱综合网| 国产成人精品久久久久久| 久久久色成人| 这个男人来自地球电影免费观看 | 大香蕉97超碰在线| 22中文网久久字幕| 国产乱来视频区| 91aial.com中文字幕在线观看| 亚洲精品456在线播放app| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆| 日韩中文字幕视频在线看片 | 少妇裸体淫交视频免费看高清| 亚洲久久久国产精品| 亚洲,一卡二卡三卡| 三级经典国产精品| 亚洲va在线va天堂va国产| 亚洲电影在线观看av| 精品一区二区三区视频在线| 蜜臀久久99精品久久宅男| 干丝袜人妻中文字幕| 最黄视频免费看| 久久久久久人妻| 国产成人免费观看mmmm| 成人一区二区视频在线观看| 99九九线精品视频在线观看视频| 黄色配什么色好看| 一本久久精品| 欧美国产精品一级二级三级 | 成人毛片a级毛片在线播放| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 国产亚洲一区二区精品| 亚洲欧美成人综合另类久久久| 亚洲av在线观看美女高潮| 十分钟在线观看高清视频www | 91狼人影院| 国产av国产精品国产| 夫妻性生交免费视频一级片| 久久久久网色| 亚洲精品久久久久久婷婷小说| 国产精品伦人一区二区| 色婷婷av一区二区三区视频| 国产成人a区在线观看| 欧美国产精品一级二级三级 | 亚洲成人中文字幕在线播放| 久久久久久久久久久丰满| 日韩大片免费观看网站| 老师上课跳d突然被开到最大视频| 亚洲天堂av无毛| 香蕉精品网在线| 精品一区二区免费观看| 国产久久久一区二区三区| av免费观看日本| 特大巨黑吊av在线直播| 亚洲综合色惰| 99久久精品一区二区三区| 国产综合精华液| 亚洲经典国产精华液单| 在线 av 中文字幕| 1000部很黄的大片| 最后的刺客免费高清国语| 成人免费观看视频高清| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 亚洲激情五月婷婷啪啪| 夜夜骑夜夜射夜夜干| 美女中出高潮动态图| 欧美亚洲 丝袜 人妻 在线| 国产片特级美女逼逼视频| freevideosex欧美| 蜜桃久久精品国产亚洲av| 国产一区亚洲一区在线观看| 国产成人午夜福利电影在线观看| 在线观看免费高清a一片| 亚洲第一区二区三区不卡| 最近2019中文字幕mv第一页| 国产 一区精品| 涩涩av久久男人的天堂| 男女国产视频网站| 国产白丝娇喘喷水9色精品| 日本一二三区视频观看| 免费高清在线观看视频在线观看| 国产深夜福利视频在线观看| 精品久久国产蜜桃| 一级毛片aaaaaa免费看小| 最近最新中文字幕免费大全7| 高清在线视频一区二区三区| 婷婷色综合大香蕉| a级毛色黄片| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 精品国产乱码久久久久久小说| videos熟女内射| 一级a做视频免费观看| 亚洲国产精品999| 一区二区三区免费毛片| 91午夜精品亚洲一区二区三区| 亚洲精品456在线播放app| 十分钟在线观看高清视频www | 伊人久久精品亚洲午夜| 我要看黄色一级片免费的| 日韩av在线免费看完整版不卡| 国产精品伦人一区二区| 日韩三级伦理在线观看| 人人妻人人爽人人添夜夜欢视频 | 午夜激情福利司机影院| 亚洲美女视频黄频| 人妻 亚洲 视频| 久久久久久久精品精品| 午夜福利在线观看免费完整高清在| 在线免费观看不下载黄p国产| 美女主播在线视频| 大又大粗又爽又黄少妇毛片口| 日韩成人av中文字幕在线观看| 高清午夜精品一区二区三区| 麻豆精品久久久久久蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 人妻 亚洲 视频| 91精品国产国语对白视频| 永久免费av网站大全| 国产精品久久久久久久久免| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩精品成人综合77777| 最近最新中文字幕大全电影3| 在线观看国产h片| 黑丝袜美女国产一区| 在线免费观看不下载黄p国产| 少妇人妻 视频| 成年女人在线观看亚洲视频| 日日摸夜夜添夜夜爱| 国产女主播在线喷水免费视频网站| 国产v大片淫在线免费观看| 大码成人一级视频| 国产精品99久久久久久久久| 99久国产av精品国产电影| 深夜a级毛片| 久久久a久久爽久久v久久| 国产精品女同一区二区软件| 亚洲电影在线观看av| 国产69精品久久久久777片| 亚洲精品乱久久久久久| 久久精品国产亚洲av涩爱| 日本欧美国产在线视频| 精华霜和精华液先用哪个| 大又大粗又爽又黄少妇毛片口| 国产av国产精品国产| 永久免费av网站大全| 亚洲国产成人一精品久久久| 精品久久久久久久久av| h日本视频在线播放| 免费黄色在线免费观看| 色婷婷av一区二区三区视频| 日日摸夜夜添夜夜添av毛片| 99久久精品国产国产毛片| 亚洲天堂av无毛| 日韩电影二区| 日日摸夜夜添夜夜爱| 日韩人妻高清精品专区| 国产乱人偷精品视频| 在线观看国产h片| 肉色欧美久久久久久久蜜桃| 成年免费大片在线观看| 777米奇影视久久| 国产在线视频一区二区| 久久久久网色| 成人国产麻豆网| 免费看不卡的av| 欧美成人a在线观看| 日韩一本色道免费dvd| 高清在线视频一区二区三区| 偷拍熟女少妇极品色| 制服丝袜香蕉在线| 国产欧美日韩一区二区三区在线 | kizo精华| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产高清在线一区二区三| 日韩免费高清中文字幕av| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲高清精品| 国产伦精品一区二区三区视频9| 新久久久久国产一级毛片| 国产亚洲欧美精品永久| 国产伦理片在线播放av一区| 天天躁日日操中文字幕| 三级国产精品欧美在线观看| 欧美xxxx性猛交bbbb| 国产一区二区在线观看日韩| 久久久a久久爽久久v久久| 亚洲精品国产成人久久av| 亚洲中文av在线| 好男人视频免费观看在线| 成人高潮视频无遮挡免费网站| 久久影院123| 性高湖久久久久久久久免费观看| 亚洲高清免费不卡视频| 成人高潮视频无遮挡免费网站| 最后的刺客免费高清国语| 精品熟女少妇av免费看| 51国产日韩欧美| 国产精品国产三级专区第一集| 成年av动漫网址| 精品久久久久久久久av| 十八禁网站网址无遮挡 | 精品少妇久久久久久888优播| 亚洲欧美日韩东京热| 视频中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 久久久久性生活片| 免费播放大片免费观看视频在线观看| 乱码一卡2卡4卡精品| 精品一区在线观看国产| 国产精品一区二区三区四区免费观看| 一区二区三区乱码不卡18| 91午夜精品亚洲一区二区三区| 亚洲精品国产av蜜桃| 日韩大片免费观看网站| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 国产欧美亚洲国产|