• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation of chemical composition of high strength low alloy steels with different groove sizes in multi-pass conventional and pulsed current gas metal arc weld depositions

    2015-11-01 07:13:56DEVAKUMARANANANTHAPADMANABANGHOSH
    Defence Technology 2015年2期
    關(guān)鍵詞:艾莉心理準(zhǔn)備秦川

    K.DEVAKUMARAN*,M.R.ANANTHAPADMANABAN,P.K.GHOSH

    aWelding Research Institute,Bharat Heavy Electrical Limited,Trichy 620014,Tamil Nadu,India

    bDepartment of Mechanical Engineering,M.A.M College of Engineering and Technology,Siruganur,Trichy 621 105,Tamil Nadu,India

    cDepartment of Metallurgical&Materials Engineering,Indian Institute of Technology Roorkee,Roorkee 247 667,India

    ?

    Variation of chemical composition of high strength low alloy steels with different groove sizes in multi-pass conventional and pulsed current gas metal arc weld depositions

    K.DEVAKUMARANa,*,M.R.ANANTHAPADMANABANb,1,P.K.GHOSHc,2

    aWelding Research Institute,Bharat Heavy Electrical Limited,Trichy 620014,Tamil Nadu,India

    bDepartment of Mechanical Engineering,M.A.M College of Engineering and Technology,Siruganur,Trichy 621 105,Tamil Nadu,India

    cDepartment of Metallurgical&Materials Engineering,Indian Institute of Technology Roorkee,Roorkee 247 667,India

    25 mm thick micro-alloyed HSLA steel plate is welded by multi-pass GMAW and P-GMAW processes using conventional V-groove and suitably designed narrow gap with 20 mm(NG-20)and 13 mm(NG-13)groove openings.The variation of weld metal chemistry in the multi pass GMA and P-GMA weld depositions are studied by spark emission spectroscopy.It is observed that the narrow groove GMA weld joint shows significant variation of weld metal chemistry compared to the conventional V-groove GMA weld joint since the dilution of base metal extends from the deposit adjacent to groove wall to weld center through dissolution by fusion and solid state diffusion.Further,it is noticed that a high rate of metal deposition along with high velocity of droplet transfer in P-GMAW process enhances the dilution of weld deposit and accordingly varies the chemical composition in multi-pass P-GMAweld deposit.Lower angle of attack to the groove wall surface along with low heat input in NG-13 weld groove minimizes the effect of dissolution by fusion and solid state diffusion from the deposit adjacent to groove wall to weld center.This results in more uniform properties of NG-13 P-GMA weld in comparison to those of NG-20 and CG welds.

    Pulsed current;Narrow gap;Weld metal chemistry

    1.Introduction

    The micro-alloyed high strength low alloy(HSLA)steels are widely used in engineering applications because of their relatively low cost,moderate strength and very good toughness and fatigue strength,together with their ability to be readily welded.Arc welding,including shielded metal arc welding(SMAW),gas metal arc welding(GMAW)andsubmerged arc welding(SAW),is widely used in fabrication of various components of the HSLA steel.Due to several merits of producing comparatively cleaner and continuous weld deposition with automation,the GMAW process is becoming widely popular,especially for welding of structural membersusedinpower,transportationanddefense industries.

    It is often found that the heterogeneity of weld metal chemical composition,especially for multi-pass welding of thick sections,gives the different weld joint properties primarily due to the repetitive influence of subsequent weld passes on thermal cycles and the dilution of base metal[1,2]. The most significant changes in the properties of weld joints are due to adverse development of residual stress,microstructure and corrosion resistance,etc[2].In case ofconventional GMAW process,it is not always possible to maintain the chemical composition of the weld deposit within a desired level with respect to its influence on thermal and mechanical effects primarily due to limited operating parameters such as welding current,arc voltage and welding speed,which is used to determine the heat input of the process[3]. The pulsed current gas metal arc welding(P-GMAW)process instead of the conventional GMAW process may be more useful due to its ability to precisely control the geometry of weld deposit dictated by appropriate selection of pulse parameters[4,5]and also operate at low heat input in producing a sound weld joint[6,7].However,the involvement of large number of pulse current parameters in P-GMAW,including peak current(Ip),base current(Ib),pulse on-time(Tp),pulse off-time(Tb)and pulse frequency(f),introduces a certain degree of complexity in controlling the process for desired welding.It is reported that the complexity of the process primarily arising due to the criticality in selection of pulse parameters can be solved by correlating the weld characteristics with a summarized influence of pulse parameters defined by a dimensionless factor?=(Ib/Ip)× fTb,where Tbis expressed as[(1/f)-Tp][8,9].Lots of research work has been done and reported in reference to the P-GMAW arc and metal transfer dictating thermal behavior and its influence on various characteristics of ferrous and non-ferrous materials weld joints[10-13],but the chemical heterogeneity of multi-pass weld deposit has been not reported.

    http://dx.doi.org/10.1016/j.dt.2014.11.001

    2214-9147/Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Thus,the present work has been carried out to investigate the effects of GMA and P-GMA welding parameters in the case of different groove sizes on the variation in the chemical composition of multi-pass weld deposit of 25 mm thick HSLA steel plate.The changing mechanism of its chemical composition during multi-pass weld deposition in the case of different groove design and welding parameters were discussed.A systematic understanding of these aspects may be beneficial in using GMAW process to produce desired weld quality.

    2.Experiment

    2.1.Welding

    The 25 mm thick plate of controlled rolled micro-alloyed high strength low alloy(HSLA)steel of SAILMA 410HI/ SA543 having chemical composition given in Table 1 were used in this work.250 mm×100 mm plates were butt welded by multi-pass and multi-seam deposition techniques using conventional V-groove(CG)as per AWS specification[15]and a suitably designed narrow groove with 20 and 13 mm groove openings,designated by(NG-20)and(NG-13),respectively,as shown in Fig.1.The plates were welded by autogenous gas tungsten arc welding(GTAW)root pass,followed by GTAW filling pass and subsequent filling pass,in the process of continuous current gas metal arc welding(GMAW)or pulsed current gas metal arc welding(P-GMAW).The GTAW was carried out using a water cooled torch with 7 mm diameter gas nozzle and 3.2 mm diameter with 2%thoriated tungsten electrode(AWS:5.12 EWTh-2)under the shielding of 99.95%pure commercial argon at a flow rate of 18 l/min. The GMAW and P-GMAW passes were carried out by using 1.2 mm diameter mild steel filler wire of specification AWS/ SFA 5.18 ER-70S-6.The shielding gas used for experimentation is argon(98.95%)at a flow rate of 17-18 l/min.Direct current electrode positive(DCEP)polarity is used with an electrode extension of 14-15 mm.The chemical composition of filler wires given by the supplier is also given in Table 1. The plates was weld using semi-automatic welding with mechanized torch travel.Prior to welding the plates were preheated at about 125-130°C for 60 s,and the inter-pass temperature during welding was maintained in the range from 150°C to 300°C.The welding was carried out by arranging the groove plates without root gap.The root was supported by a copper backing plate fitted in a thick mild supporting steel plate of a fixture,as shown in Fig.2.Prior to weld deposition,the base plates were thoroughly cleaned to remove the excess oxide layer and any dirt or grease adhering to the faying surface.The angles between the electrode/filler and the groove wall under different welding processes and groove size are given in Table 2.The P-GMA weld deposition under different weld groove sizes was carried out at two different levels of heat input(Ω)by varying φ within the range from 0.15 to 0.33.During welding all the conventional welding parameters were recorded with WMS 4000 software installed in a computer,and the pulse parameters were recorded with the help of a transient recorder appropriately connected to the electrical circuit of the welding power source. The welding parameters used in the preparation of GMA and P-GMA weld joints are shown in Table 3.A multi-pass and multi-layer welding procedure was adopted for preparation of weld joints.

    2.2.Chemical analysis

    The chemical analysis of the weld joints under different weldingprocesses,groovetypeandparameterswerecarriedoutby using spark emission optical spectroscopy with a spot of 3mmdiameteronsolidspecimens.Theanalysiswasperformed on weld metal at two different locations on the polished transversesection of theweld joint.The two locations on weld metal are defined along its central axis parallel to the edge of plate surface within 10 mm below from its top side(Location-T)and 6-15 mm above from its bottom side(Location-B)of the weld metal,as shown in Fig.3.In the case of conventional GMAW process,NG-13 with the smallest possible groove size is not analyzed because the weld joint does not meet the required quality in reference to the absence of defect in it.

    Table 1 Chemical compositions of base and filler materials.

    2.3.Microstructure

    Fig.1.Schematic diagram.(a)Conventional V-groove(CG),(b)20 mm width narrow groove(NG-20),(c)13 mm width narrow groove(NG-13).

    Fig.2.Schematic diagram of fixture.

    The microstructures of base metal and weld deposits of GMA and P-GMA weld joints having different groove sizes were studied under optical microscope.The sample was prepared as per metallographic procedure and etched with alcoholic solution of 2%HNO3.

    盡管做了最充分的心理準(zhǔn)備,可是當(dāng)秦川如期死去,艾莉還是感覺(jué)整個(gè)世界離她而去。她抱著秦川的頭,親吻著秦川布滿(mǎn)皺紋的嘴唇,她求秦川不要走不要走。她驚嘆自己竟然有著如此之多的眼淚。

    3.Result and discussions

    The variation behaviors of chemical composition in multipass GMA weld deposition under different groove designs were analyzed at a given heat input of 8.28±0.28 kJ/cm.In the case of multi pass P-GMA weld deposition under different groove designs,the variation behaviors of chemical composition were also analyzed by variation of factor φ and mean current(Im)under different heat inputs(Ω).The typical macrographs of conventional and pulsed current GMA weld joints are shown in Figs.4 and 5,respectively.

    3.1.Chemical composition of GMA weld under different weld groove sizes

    The chemical compositions at the different locations of weld deposit in the CG and NG-20 weld joints are shown in Fig.6.It is observed that the NG-20 weld joint has a higher carbon(C)content but lower silicon(Si),manganese(Mn)and copper(Cu)contents at the different locations of welds in comparison with CG weld joint.It may be because the effect of dilution in NG-20 narrow groove weld significantly extendsfrom the deposit adjacent to groove wall to the weld center through dissolution by fusion and solid state diffusion.However,the Fig.6 shows that the location-B of the weld has relatively higher C and Mn contents but lower Si and Cu contents than that the location-T has due to multi-pass weld deposition.

    Table 2 Angles of attack between electrode/filler and groove wall under different welding processes and groove sizes.

    Table 3 Welding parameters used in weld joint studies under different welding processes and groove type.

    3.2.Chemical composition of P-GMA weld under different weld groove sizes

    3.2.1.Conventional V-groove

    Fig.3.Schematic diagram and macrophotograph showing the measurement of chemical composition at two different locations on weld metal.

    The chemical compositions at different locations of PGMAweld deposit in the CG weld joint at a given arc voltage(V),mean current(Im),φ and heat input(Ω)are shown in Table 4.It has been observed that C content at any location of the weld deposit in CG P-GMAweld joint is about 30%higher than that of CG GMA weld joint and the changes in other elements are insignificant in it.In general,the axial spray metal transfer produces higher weld fumes than pulsed spray metal transfer[16].It indicates that the loss of elements(mainly C,Si and Mn)from the arc cavern is relatively higherin GMAW process than that in P-GMAW process.In addition to above high rate of metal deposition along with high velocity of droplet transfer in P-GMAW process the dilution of weld deposit is also enhanced[14],which may also play an important role in enhancing the C content in P-GMA weld. Table 4 further shows that C content is higher and Si content is lower at the location-B in comparison to those at the location-T,and other elements show insignificant variation in it.

    Fig.4.Typical macrographs of conventional GMA weld joints.(a)Conventional V-groove(CG),(b)Narrow groove with 20 mm groove width(NG-20),(c)Narrow groove with 13 mm groove width(NG-13).

    Fig.5.Typical macrographs of pulsed current GMA weld joints.(a)Conventional V-groove(CG),(b)Narrow groove with 20 mm groove width(NG-20),(c)Narrow groove with 13 mm groove width(NG-13).

    3.2.2.Narrow groove with 20 mm groove width(NG-20)

    Fig.6.The effect of weld groove size on chemical composition at different locations of GMAweld deposit for I=230±3A and Ω=8.28±0.28 kJ/cm.

    Fig.7 shows the effects of Imand φ on C contents at different locations of NG-20 P-GMA weld joints under two different heat inputs(Ω)of 7.61 and 5.28 kJ/cm at a given arc voltage(V)and φ=0.15 and 0.23.The Si,Mn and Cu contents are shown in Figs.8-10,respectively.It is also found that the C contents of NG-20 P-GMA weld joints at the locations B and Tof weld are about 20-25%higher than that of the CG P-GMA weld joint due to reduction in groove width,which is in agreement to those observed in NG-20 GMAweld joint(Fig.6).However,the Fig.7 shows that the C content at the location-B is higher than that at the location-T due to the effect of dilution in location-B in narrow groove weld in the case of different pulse parameters and Ω.It is also interestingly observed that,at a given Imof 230A,the C content at any locations of the weld increases with the increase in Ω and φ due to the increase in total heat transferred to the weld pool(QT)per unit length and projected arc diameter[11,12]respectively,which may give rise to more melting of base plate.On the other hand,it was reported that more fumes were generated when the angle of attack to groove wall surface and Ω were decreased by increasing the welding speed[16].In view of this,it is well understood that the final chemical composition of weld not only depends on the chemical compositions of electrode and base metal,but also depends on welding parameter and weld groove size.Fig.7 further depicts that,the decrease of Imfrom 230A to 160A decreases the C content significantly at both the locations of weld at 7.61 kJ/ cm due to the lower area of weld deposits and weld pool temperature(TWP),but C content shows an insignificant variation in it at 5.28 kJ/cm because of low TWP.

    As in case of carbon,the Si contents at different locations of weld are also correlated to the factorφ,Imand Ω,as shown in Fig.8.It has been observed that the Si contents at two different locations of the weld increase significantly with the increase of φ due to the increase of projected arc diameter[10,13]at any Ω of relatively low and high levels in the order of 5.28±0.41 and 7.61±0.38 kJ/cm and a given Im,resulting in large melting of base metal.However,F(xiàn)ig.8 also shows that,at a given φ at both the locations of weld,the Si contents are insignificantlyvaried with the increase of Ω from 5.5 to 7.61 kJ/cm,but they are appreciably enhanced with the decrease of Imfrom 230 to 200,and they decrease with the further decrease of Im.Such variations of Si contents as a function of Imand Ω are primarily attributed to the combined influence of heat transfer on the weld pool and fume formation rate from arc cavern.

    Table 4 Chemical compositions at different locations of CG P-GMA weld joint.

    Fig.7.Effects of Imand φ on Wt.%of C contents at two different locations of NG-20 P-GMA weld joints prepared at different Ω.(a)7.61±0.38 kJ/cm,(b)5.28±0.41 kJ/cm.

    Fig.8.Effects of Imand φ on Wt.%of Si contents at two different locations of NG-20 P-GMAweld joints prepared at different Ω.(a)7.61±0.38 kJ/cm,(b)5.28±0.41 kJ/cm.

    Fig.9.Effects of Imand φ on Wt.%of Mn contents at two different locations of NG-20 P-GMA weld joints prepared at different Ω.(a)7.61±0.38 kJ/cm,(b)5.28±0.41 kJ/cm.

    As in case of C and Si,the Mn and Cu contents at different locations of weld are also correlated to the factorφ,Imand Ω, as shown in Figs.9 and 10,respectively.It has been observed that the variations of Mn and Cu contents at both the locations of weld with the changes in φ,Imand Ω were not evident.

    Fig.10.Effects of Imand φ on Wt.%of Cu contents at two different locations of NG-20 P-GMA weld joints prepared at different Ω.(a)7.61±0.38 kJ/cm,(b)5.28±0.41 kJ/cm.

    3.2.3.Narrow groove with 13 mm groove width(NG-13)

    The effects of φ on C,Si,Mn and Cu contents at different locationsofNG-13P-GMA weldjointat230Aand 5.28±0.41 kJ/cm are shown in Fig.11.It has been observed Ccontent is lower but Si and Mn contents are insignificantly varied at any location of NG-13 P-GMA weld as compared to the NG-20 P-GMAweld.The lowering of C content in NG-13 P-GMA weld primarily happened due to lower angle of attack against the groove wall surface along with low Ω minimizes the effect of dissolution by fusion and solid state diffusion from the deposit adjacent to groove wall to weld center and also enhances the fume formation rate because of wider contact area of arc exposed to groove wall surface,resulting in a significant amount of element loss from arc cavern.In addition to above decrease of Ω with the increase of welding speed,the fume formation rate is also enhanced[16],which may also play an important role for decrease of C content in NG-13 PGMA weld.In this regard,for the given electrode chemical compositions,the change in weld groove size by varying groove angle provides a more efficient way to control the chemical composition of weld,and also play a favorable role in weld properties and microstructure.However,F(xiàn)ig.11 further shows the insignificant variation of the chemical compositions at both the locations of weld depicts,which indicates that the properties of the weld are more uniform in comparison to those of NG-20 and CG welds.Fig.11(d)shows that the Cu contents at different locations of NG-13 PGMAweld are comparatively lower than those of CG P-GMA and NG-20 P-GMA welds due to higher fume generation rate. However,the influence of φ on the chemical compositions at different locations of NG-13 weld shows an insignificant variation in it.In this regard,all the phenomena regarding the influence of pulse parameters and groove size on chemical compositions of P-GMA weld should be studied further in detail with the help of other experimental technique,like XRD,SEM-EDAX,etc.

    In the last few decades,the control of weld fumes in arc welding is a challenging task as the inhalable metal fumes pose a potential health hazard to the human body.In view of the above observations,the significant role of pulse parameters of P-GMAW process may give wider possibility to control the weld fumes.However,the study on fume generation rate under different pulse parameters and weld groove sizes of P-GMAW process is beyond the scope of the present work,but it should be studied further in detail.

    3.3.Microstructure

    The typical microstructure of 25 mm thick plate of microalloyed HSLA(SAILMA-350HI/SA533 grade)steel and its transverse direction are shown in Fig.12.The microstructure of base metal has been primarily found to consist of ferrite and pearlite along with the lamination of matrix typical of rolled structure.Due to the addition of micro alloying elements Ti,V,and Nb,the average grain size is around 18±3 μm and are comparatively finer than those observed in commonly used structural steel(24±3 μm)[17].

    Fig.11.Effect of φ on Wt.%of C,Si,Mn and Cu contents in NG-13 P-GMA weld joints at 5.28±0.41 kJ/cm(a)C,(b)Si,(c)Mn,(d)Cu.

    Fig.12.Typical microstructure of base metal.

    The significant change in the chemical composition of weld deposit with the change in welding processes and groove design should also influence its microstructure.Thus,it may be interesting to study the microstructure of weld deposits. The typical microstructures of CG and NG-20 GMA weld joints at two different locations of the weld deposit are shown in Fig.13.It is observed that,in comparison to the CG GMA weld,the NG-20 weld shows a larger amount of pearlites and a lower fraction of pro-eutectoid ferrite due to variation of chemical composition as explained earlier.The typical microstructures of CG,NG-20 and NG-13 P-GMAweld joints at two different locations of the weld deposit are in Fig.14.It is also observed that the microstructures of P-GMA weld deposits have the same features as those of the GMA weld deposits.However,relatively low thermal impact in P-GMAW weld shows a large proportion of ferrite in the matrix in comparison to the GMA welds.Further,it has been observed that the microstructure of NG-13 P-GMAweld deposits at two different locations show insignificant variation due to uniformly distributed chemistry in the weld deposits as explained earlier.

    4.Conclusions

    The present study provides a basic understanding of the effect of welding processes and groove size on variation of weld metal chemical composition in multi-pass weld deposition of HSLA steel.The observations on various critical aspects of GMA and P-GMAW processes may be primarily concluded as follows.

    1)Due to multi-pass GMA weld deposition,the chemical composition of weld metal is not uniform throughout the welding process,irrespective of change in groove size.

    2)The use of P-GMAW process enhances the dilution of weld deposit.Further,it is observed that,the NG-13 PGMA weld joint shows the uniform properties throughout the multi-pass weld deposition due to lower angle of attack against the groove wall surface along with low heat input.

    Fig.13.Typical microstructures of conventional GMA weld deposits.

    Fig.14.Typical microstructures of pulsed current GMA weld deposits.

    3)Finally,it is concluded that,for a given electrode chemical compositions,the change in weld groove size by varying groove angle provides a more efficient way to control the chemical composition of weld plays a favorable role in weld properties.Thus it may be considered further to characterize the microstructure of weld deposits.

    Acknowledgment

    The authors thankfully acknowledge the Indian Institute of Technology Roorkee(IITR),India for supporting to the research work.

    [1]Linnert G.Welding metallurgy.4th ed.,vol.1.Miami,F(xiàn)lorida:American Welding Society;1994.

    [2]Kou Sindo.Welding metallurgy.New York:John Wiley and Sons;1987.

    [3]Messler Jr Robert W.Principles of welding.New York:John Wiley and Sons;1999.

    [4]Ghosh PK,Gupta SR,Randhawa HS.Characteristics and criticality of bead on plate deposition in pulsed current vertical-up GMAWof steel.Int J Join Mater 1999;11(4):99-110.

    [5]Ghosh PK,Gupta SR,Randhawa HS.Characteristics of a pulsed-current,verticalupgasmetalarcweldinsteel.MetalTransA 2000;31A:2247-59.

    [6]Praveen P,Yarlagadda PKDV,Kang MJ.Advancements in pulse gas metal arc welding.J Mater Process Technol 2000;164-165:1113-9.

    [7]Rajasekaran S,Kulkarni SD,Mallya UD,Chaturvedi RC.Droplet detachment and plate fusion characteristics in pulsed current gas metal arc welding.Weld J 1998;6:254s-68s.

    [8]Ghosh PK.Decide pulse parameters for desired properties of pulsed current GMAW weld.In:International welding conference(IWC-99)on welding and allied technology”challenges in 21st century,”New Delhi;1999:Feb.15-17.p.18-28.

    [9]Ghosh PK,Dorn L,Goecke SF.Universality of co-relationships among pulse parameters for different MIG welding power sources.Int J Join Mater 2000;13(2):40-7.

    [10]Ghosh PK,Dorn L,Devakumaran K,Hofmann F.Pulsed current gas metal arc welding under different shielding and pulse parameters;part-1: arc characteristics.ISIJ Int 2009;49(2):251-60.

    [11]Ghosh PK,Goyal VK,Dhiman HK,Kumar M.Thermal and metal transfer behaviour in pulsed current GMA weld deposition of Al-Mg alloy.Sci Technol Weld Join 2006;11(2):232-42.

    [12]Ghosh PK,Dorn L,Hubner M,Goyal VK.Arc characteristics and behaviour of metal transfer in pulsed current GMAwelding of aluminium alloy.J Mater Process Technol 2007;194:163-75.

    [13]Ghosh PK,Dorn L,Kulkarni S,Hoffmann F.Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of stainless steel.J Material Process Technol 2008;209:1262-74.

    [14]Kulkarni SG.Narrow gap pulse current gas metal arc welding of thick wall 304LN stainless steel pipe[Ph.D.Thesis].2008.IIT Roorkee,India.

    [15]Welding handbook,welding technology.8th Ed.vol.1.American Welding Society;1987.

    [16]Dennis John,H,Peter JH,Redding CAJ,Andrew DW.A model for prediction of fume formation rate in gas metal arc welding,globular and spray modes,DCelectrodepositive,vol.45(2).PergamonPress;2001.p.105-13.

    [17]Tamura I,Sekine Hiroshi,Tanaka Tomo,Ouchi Chiaki.Thermo-mechanical processing of high strength low alloy steels.Butterworth&Co. Metals Handbook;1988.

    11 September 2014;revised 13 November 2014;accepted 24 November 2014

    Available online 20 February 2015

    .Tel.:+91 9443689943.

    E-mail addresses:devakumaran@bheltry.co.in(K.DEVAKUMARAN),mrpadmanaban@yahoo.com(M.R.ANANTHAPADMANABAN),prakgfmt@ gmail.com,prakgfmt@iitr.ernet.in(P.K.GHOSH).

    Peer review under responsibility of China Ordnance Society.

    1Tel.:+91 9488090838.

    2Tel.:+91 1332 285699.

    Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    猜你喜歡
    艾莉心理準(zhǔn)備秦川
    艾莉的煩惱
    傅雷的稱(chēng)贊
    做人與處世(2022年6期)2022-05-26 10:26:35
    換座
    做人與處世(2022年4期)2022-05-26 04:43:14
    在雨中“躲雨”的綿羊
    該得獎(jiǎng)的李老師
    丟失的皮鞋
    邁出第一步
    海濱城市尋找記
    神回復(fù)
    二寶媽坐月子 要有迎接挑戰(zhàn)的心理準(zhǔn)備
    媽媽寶寶(2017年3期)2017-02-21 01:22:10
    999精品在线视频| 91麻豆av在线| 欧美性猛交╳xxx乱大交人| 国内少妇人妻偷人精品xxx网站 | 久久人人精品亚洲av| 国产伦精品一区二区三区四那| 成人av在线播放网站| 国产亚洲欧美在线一区二区| 波多野结衣高清无吗| 亚洲真实伦在线观看| 在线国产一区二区在线| av女优亚洲男人天堂 | 观看免费一级毛片| e午夜精品久久久久久久| 国内毛片毛片毛片毛片毛片| 欧美av亚洲av综合av国产av| 成人高潮视频无遮挡免费网站| 日本一本二区三区精品| 99久久国产精品久久久| 久久久精品欧美日韩精品| 久久久国产欧美日韩av| 国产精品亚洲一级av第二区| 国产探花在线观看一区二区| 亚洲人与动物交配视频| 久久中文字幕人妻熟女| 久久中文看片网| 午夜福利高清视频| 亚洲成av人片在线播放无| 国产单亲对白刺激| 国产成人影院久久av| 哪里可以看免费的av片| 99国产极品粉嫩在线观看| 欧美日韩瑟瑟在线播放| 精品久久久久久久久久久久久| 国产精华一区二区三区| 成年女人永久免费观看视频| 97人妻精品一区二区三区麻豆| 一级黄色大片毛片| 成人欧美大片| 天堂网av新在线| 亚洲第一欧美日韩一区二区三区| 免费看十八禁软件| 99在线人妻在线中文字幕| 国产av在哪里看| 国产极品精品免费视频能看的| 国产成人精品久久二区二区免费| 免费看日本二区| 18禁裸乳无遮挡免费网站照片| 19禁男女啪啪无遮挡网站| 99re在线观看精品视频| 精品不卡国产一区二区三区| 欧美最黄视频在线播放免费| 久久精品国产99精品国产亚洲性色| a在线观看视频网站| 亚洲精品国产精品久久久不卡| 亚洲国产精品999在线| 婷婷亚洲欧美| 麻豆一二三区av精品| 色综合欧美亚洲国产小说| 91在线精品国自产拍蜜月 | 人人妻人人澡欧美一区二区| 国产黄片美女视频| 日本一本二区三区精品| 久久久国产成人精品二区| 嫁个100分男人电影在线观看| 国产成人福利小说| 18禁黄网站禁片免费观看直播| 国产精品一区二区精品视频观看| 怎么达到女性高潮| 久久午夜综合久久蜜桃| 国内精品久久久久久久电影| 欧美激情在线99| 亚洲av免费在线观看| 国产一区二区在线观看日韩 | 熟女少妇亚洲综合色aaa.| 国产亚洲精品久久久com| 天天躁日日操中文字幕| 综合色av麻豆| 1024香蕉在线观看| 村上凉子中文字幕在线| 91字幕亚洲| 黑人巨大精品欧美一区二区mp4| 午夜日韩欧美国产| www.熟女人妻精品国产| 国产亚洲欧美98| 久久久久九九精品影院| 舔av片在线| 天堂√8在线中文| 国内揄拍国产精品人妻在线| 国内少妇人妻偷人精品xxx网站 | 亚洲av电影在线进入| 国产精品一及| 欧美在线黄色| 国产主播在线观看一区二区| 嫩草影视91久久| 国产精品98久久久久久宅男小说| 国产1区2区3区精品| 日本三级黄在线观看| 亚洲欧美精品综合久久99| 亚洲人与动物交配视频| 国产精品久久视频播放| 听说在线观看完整版免费高清| 亚洲激情在线av| 亚洲自拍偷在线| 12—13女人毛片做爰片一| 婷婷精品国产亚洲av| 99久久99久久久精品蜜桃| 99热这里只有是精品50| 婷婷丁香在线五月| 午夜福利视频1000在线观看| 91在线精品国自产拍蜜月 | 久久精品影院6| 久久精品aⅴ一区二区三区四区| 男人舔女人的私密视频| 精品不卡国产一区二区三区| 99国产精品一区二区三区| 小蜜桃在线观看免费完整版高清| 国产又黄又爽又无遮挡在线| 欧洲精品卡2卡3卡4卡5卡区| 婷婷丁香在线五月| x7x7x7水蜜桃| 中亚洲国语对白在线视频| 最近最新中文字幕大全免费视频| 欧美性猛交╳xxx乱大交人| 日韩三级视频一区二区三区| 成人精品一区二区免费| 精品午夜福利视频在线观看一区| 亚洲成a人片在线一区二区| 国产欧美日韩一区二区精品| 中国美女看黄片| 免费大片18禁| 免费大片18禁| 黄频高清免费视频| 欧美一区二区国产精品久久精品| 村上凉子中文字幕在线| 午夜福利在线在线| 久久久国产欧美日韩av| 色在线成人网| 国产男靠女视频免费网站| 亚洲专区中文字幕在线| 日韩免费av在线播放| 日韩免费av在线播放| 一区二区三区高清视频在线| 国产高潮美女av| 国产高潮美女av| 久久久久久人人人人人| 999久久久精品免费观看国产| 黑人巨大精品欧美一区二区mp4| 老熟妇乱子伦视频在线观看| 一本综合久久免费| 国产毛片a区久久久久| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱色亚洲激情| 香蕉久久夜色| 亚洲国产日韩欧美精品在线观看 | 人妻久久中文字幕网| 欧美另类亚洲清纯唯美| 蜜桃久久精品国产亚洲av| 欧美另类亚洲清纯唯美| 人妻久久中文字幕网| 国产视频内射| 国产成人av教育| 后天国语完整版免费观看| 亚洲五月天丁香| 51午夜福利影视在线观看| 午夜免费成人在线视频| 天天一区二区日本电影三级| 特大巨黑吊av在线直播| 国产精品亚洲av一区麻豆| 国产淫片久久久久久久久 | 欧美在线黄色| 亚洲 国产 在线| 国产视频一区二区在线看| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕av在线有码专区| 日日摸夜夜添夜夜添小说| 男人的好看免费观看在线视频| 国产精品精品国产色婷婷| 国产午夜精品久久久久久| 黄片小视频在线播放| 中文字幕人成人乱码亚洲影| 日韩人妻高清精品专区| 久久欧美精品欧美久久欧美| 日本五十路高清| 18禁国产床啪视频网站| 亚洲av成人不卡在线观看播放网| 中文亚洲av片在线观看爽| 久久久久国产精品人妻aⅴ院| 可以在线观看毛片的网站| 色尼玛亚洲综合影院| 又爽又黄无遮挡网站| 日韩有码中文字幕| 精品免费久久久久久久清纯| 国产午夜精品久久久久久| 久久久国产欧美日韩av| 色哟哟哟哟哟哟| 精品福利观看| 天天一区二区日本电影三级| 国产亚洲精品av在线| 成人18禁在线播放| 桃色一区二区三区在线观看| 狂野欧美白嫩少妇大欣赏| 久久精品91无色码中文字幕| av视频在线观看入口| 亚洲av熟女| 国产精品女同一区二区软件 | 中文字幕精品亚洲无线码一区| 99国产综合亚洲精品| 色综合站精品国产| 亚洲精品国产精品久久久不卡| 露出奶头的视频| 一二三四社区在线视频社区8| 国产蜜桃级精品一区二区三区| 在线视频色国产色| 给我免费播放毛片高清在线观看| 久久中文字幕一级| 噜噜噜噜噜久久久久久91| 国产91精品成人一区二区三区| 18禁黄网站禁片免费观看直播| 国产三级在线视频| 男人舔奶头视频| 国产一区二区三区视频了| 在线观看免费视频日本深夜| 国产精品国产高清国产av| 在线观看免费视频日本深夜| 亚洲最大成人中文| 亚洲自偷自拍图片 自拍| 老司机深夜福利视频在线观看| 最新美女视频免费是黄的| 国内精品一区二区在线观看| 欧美日韩国产亚洲二区| 国产黄片美女视频| 国产精品99久久99久久久不卡| 岛国在线观看网站| 国产精品国产高清国产av| 亚洲欧美日韩东京热| 久久久久国产精品人妻aⅴ院| 国内精品一区二区在线观看| 成人国产综合亚洲| www日本在线高清视频| 天天一区二区日本电影三级| 熟妇人妻久久中文字幕3abv| 亚洲无线观看免费| 欧美日韩国产亚洲二区| 国产精品99久久久久久久久| 国产亚洲精品av在线| 在线观看舔阴道视频| 久久精品国产综合久久久| 人人妻人人看人人澡| 亚洲无线观看免费| 婷婷亚洲欧美| 成人永久免费在线观看视频| 国产精品国产高清国产av| 日本成人三级电影网站| 亚洲国产高清在线一区二区三| 久久精品人妻少妇| 人人妻人人澡欧美一区二区| 国产av在哪里看| 午夜福利18| www日本黄色视频网| 国产免费av片在线观看野外av| 深夜精品福利| 国产三级黄色录像| 欧美性猛交黑人性爽| 免费观看人在逋| 国产黄色小视频在线观看| 亚洲国产欧美一区二区综合| 亚洲色图 男人天堂 中文字幕| 久久久色成人| 国产视频内射| 免费看日本二区| 久久午夜综合久久蜜桃| 美女被艹到高潮喷水动态| 国产伦一二天堂av在线观看| 免费看光身美女| 精品一区二区三区视频在线观看免费| 18禁观看日本| 亚洲乱码一区二区免费版| 中文字幕人成人乱码亚洲影| 一二三四社区在线视频社区8| 99国产精品一区二区蜜桃av| 亚洲人与动物交配视频| 人妻久久中文字幕网| 精品久久久久久久久久免费视频| 99国产精品99久久久久| 日韩人妻高清精品专区| 热99在线观看视频| 他把我摸到了高潮在线观看| 男女床上黄色一级片免费看| 麻豆国产97在线/欧美| АⅤ资源中文在线天堂| 国产亚洲欧美在线一区二区| 久久中文字幕人妻熟女| 一个人免费在线观看电影 | 色精品久久人妻99蜜桃| 欧美色视频一区免费| 毛片女人毛片| 久久久久性生活片| 国内精品久久久久精免费| 亚洲成人免费电影在线观看| 久久中文看片网| 色精品久久人妻99蜜桃| 色视频www国产| 看片在线看免费视频| 亚洲 国产 在线| 国产一区二区在线av高清观看| 亚洲国产欧美一区二区综合| svipshipincom国产片| 国产黄片美女视频| av欧美777| 亚洲七黄色美女视频| 色视频www国产| 九色国产91popny在线| 欧美绝顶高潮抽搐喷水| 亚洲欧美精品综合一区二区三区| 非洲黑人性xxxx精品又粗又长| 亚洲国产高清在线一区二区三| 国产精品一区二区免费欧美| 欧美黄色淫秽网站| 国产精品亚洲av一区麻豆| 精品99又大又爽又粗少妇毛片 | 在线观看舔阴道视频| 少妇的逼水好多| 亚洲av五月六月丁香网| 亚洲 国产 在线| 精品国产三级普通话版| 深夜精品福利| 亚洲色图 男人天堂 中文字幕| 色综合欧美亚洲国产小说| 怎么达到女性高潮| 熟女电影av网| 亚洲乱码一区二区免费版| a级毛片a级免费在线| 午夜精品在线福利| av黄色大香蕉| 日韩精品中文字幕看吧| 婷婷精品国产亚洲av在线| 深夜精品福利| 俺也久久电影网| 午夜久久久久精精品| 又紧又爽又黄一区二区| 少妇人妻一区二区三区视频| 免费看美女性在线毛片视频| 欧美日韩一级在线毛片| 久久国产精品人妻蜜桃| 国产精品乱码一区二三区的特点| av在线蜜桃| 草草在线视频免费看| 成在线人永久免费视频| 成年人黄色毛片网站| 最近最新中文字幕大全电影3| 激情在线观看视频在线高清| 女人高潮潮喷娇喘18禁视频| 国产三级黄色录像| 国产亚洲av嫩草精品影院| 丰满人妻熟妇乱又伦精品不卡| 香蕉久久夜色| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区三| 母亲3免费完整高清在线观看| 老司机午夜福利在线观看视频| 啦啦啦韩国在线观看视频| 特级一级黄色大片| 国产av在哪里看| 中文字幕熟女人妻在线| 在线观看午夜福利视频| 亚洲成人久久爱视频| 夜夜夜夜夜久久久久| 亚洲国产日韩欧美精品在线观看 | 天天添夜夜摸| 性色avwww在线观看| 欧美色视频一区免费| 国产97色在线日韩免费| 国产精品 欧美亚洲| 99久久99久久久精品蜜桃| 久久精品亚洲精品国产色婷小说| 国产精品99久久99久久久不卡| 日本黄色视频三级网站网址| 丰满的人妻完整版| 亚洲av免费在线观看| 久久天躁狠狠躁夜夜2o2o| 免费在线观看亚洲国产| 美女被艹到高潮喷水动态| 亚洲国产高清在线一区二区三| 他把我摸到了高潮在线观看| 日韩高清综合在线| 成人三级做爰电影| 不卡av一区二区三区| 亚洲 国产 在线| 亚洲中文av在线| av女优亚洲男人天堂 | 国产亚洲精品久久久久久毛片| 五月伊人婷婷丁香| 久久中文字幕一级| 国产成人啪精品午夜网站| 九九在线视频观看精品| 美女高潮喷水抽搐中文字幕| 日本一二三区视频观看| 午夜久久久久精精品| 亚洲色图av天堂| 在线免费观看的www视频| 国产亚洲精品久久久com| 欧美最黄视频在线播放免费| 变态另类成人亚洲欧美熟女| 草草在线视频免费看| 国产成人精品久久二区二区91| 99久久精品国产亚洲精品| 一个人看视频在线观看www免费 | 中文资源天堂在线| 日韩精品青青久久久久久| 国产三级在线视频| 欧美性猛交黑人性爽| 欧美日韩一级在线毛片| 亚洲在线自拍视频| 成年版毛片免费区| 亚洲自拍偷在线| 床上黄色一级片| 后天国语完整版免费观看| 国产精品电影一区二区三区| 悠悠久久av| 国产av不卡久久| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 黑人巨大精品欧美一区二区mp4| 国产蜜桃级精品一区二区三区| 国产精品自产拍在线观看55亚洲| 精品熟女少妇八av免费久了| 日韩大尺度精品在线看网址| 亚洲欧美精品综合一区二区三区| 村上凉子中文字幕在线| 亚洲国产欧美人成| 久久久国产成人免费| 看免费av毛片| 九九在线视频观看精品| 国产精品久久久人人做人人爽| 日韩欧美免费精品| 国产日本99.免费观看| 国产亚洲精品综合一区在线观看| 国产一级毛片七仙女欲春2| 久久中文看片网| 99久久无色码亚洲精品果冻| 特大巨黑吊av在线直播| 999精品在线视频| 久久久久久久久久黄片| 日本 欧美在线| 久久精品影院6| 欧美成狂野欧美在线观看| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 亚洲熟妇熟女久久| 精品一区二区三区四区五区乱码| www日本在线高清视频| 午夜影院日韩av| 51午夜福利影视在线观看| 午夜精品在线福利| 九色国产91popny在线| 午夜视频精品福利| 国产一区二区在线av高清观看| a级毛片在线看网站| 高清在线国产一区| 小说图片视频综合网站| 国产精品久久久人人做人人爽| 久久精品91无色码中文字幕| 欧美一级a爱片免费观看看| 欧美+亚洲+日韩+国产| 免费观看人在逋| 老司机午夜福利在线观看视频| 精品福利观看| 国产三级中文精品| 哪里可以看免费的av片| 中国美女看黄片| 国产成人啪精品午夜网站| 人人妻人人看人人澡| 不卡一级毛片| 88av欧美| 麻豆成人午夜福利视频| 精品福利观看| 草草在线视频免费看| 无人区码免费观看不卡| 国产精品99久久久久久久久| 色综合亚洲欧美另类图片| 后天国语完整版免费观看| 亚洲国产日韩欧美精品在线观看 | 窝窝影院91人妻| 亚洲真实伦在线观看| 母亲3免费完整高清在线观看| www.熟女人妻精品国产| 亚洲精品在线观看二区| 久久久色成人| 欧美绝顶高潮抽搐喷水| av欧美777| 精品熟女少妇八av免费久了| 制服人妻中文乱码| 中文亚洲av片在线观看爽| 欧美黑人欧美精品刺激| 青草久久国产| 欧美乱码精品一区二区三区| 国产精品久久久久久精品电影| 99久久国产精品久久久| 曰老女人黄片| 在线永久观看黄色视频| 可以在线观看的亚洲视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品999在线| 久久精品91无色码中文字幕| 看免费av毛片| 欧美av亚洲av综合av国产av| 成人av在线播放网站| 欧美乱色亚洲激情| 九九久久精品国产亚洲av麻豆 | 狠狠狠狠99中文字幕| www.熟女人妻精品国产| 国内精品美女久久久久久| 国内毛片毛片毛片毛片毛片| 高清在线国产一区| 亚洲精品一区av在线观看| 91在线精品国自产拍蜜月 | 热99在线观看视频| 久9热在线精品视频| 日韩国内少妇激情av| 久久精品aⅴ一区二区三区四区| 桃红色精品国产亚洲av| 国产激情偷乱视频一区二区| 91av网一区二区| 高清毛片免费观看视频网站| 人人妻人人看人人澡| 亚洲国产精品999在线| 中国美女看黄片| 成人一区二区视频在线观看| 麻豆久久精品国产亚洲av| 国产一区二区激情短视频| 色视频www国产| 国产乱人伦免费视频| 男女床上黄色一级片免费看| www.精华液| 成人三级黄色视频| 精品一区二区三区四区五区乱码| 三级国产精品欧美在线观看 | 看免费av毛片| 国产91精品成人一区二区三区| 美女扒开内裤让男人捅视频| 国产野战对白在线观看| 在线观看日韩欧美| av天堂中文字幕网| 99久久无色码亚洲精品果冻| 国产精品国产高清国产av| 观看美女的网站| 国产亚洲精品一区二区www| 麻豆国产97在线/欧美| 一本一本综合久久| 国产视频一区二区在线看| 色精品久久人妻99蜜桃| 免费av不卡在线播放| 亚洲aⅴ乱码一区二区在线播放| 一个人看视频在线观看www免费 | 三级男女做爰猛烈吃奶摸视频| or卡值多少钱| 日韩欧美在线二视频| 亚洲精品在线观看二区| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 90打野战视频偷拍视频| 久久人妻av系列| 亚洲成人精品中文字幕电影| 精品久久久久久久末码| 在线观看舔阴道视频| 久久中文看片网| 亚洲成a人片在线一区二区| 国产一区二区三区视频了| 亚洲av第一区精品v没综合| 欧美最黄视频在线播放免费| 国产不卡一卡二| 美女 人体艺术 gogo| av天堂中文字幕网| 一个人免费在线观看电影 | 国产午夜福利久久久久久| 国产成人精品久久二区二区91| 成人欧美大片| 香蕉av资源在线| 午夜福利成人在线免费观看| 日韩精品青青久久久久久| 亚洲成av人片免费观看| 欧美日韩精品网址| 十八禁网站免费在线| 熟女少妇亚洲综合色aaa.| 波多野结衣高清无吗| 亚洲人成伊人成综合网2020| 1000部很黄的大片| 免费看十八禁软件| 国产熟女xx| 国产私拍福利视频在线观看| 国产亚洲欧美98| 亚洲 欧美 日韩 在线 免费| 香蕉丝袜av| 中文字幕av在线有码专区| 一a级毛片在线观看| 三级毛片av免费| 九九在线视频观看精品| 天天添夜夜摸| 欧美成人免费av一区二区三区| 男人舔奶头视频| 美女cb高潮喷水在线观看 | 又紧又爽又黄一区二区| 91在线精品国自产拍蜜月 | 久久久国产成人精品二区| 免费在线观看影片大全网站| 最近最新免费中文字幕在线| 亚洲va日本ⅴa欧美va伊人久久| 国产三级黄色录像| 高潮久久久久久久久久久不卡| 国产伦精品一区二区三区视频9 | 色在线成人网| 久99久视频精品免费| 999精品在线视频| 丝袜人妻中文字幕|