• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical study of BTF/TNA cocrystal:Effects of hydrostatic pressure and temperature

    2015-11-01 07:13:55PengyuanCHENLinZHANGShunguanZHUGuangbinCHENG
    Defence Technology 2015年2期

    Peng-yuan CHEN,Lin ZHANG*,Shun-guan ZHU,Guang-bin CHENG

    School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China

    ?

    Theoretical study of BTF/TNA cocrystal:Effects of hydrostatic pressure and temperature

    Peng-yuan CHEN,Lin ZHANG*,Shun-guan ZHU,Guang-bin CHENG

    School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China

    Cocrystallization is a promising technique for the design and preparation of new explosives,and the stability of cocrystal is highly concerned by the researchers.In order to make a better understanding of the behavior of cocrystal under the extreme conditions,DFT(density functional theory)calculation is performed to investigate the effect of hydrostatic pressure on geometrical and electronic structures of the cocrystal BTF(benzotrifuroxan)/TNA(2,4,6-trinitroaniline).When the hydrostatic pressure is applied,the lattice constants,volume,density and total energy change gradually except at the pressures of 40 GPa and 79-83 GPa.It is noteworthy that new chemical bonds form when the pressure is up to 83 GPa.The band gap of the cocrystal becomes smaller when the pressure is applied,and finally the cocrystal shows a characteristic of metal. The mechanical property of cocrystal is calculated by MD(molecular dynamics)simulation.The results show that the cocrystal has a better ductibility at low temperature,and has the best tenacity at 295 K.

    Cocrystal;BTF/TNA;DFT;High pressure;Crystal structure

    1.Introduction

    Cocrystal is defined as a new crystal with distinct solidstate properties created by combining two or more neutral species in a definite ratio[1,2].Cocrystallization is an effective approach to alter the dissolution rate,thermal stability and bioavailability of pharmaceuticals in pharmaceutical industry[3-5].Its great success in pharmaceutical industry has attracted much attention in other fields,such as optical,semiconducting materials and energetic materials[6-8].Cocrystallization can modify the performance of energetic material at molecular level compared with coating,crystal morphology modification and other traditional methods[9-11].It is feasible to tailor the different molecules to get the definite performance according to some rules with cocrystallizationmethod,which has been verified in pharmaceutical fields. Seventeen cocrystals of TNT(2,4,6-trinitrotoluene)were reported and the safety performance has been greatly enhanced[12].However,the energy is diluted because of the introduction of non-energetic materials.Bolton et al.[13]used the solvent evaporation method to prepare the cocrystal of TNT/ CL-20(2,4,6,8,10,12-hexanitrohexaazaisowurtzitane).The cocrystal has a poorer detonation performance but a reduced sensitivity compared with pure CL-20.The cocrystal of HMX(1,3,5,7-tetranitro-1,3,5,7-tetrazocane)/CL-20 is predicted to be more powerful than HMX[14].Nevertheless,the sensitivity of the cocrystal is similar to that of HMX.Millar et al.[15]changed the physicochemical properties of CL-20 by cocrystallizing CL-20 with four solvents.It is notable that the CL-20 molecule adopts different conformations before and after desolvation,and this may provide a highly-selective means of polymorph screening.

    When a detonation takes place,the high velocity shock waves can result in very high temperatures and pressures[16],which may lead to a phase transition of energetic material to form new polymorphs or decomposition reactions[17,18].As a result,the crystal structure would deform.It is well known that the sensitivity and detonation performance of the explosive are intimately bound up with the crystal packing. Therefore it is necessary to investigate the behavior of explosives under the extreme conditions.In recent years,a lot of efforts have been laid both in experiment and theoretical calculation in this respect.Diamond anvil cell,which can generate a pressure of hundreds of GPa,was used to study the changes of materials at high pressure,such as cell parameters,phase transition,and so on[19,20].Compared with the experiment,theoretical calculations show much more details to help us to understand the changing mechanism.Microscopic changes of geometrical structure and electronic distribution can be studied by theoretical calculation.To date,a lot of widely used explosives,such as HMX,CL-20[21],RDX(hexahydro-1,3,5-trinitro-1,3,5-triazine)[22],andsoon[23-27],at different hydrostatic pressures were studied using the computational methods.As for the cocrystal explosives,it is of great importance to consider their stability at high pressure.However,the formation and decomposition mechanism of the cocrystal explosive is not clear,and its behavior under theextremeconditionsisnotmentioned.Furthermore,whether the molecular interactions are destroyed in the process of detonation is concerned by the researchers,especially considering the advantages of cocrystal explosives that have been demonstrated.However,to our knowledge,no work has been reported on the study of the behavior of cocrystal explosive at high pressure.

    http://dx.doi.org/10.1016/j.dt.2015.01.003

    2214-9147/Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    By the previous study,BTF can be cocrystallized with a series of explosives,including TNA,TNT,CL-20,and so on. Generally,the sensitivity of the cocrystal is between those of both BTF and TNA.However,the sensitivity of BTF/TNA[28]is higher than those of BTF and TNA.Hence,BTF/ TNA is more worthy of theoretical investigation.For comparison,a blank test was also performed in the absence of the other partner of the couple.As we all know,the mechanical property is an important indicator of the explosive property,and the shear modulus is related to the sensitivity of explosive.Therefore,the mechanical properties of the cocrystal at different temperatures were calculated by MD simulation.

    2.Computational methods

    The calculations in this study were performed within the framework of DFT based on CASTEP code[29].The LDA functional proposed by Ceperley and Alder[30]and parameterized by Perdew and Zunder[31],named CA-PZ,was employed.The core electrons in each atomic species were replaced with the norm-conserved pseudopotentials.The primitive cell was relaxed by using the BFGS method.The cutoff energy of plane wave was set to 600 eV.Brillouin zone sampling was performed by using the Monkhost-Pack scheme with a k-point grid of 2×2×1.The values of the kinetic energy cutoff and the k-point grid were determined to ensure the convergence of total energy.In the geometry relaxation,the total energy of the system was less than 2.0×10-5eV,the residual force was less than 0.05 eV/?,the displacement of atoms was less than 0.002 ?,and the residual bulk stress was less than 0.1 GPa.

    All MD simulations were carried out in an isothermalisobaric ensemble(NPT)with the COMPASS[32]force field in Discover code.The unit cell was taken from single X-ray diffraction.A supercell consisting of 3×3×2 unit cells was prepared and put into the periodic simulation cell.Each cell contains 72 BTF molecules,72 TNA molecules and 2376 atoms in total.Temperature was controlled by using the stochastic collision method proposed by Andersen[33].The temperatures were set to 195 K,245 K,295 K,345 K and 395 K.The initial velocities were set using the Maxwell-Boltzmann profiles at given temperatures.The velocity Verlet time integration method was used with a time step of 1 fs.The Verlet leapfrog scheme was used to integrate the equations of motion.The total simulation time was set to 2 ns,the equilibration was achieved in the first 1 ns,and the data was collected in the next 1 ns.

    3.Results and discussion

    3.1.Crystal structures and properties

    LDA and GGA often give contradictory results when the crystal structure is optimized[16].Therefore,in order to benchmark the performances of LDA and GGA,both those functionals were applied to the cocrystal of BTF/TNA as a test.As shown in Table 1.After accomplishing total energy minimization for each unit cell,the optimized lattice parameters and the experimental results shows that the LDA results are in well agreement with the experimental ones compared to the GGA results.As for LDA functional,the relative errors of the lattice constants a,b,c,and β are-3.06%,-0.66%,+1.05%,and+0.07%,respectively.The little difference between the calculated and experimental lattice parameters demonstrates that the method and the parameters used in this calculation are reliable.However,the difference may be due to the intermolecular interactions occurring in the crystal lattice,which are not well described by DFT[34].

    The experimental crystallization and structure of BTF/TNA cocrystal are presented in Figs.1 and 2.Each unit cell has four BTF molecules and four TNA molecules.

    The relaxed lattice constants of the cocrystal at different hydrostatic pressures are presented in Fig.3.On the whole,thesmaller the compression ratio is.For example,in the region of 0-10 GPa,the compressions of a,b and c are 9.50%,6.30% and 9.03%,respectively,which are much larger than 1.80%,1.03%and 0.92%in the region of 50-60 GPa.In the lowpressure zone,the distance between the molecules is far,so the intermolecular repulsion is not large.Therefore,the crystal is easily compressed compared to chemical bond.On the contrary,in the high-pressure zone,the intermolecular repulsion is much larger,and the crystal is difficult to be compressed.As is evident,the compressibilities along three directions are different,which indicates that the compressibility of the crystal is anisotropic.As the pressure goes up,the compressibility in each direction converges.Additionally,the crystal symmetry maintains the same monocline space group P21/c under all hydrostatic compressions.

    Table 1 The experimental and calculated lattice parameters of BTF/TNA cocrystal.a

    Fig.1.The experimental crystallization of BTF/TNA cocrystal.

    Fig.2.The molecular structure and atomic labeling of BTF/TNA cocrystal.

    Fig.3.The optimized lattice constants(a,b and c)as a function of pressure.

    The volume,density,and total energy of optimized unit cell as a function of pressure are depicted in Fig.4.With the inlattice constants reduce with the increase in pressure.It is worth noting that all the lattice constants increase abnormally at 40 GPa,while in the region of 79-83 GPa,b and c increase again,but a decreases sharply.It can be deduced that the structural transformation may happen in those regions.Obviously,the largest compression of the unit cell takes place at low pressure below 10 GPa.The higher the pressure is,the crease in pressure,the volume of the unit cell decreases constantly.Obviously,like the lattice parameters,the unit cell volume has the largest compression ratio at low pressure.For instance,the volume is reduced by 3.69%in the region of 50-60 GPa,which is much smaller than that(22.86%)in the region of 10-20 GPa.The change in energy is very similar to that in density,and they all increase with the increase in pressure.The energy and density decrease significantly at the pressure of 40 GPa.As shown in Fig.5,the distance of N1O1···H7A decreases gradually with the increase in pressure.However,at 40 GPa,the length of hydrogen bond is 1.668 ?,which is smaller than 1.790 ? at 30 GPa or 1.764 ? at 50 GPa.Hence,the strength of hydrogen bond increases greatly due to the decrease in bond lengths.The crystal becomes more stable and the total energy decreases.The density and total energy raise linearly with the increase in pressure below 40 GPa.The higher total energy means that the more the explosive releases blasting energy during the explosion,the more powerful the explosive is[16].Meanwhile,the pressure-induced density enlargement would enhance the detonation performance.As a result,they show the same changing tendency with the increase in pressure.For pure BTF crystal,the lattice constants,bond lengths and some otherparameters of BTF change gradually with the increase in pressure.No isomerization or other particular changes were observed even at the applied pressure of 100 GPa.

    Fig.4.The volume,density,and total energy of optimized unit cell as a function of pressure.

    3.2.Molecule structure

    Both the unit cell and the molecular geometry are affected by the external pressure.Some main geometrical parameters, including bond length and torsion angle,are presented to illuminate the effect of hydrostatic pressure.

    Fig.5.Variation of the hydrogen bond length at different pressures.

    As shown in Fig.6,the imposed compression mostly squeezes out the intermolecular space and causes only a little change in intramolecular geometry in the low-pressure zone. Some bonds,such as N1-O2,C1-C2,C7-C8,C8-N8,C8-C9 and C7-N7,shorten gradually and obviously,while some other bonds,such as N2-O2 and N1-O1,change a little bit.This indicates that an endocyclic ring is more likely to be compressed.N1-O2,N9-O9,N1-O2 and N9-O9 shorten abruptly at 40 GPa.Conversely,C1-C2 and N2-O2 lengthen all of a sudden.At 79 GPa,N1-O2 shorten while N2-O2 lengthen.This indicates that N2-O2 may be broken when the explosive decomposes.Simultaneously,in the TNA molecule,the C-NO2bonds adjacent to the amino lengthen suddenly,indicating that the C-NO2bond is the trigger bond of TNA,which is consistent with the previous study[35].

    ThetorsionanglesofC1-C6-C5-N5and C9-C8-C7-N7 are 179.208°and 177.444°,respectively,at 0 GPa,which are close to 180°(Fig.7).Therefore,the fivemembered furoxan ring and the six-membered ring in BTF are almost on one plane,amino and benzene rings in TNA are also on the same plan.In the region of 0-30 GPa,the torsion angle of C1-C6-C5-N5 is sharply decreased to 144.528°because of the effect of pressure,that is to say,the fivemembered furoxan ring forms an angle with the benzene ring.On the other hand,the torsion angle of C9-C8-C7-N7 decreases significantly in the region of 0-20 GPa,then it increases at the following 10 GPa.Following this,the torsion angle decreases significantly at 40 GPa,and then the angle maintains around 170°.When the pressure gets higher,the distance between the molecules becomes smaller.So the distance between O1 and H7A decreases from 2.279 ? to 1.790 ?.Consequently,they form a strong hydrogen bonding. With the attraction of O1,H7A moves from the original position.As a result,C7-N7 forms a torsion angle with the benzene ring.After that,the hydrogen bonding becomes stable so that the angle does not show obvious change.

    Fig.6.Variation of the bond lengths at different pressures.

    Fig.7.Variation of the torsion angles at different pressures.

    Fig.8 shows the perspective views of one layer of BTF/ TNA cocrystal unit cell at the selected pressures.When the pressure is higher than 82 GPa,something unreasonable changes happen in the geometry.At 83 GPa,O in the nitro group of TNA forms a chemical bond with the C in the benzene ring of the adjacent TNA molecule.More chemical bonds can be found in the unit cell among TNA molecules at 100 GPa.The same situation was also found in TNA crystal. When the pressure reaches to 64 GPa,O in the nitro group forms a chemical bond with C in the benzene ring.

    3.3.Electronic structure

    Density of state(DOS)analysis is useful to understand better the change of electronic structure caused by external pressure[36].The calculated total density of states(TDOS)of BTF/TNA cocrystal at different pressures is shown in Fig.9. Fermi level is plotted by the dash line.The main characteristics of DOS are summarized as follows:(1)The top of valence band and the bottom of conduction band are mainly due to p orbit,indicating that p orbit plays a key role in chemical reaction;(2)When the pressure is low,the curves of DOS are characterized by obvious peaks,but the peaks widen gradually with the increase in pressure,which means that the band splitting and band dispersion are accompanied by a broadening of DOS;and(3)Moreover,the conduction bands have a tendency of shifting to the lower energy.This leads to the band gap be smaller,and the crystal shows the characteristic of metal[37].

    The energy gap between the highest occupied crystal orbit(HOCO)and lowest unoccupied crystal orbit(LUCO)is a main parameter to characterize the electronic structure of a solid[17].It can be seen from Fig.10 that the band gap decreases from 2.019 eV to 1.134 eV in the region of 0-30 GPa. This is because of the decrease in intermolecular space under compression which leads to an increase in the overlap of different groups of bands and hence increases the charge overlap and delocalization in the system.The tendency of band gap is similar to that of volume of the bulk.The band gap shows no obvious changes in the region of 30-39 GPa. Because of the structural transformation,the band gap is increased to 1.432 eV at 40 GPa.The band gap decreases gradually in the region of 41-78 GPa.However,the reduction rate is much smaller than that of it in the region of 0-30 GPa. At 79 GPa,the band gap decreases suddenly with the change of bond length.In the region of 80-82 GPa,the band gap rises perpendicularly.Then the band gap decreases again at 83 GPa,which is a turning point to form the unexpected chemical bonds.The formation of the new chemical bonds results in the enhancement of the delocalization of the crystal.In another word,the electron is more likely to transfer and the band gap reduces.Compared with the lattice constants and geometrical parameters,the band gap is more sensitive to pressure.According to the principle of easiest transition(PET)[33],the smaller the band gap is,the more easily the electron transits from the occupied valence band to the empty conduction band. That means the explosive is more likely to detonate.Therefore,the BTF/TNA cocrystal has a higher sensitivity when the external pressure is applied.

    3.4.MD simulation results

    Fig.8.Perspective views of one layer of BTF/TNA cocrystal unit cell and BTF molecules are omitted for brevity.

    Fig.9.Calculated total DOS of BTF/TNA cocrystal at different pressures.

    BTF/TNA cocrystal crystallizes in a monoclinic P21/c space group and contains 8 molecules per unit cell.Since the data of single X-ray diffraction were collected at 135 K,we carried out the calculation at 135 K to confirm the applicability and accuracy of the method and parameters applied in the latter calculations.It can be known from Table 2 that The errors among the optimized lattice constants a,b,c and the experimentalvaluesare+0.61%, +0.60, +0.60%, respectively,after the system reached to the equilibrium state. The result shows that the method and the parameters are reliable.

    The lattice parameters at different temperatures were calculated and presented in Table 2.It is obvious that the lattice parameters rise with the increase in temperature.

    Fig.10.Band gaps of BTF/TNA cocrystal at different pressures.

    Table 2 The experimental and calculated lattice parameters at different temperatures.a

    The ratio of stress to strain,which calls elastic modulus,is a measure of rigidity.The larger the elastic modulus is,the stronger its rigidity is.Poisson's ratio is connected with the plastic property.Higher value of Poisson's ratio means stronger plastic property.Cauchy pressure(C12-C44)is often used to evaluate the ductibility and brittleness of a material.Usually,the Cauchy pressure of ductile material is positive ductile material while the Cauchy pressure of brittle material is negative.The tenacity of a material can be evaluated by the ratio of bulk modulus to shear modulus(K/G).Usually,the greater the value of K/G is,the better tenacity the material possesses[38,39].

    Table 3 lists the isotropic mechanical properties of the BTF/ TNA cocrystal at different temperatures,including tensile modulus,Poisson's ratio,bulk modulus,and so on.Obviously,the values of C11,C22and C33are larger than those of other elastic moduli,indicating that more stress is needed to create the same deformation.However,the other elastic moduli are much smaller,which suggests that the BTF/TNA cocrystal is anisotropic.All the elastic moduli decrease with the increase in temperature.This is consistent with the general law of mechanical properties,that is to say,the higher the temperature is,the weaker rigidity and brittleness the material has.The explosive with a larger shear modulus is considered to be more sensitive than those with a smaller one.However,in this study,the shear modulus of the cocrystal at higher temperature is smaller than that of it at low temperature,which is not consistent with the fact that an explosive becomes more sensitive when temperature increases.This may be because of the fact that the factors which can influence the sensitivity and shear modulus are less important in this situation.Poisson'sratio is almost unchanged in all the temperature regions,indicating that the cocrystal has an inherent plasticity which is not easily affected by temperature.Furthermore,Cauchy pressure lowers with the increase in temperature,which infers the cocrystal has a better ductibility at low temperature.K/G reaches to its largest value at 295 K,which illustrates that the BTF/TNA cocrystal has the best tenacity at 295 K.

    Table 3 Tensile modulus(E),Poisson's ratio(ν),bulk modulus(K),shear modulus(G),Cauchy pressure(C12-C44)and quotient K/G at different temperatures(K)for BTF/TNA cocrystal

    4.Conclusions

    In this study,the theoretical simulations were performed to investigate the behaviors of cocrystal under the extreme conditions.The results show that,when the hydrostatic pressure is applied,the lattice constants,volume,density and total energy change gradually except at 40 GPa and 79-83 GPa.A new chemical bond is found when the pressure is up to 83 GPa. Meanwhile,with the pressure augments,the electron transfers and the band gap decreases significantly.That is to say,the sensitivity of cocrystal becomes higher when the hydrostatic pressure rises.The MD simulation suggests that the cocrystal has a better ductibility at low temperature,and has the best tenacity at 295 K.

    Acknowledgments

    The authors gratefully acknowledge the support of the National Natural Science Foundation of China(Grant No. 61106078).

    [1]Guo CY,Zhang HB,Wang XC.Crystal structure and explosive performanceofanewCL-20/caprolactamcocrystal.JMolStruct 2013;1048:267-73.

    [2]Landenberger KB,Matzger AJ.Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane(HMX).Cryst Growth Des 2012;12(7):3603-9.

    [3]Van L,Janan J,Mary KS.High-throughput 96-well solvent mediated sonic blending synthesis and on-plate solid/solution stability characterizationofpharmaceuticalcocrystals.IntJPharm 2013;441(1-2):356-64.

    [4]Mohammad AM,Amjad A,Sitaram PV.Hansen solubility parameter as a tool to predict cocrystal formation.Int J Pharm 2011;407(1-2):63-71.

    [5]Jonathan WS.The role of co-crystals in pharmaceutical design.Trends Pharmacol Sci 2013;34(3):185-93.

    [6]Landenberger KB,Bolton O,Matzger AJ.Two isostructural explosive cocrystals with significantly different thermodynamic stabilities.Angew Chem Int Ed Engl 2013;52(25):6468-71.

    [7]Choi EY,Jazbinsek M,Lee SH.Co-crystal structure selection of nonlinear optical analogue polyenes.CrystEngComm 2012;14(13):4306.

    [8]Yang ZW,Li HZ,Zhou XQ,Zhang CY.Characterization and properties of a Novel energetic-energetic cocrystal explosive composed of HNIW and BTF.Cryst Growth Des 2012;12(11):5155-8.

    [9]Jung JW,Kim KJ.Effect of supersaturation on the morphology of coated surface in coating by solution crystallization.Ind Eng Chem Res 2011;50(6):3475-82.

    [10]Tang YX,Yang HW,Cheng GB.Synthesis and characterization of a stable,catenated N11 energetic salt.Angew Chem Int Ed Engl 2013;52(18):4875-7.

    [11]Zhang YQ,Guo Y,Joo YH.3,4,5-Trinitropyrazole-based energetic salts. Chemistry 2010;16(35):10778-84.

    [12]Landenberger KB,Matzger AJ.Cocrystal engineering of a prototype energetic material:supramolecular chemistry of 2,4,6-Trinitrotoluene. Cryst Growth Des 2012;10(12):5341-7.

    [13]Bolton O,Matzger AJ.Improved stability and smart-material functionality realized in an energetic cocrystal.Angew Chem Int Ed Engl 2011;50(38):8960-3.

    [14]Bolton O,Simke LR,Matzger AJ.High power explosive with good sensitivity:a 2:1 cocrystal of CL-20:HMX.Cryst Growth&Des 2012;12(9):4311-4.

    [15]Millar DIA,Allan DR,Lennie AR.Crystal engineering of energetic materials:co-crystals of CL-20.CrystEngComm 2012;14(10):3742.

    [16]Liu Y,Gong XD,Wang LJ,Wang GX.Effect of hydrostatic compression on structure and properties of 2-diazo-4,6-dinitrophenol crystal:density functional theory studies.J Phys Chem C 2011;115(23):11738-48.

    [17]Liu Y,Gong XD,Wang LJ,Wang GX.First-principle studies on the pressure-induced structural changes in energetic ionic salt 3-Azido-1,2,4-triazolium nitrate crystal.J Phys Chem C 2012;116(30):16144-53.

    [18]Wang F,Du HC,Zhang JY,Gong XD.First-principle study on highpressure behavior of crystalline polyazido-1,3,5-triazine.J Phys Chem C 2012;116:6745-53.

    [19]Davidson AJ,Oswald IDH,F(xiàn)rancis DJ,Lennie AR.Explosives under pressure-the crystal structure of γ-RDX as determined by high-pressure X-ray and neutron diffraction.CrystEngComm 2008;10(2):162.

    [20]Li SR,Li Q,Wang K,Tan X.Pressure-induced phase transition in guanidiniumperchlorate:asupramolecularstructuredirectedby hydrogen bonding and electrostatic interactions.J Phys Chem B 2012;115(41):11816-22.

    [21]Byrd EFC,Rice BM.Ab initio study of compressed 1,3,5,7-Tetranitro-1,3,5,7-tetraazacyclooctane(HMX),cyclotrimethylenetrinitramine(RDX),2,4,6,8,10,12-Hexanitrohexaazaisowurzitane(CL-20),2,4,6-trinitro-1,3,5-benzenetriamine(TATB),and pentaerythritol tetranitrate(PETN).J Phys Chem C 2007;111(6):2787-96.

    [22]Patterson JE,Dreger ZA,Gupta YM.Shock wave-induced transition in RDX single crystals.J Phys Chem B 2007;111(37):10897-904.

    [23]Liu Y,Du HC,Wang GX,Gong XD.Comparative theoretical studies of high pressure effect on polymorph I of 2,2′,4,4′,6,6′-hexanitroazobenzene crystal.Struct Chem 2012;23(5):1631-42.

    [24]Liu Y,Wang GX,Gong XD.2,4-Diazido-5-iodo-pyrimidine crystal under high pressure:a comparison of DFT and DFT-D studies.Comput Theor Chem 2012;1000:60-9.

    [25]Zerilli FJ,Kuklja MM.First principles calculation of the mechanical compression of two organic molecular crystals.J Phys Chem A 2006;110(15):5173-9.

    [26]Ciezak JA,Jenkins TA,Liu ZX,Hemley RJ.High-pressure vibrational spectroscopyofenergeticmaterials:hexahydro-1,3,5-trinitro-1,3,5-triazine.J Phys Chem A 2007;111(1):59-63.

    [27]Qiu L,Zhu WH,Xiao JJ,Xiao HM.Theoretical studies of solid bicyclo-HMX:effects of hydrostatic pressure and temperature.J Phys Chem B 2008;112(13):3882-93.

    [28]Zhang HB,Guo CY,Wang XC,Xu JJ.Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions.Cryst Growth&Des 2013;13(2):679-87.

    [29]Clark SJ,Segall MD,Pickard CJ,Hasnip PJ.First principles methods using CASTEP.Z Fur Kristallogr 2005;220(5-6):567-70.

    [30]Ceperley DM,Alder BJ.Ground state of the electron gas by a stochastic method.Phys Rev Lett 1980;45(7):566-9.

    [31]Perdew JP,Burke K,Ernzerhof M.Self-interaction correction to densityfunctional approximations for many-electron systems.Phys Rev B 1981;23(10):5048-79.

    [32]Sun H.An ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds.J Phys Chem B 1998;102:7338-64.

    [33]Andersen HC.Molecular dynamics simulations at constant pressure and/ or temperature.J Chem Phys 1980;72:2374-83.

    [34]Zhu WH,Zhang XW,Wei T,Xiao HM.First-principles study of crystallinemono-amino-2,4,6-trinitrobenzene,1,3-diamino-2,4,6-trinitrobenzene,and 1,3,5-triamino-2,4,6-trinitrobenzene.J Mol Struct Theochem 2009;900:84-9.

    [35]Rice BM,Sahu S,Owens FJ.Density functional calculations of bond dissociation energies for NO2scission in some nitroaromatic molecules.J Mol Struct 2002;583:69-72.

    [36]Zhu WH,Xiao HM.First-principles study of electronic,absorption,and thermodynamic properties of crystalline styphnic acid and its metal salts. J Phys Chem B 2009;113(30):10315-21.

    [37]Zhu WH,Shi CH,Xiao HM.Density functional theory study of highpressure behavior of crystalline hexanitrostilbene.J Mol Struct Theochem 2009;910:48-153.

    [38]Ma XF,Zhao F,Ji GF,Zhu WH.Computational study of structure and performance of four constituents HMX-based composite material.J Mol Struct Theochem 2008;851(1-3):22-9.

    [39]Xiao JJ,Wang WR,Chen J,Ji GF.Study on structure,sensitivity and mechanical properties of HMX and HMX-based PBXs with molecular dynamics simulation.Comput Theor Chem 2012;999:21-7.

    17 November 2014;revised 18 January 2015;accepted 19 January 2015

    Available online 17 March 2015

    .Tel./fax:+86 2584315856.

    E-mail address:zhangl@mail.njust.edu.cn(L.ZHANG).

    Peer review under responsibility of China Ordnance Society.

    Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    国产精品美女特级片免费视频播放器| 成人国产麻豆网| 亚洲国产欧洲综合997久久,| 变态另类丝袜制服| 身体一侧抽搐| 亚洲av五月六月丁香网| 欧美日韩国产亚洲二区| 国内精品一区二区在线观看| 搞女人的毛片| 欧美最新免费一区二区三区| 国产精品久久久久久久电影| 永久网站在线| 亚洲成人久久性| 男女啪啪激烈高潮av片| 国产精品久久久久久亚洲av鲁大| 午夜影院日韩av| 久久久久久伊人网av| 久久精品综合一区二区三区| 一个人免费在线观看电影| 亚洲高清免费不卡视频| 级片在线观看| 色哟哟哟哟哟哟| 免费不卡的大黄色大毛片视频在线观看 | 国产白丝娇喘喷水9色精品| 午夜福利18| 国产一区二区在线av高清观看| 久久国内精品自在自线图片| 国内精品久久久久精免费| 亚洲中文字幕日韩| 久久人人爽人人爽人人片va| 精品一区二区三区视频在线| 少妇的逼水好多| 国语自产精品视频在线第100页| 亚洲国产日韩欧美精品在线观看| 卡戴珊不雅视频在线播放| 午夜福利在线观看吧| 1024手机看黄色片| 国产精品伦人一区二区| 免费观看精品视频网站| 婷婷精品国产亚洲av| 人妻制服诱惑在线中文字幕| 日韩成人伦理影院| 免费av不卡在线播放| 成年版毛片免费区| av在线蜜桃| 精品一区二区三区人妻视频| 国产男靠女视频免费网站| 日韩欧美一区二区三区在线观看| 有码 亚洲区| 欧美性猛交黑人性爽| 免费大片18禁| 午夜老司机福利剧场| 午夜免费激情av| 免费在线观看成人毛片| 九九爱精品视频在线观看| 真人做人爱边吃奶动态| 变态另类成人亚洲欧美熟女| 日韩一本色道免费dvd| 色在线成人网| 男人舔女人下体高潮全视频| 高清日韩中文字幕在线| 国产精品,欧美在线| 欧美性猛交黑人性爽| 九色成人免费人妻av| 最近视频中文字幕2019在线8| 性插视频无遮挡在线免费观看| 男人的好看免费观看在线视频| 午夜激情福利司机影院| 久久久久久久久久久丰满| 人人妻人人看人人澡| 天天躁夜夜躁狠狠久久av| 国国产精品蜜臀av免费| 国产精品伦人一区二区| 欧美不卡视频在线免费观看| 国产精品免费一区二区三区在线| 久久久色成人| 免费观看精品视频网站| 国产精品无大码| 久久久久久大精品| 国产视频内射| 变态另类成人亚洲欧美熟女| 亚洲自偷自拍三级| 日韩 亚洲 欧美在线| 久久久欧美国产精品| 人人妻人人澡欧美一区二区| 岛国在线免费视频观看| 亚洲天堂国产精品一区在线| 日韩一本色道免费dvd| 国产一区二区三区在线臀色熟女| 桃色一区二区三区在线观看| 黄色日韩在线| 欧美精品国产亚洲| 麻豆精品久久久久久蜜桃| 国产精品99久久久久久久久| 99热网站在线观看| 国产成人aa在线观看| 中文字幕av在线有码专区| 99国产极品粉嫩在线观看| 国产精品女同一区二区软件| 亚洲美女搞黄在线观看 | 欧美性猛交╳xxx乱大交人| a级毛色黄片| 欧美+日韩+精品| 亚洲成人中文字幕在线播放| 亚洲精品国产av成人精品 | 激情 狠狠 欧美| 欧美3d第一页| 99视频精品全部免费 在线| 97超视频在线观看视频| 久久久久性生活片| 99久久九九国产精品国产免费| 九九久久精品国产亚洲av麻豆| 中国美女看黄片| 精品一区二区三区av网在线观看| ponron亚洲| 露出奶头的视频| 免费看日本二区| 白带黄色成豆腐渣| 亚洲内射少妇av| 中文字幕精品亚洲无线码一区| 中国美白少妇内射xxxbb| 久久国产乱子免费精品| 插阴视频在线观看视频| 日韩一区二区视频免费看| 日日啪夜夜撸| 亚洲婷婷狠狠爱综合网| 99精品在免费线老司机午夜| 国产真实伦视频高清在线观看| 岛国在线免费视频观看| 啦啦啦韩国在线观看视频| 神马国产精品三级电影在线观看| 丝袜美腿在线中文| 亚洲国产精品国产精品| 国产av在哪里看| 两个人视频免费观看高清| 精品人妻一区二区三区麻豆 | 嫩草影院入口| 中文字幕av在线有码专区| 91av网一区二区| 色播亚洲综合网| 真实男女啪啪啪动态图| 久久久久久九九精品二区国产| 激情 狠狠 欧美| 成人亚洲精品av一区二区| 亚洲成人av在线免费| 五月玫瑰六月丁香| 一级av片app| 在线观看免费视频日本深夜| 欧美性猛交黑人性爽| 亚洲欧美精品综合久久99| 女同久久另类99精品国产91| 亚洲最大成人av| 晚上一个人看的免费电影| 国产老妇女一区| 国产精品日韩av在线免费观看| 美女高潮的动态| 国产黄片美女视频| 91久久精品国产一区二区三区| 男人狂女人下面高潮的视频| 免费在线观看影片大全网站| 欧美在线一区亚洲| 午夜视频国产福利| 精品国产三级普通话版| 在线免费观看不下载黄p国产| 两性午夜刺激爽爽歪歪视频在线观看| 在线观看一区二区三区| 男女之事视频高清在线观看| 欧美一区二区亚洲| www.色视频.com| 丰满乱子伦码专区| 精品久久久久久久末码| 欧美成人精品欧美一级黄| 国产精品不卡视频一区二区| 熟女电影av网| 舔av片在线| 亚洲不卡免费看| 亚洲成人久久性| 男女之事视频高清在线观看| 日韩一区二区视频免费看| 精品久久久久久久久亚洲| 午夜免费激情av| 91在线观看av| 久久久久久久久大av| 国产精品美女特级片免费视频播放器| 三级男女做爰猛烈吃奶摸视频| 麻豆国产97在线/欧美| 亚洲一区高清亚洲精品| 免费观看在线日韩| 99国产精品一区二区蜜桃av| 免费av观看视频| 婷婷六月久久综合丁香| 日韩 亚洲 欧美在线| 欧美不卡视频在线免费观看| 亚洲性夜色夜夜综合| 国产久久久一区二区三区| ponron亚洲| 欧美激情在线99| 精品国内亚洲2022精品成人| 国产成人91sexporn| 少妇熟女欧美另类| 日本黄色视频三级网站网址| 欧美激情在线99| 国产精品电影一区二区三区| 国产成人91sexporn| 99热全是精品| 亚洲欧美精品自产自拍| 大又大粗又爽又黄少妇毛片口| 精品人妻偷拍中文字幕| 国产成人影院久久av| 在线播放无遮挡| av免费在线看不卡| 欧美极品一区二区三区四区| 亚洲av中文av极速乱| 美女内射精品一级片tv| 免费看光身美女| 国产亚洲91精品色在线| 内地一区二区视频在线| 亚洲成人精品中文字幕电影| 能在线免费观看的黄片| 高清午夜精品一区二区三区 | 久久九九热精品免费| 久久精品国产亚洲av涩爱 | 1024手机看黄色片| 在线观看免费视频日本深夜| 免费大片18禁| 看黄色毛片网站| 日韩制服骚丝袜av| 又爽又黄无遮挡网站| 寂寞人妻少妇视频99o| 狠狠狠狠99中文字幕| 大又大粗又爽又黄少妇毛片口| 国产不卡一卡二| 乱系列少妇在线播放| 三级经典国产精品| 一个人免费在线观看电影| 免费观看精品视频网站| 丰满人妻一区二区三区视频av| 国产日本99.免费观看| 欧美区成人在线视频| 欧美日韩乱码在线| 青春草视频在线免费观看| 婷婷色综合大香蕉| 亚洲成a人片在线一区二区| 亚洲国产高清在线一区二区三| 搡老妇女老女人老熟妇| 日韩成人伦理影院| 丰满乱子伦码专区| 国产又黄又爽又无遮挡在线| 一区福利在线观看| 一级av片app| 国内少妇人妻偷人精品xxx网站| 夜夜爽天天搞| 久久久久国产网址| 欧美性感艳星| 精品国产三级普通话版| 最新在线观看一区二区三区| 又粗又爽又猛毛片免费看| 国模一区二区三区四区视频| 白带黄色成豆腐渣| 两个人视频免费观看高清| 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 日本黄色片子视频| 日产精品乱码卡一卡2卡三| 99久国产av精品国产电影| 日本熟妇午夜| 听说在线观看完整版免费高清| 精品久久久噜噜| 精品国产三级普通话版| 欧美成人精品欧美一级黄| 男人舔奶头视频| 久久午夜亚洲精品久久| 九九在线视频观看精品| av卡一久久| 国产亚洲精品av在线| 国产高清视频在线观看网站| 国产高清三级在线| www.色视频.com| 成年女人毛片免费观看观看9| 午夜福利高清视频| 精品欧美国产一区二区三| 老熟妇乱子伦视频在线观看| 久久6这里有精品| 18+在线观看网站| 国产男人的电影天堂91| 亚洲人成网站高清观看| 在线免费观看的www视频| 午夜精品国产一区二区电影 | 久久久久久伊人网av| 中出人妻视频一区二区| 国产午夜精品久久久久久一区二区三区 | 久久久色成人| 欧美最新免费一区二区三区| 嫩草影院入口| 欧美不卡视频在线免费观看| 69人妻影院| 欧美日本视频| 国产精品精品国产色婷婷| 成人综合一区亚洲| 亚洲av成人av| 国产aⅴ精品一区二区三区波| 18禁黄网站禁片免费观看直播| 美女 人体艺术 gogo| 成年女人看的毛片在线观看| 国产精品久久久久久av不卡| 特级一级黄色大片| 日本免费a在线| 久久久久久久久中文| 亚洲内射少妇av| 日本一本二区三区精品| 黑人高潮一二区| 校园春色视频在线观看| 亚洲精品成人久久久久久| 久久精品国产亚洲网站| 蜜臀久久99精品久久宅男| 国产真实乱freesex| 日本-黄色视频高清免费观看| 美女内射精品一级片tv| 伦理电影大哥的女人| 搡老妇女老女人老熟妇| 伊人久久精品亚洲午夜| 天美传媒精品一区二区| 精品少妇黑人巨大在线播放 | 少妇的逼好多水| 中文在线观看免费www的网站| 一区福利在线观看| 亚洲精品乱码久久久v下载方式| 久久国产乱子免费精品| 精品午夜福利视频在线观看一区| 精品久久久久久久久亚洲| 欧美中文日本在线观看视频| 日产精品乱码卡一卡2卡三| 一进一出抽搐动态| 国产精品综合久久久久久久免费| 日本欧美国产在线视频| 不卡一级毛片| 国产精华一区二区三区| 午夜福利在线观看免费完整高清在 | 久久久久九九精品影院| 亚洲电影在线观看av| 99riav亚洲国产免费| 欧美最新免费一区二区三区| 亚洲精品久久国产高清桃花| 你懂的网址亚洲精品在线观看 | 嫩草影院新地址| 日韩成人伦理影院| 亚洲av一区综合| 97超碰精品成人国产| 亚洲精品国产成人久久av| 美女被艹到高潮喷水动态| 99在线人妻在线中文字幕| 精品久久久噜噜| 亚洲自偷自拍三级| 国产精品电影一区二区三区| 欧美一区二区国产精品久久精品| 美女被艹到高潮喷水动态| 亚洲内射少妇av| 青春草视频在线免费观看| 波多野结衣高清作品| 亚洲在线观看片| 黑人高潮一二区| 精品久久久久久久久久免费视频| 日本精品一区二区三区蜜桃| 成人欧美大片| 亚洲精品国产成人久久av| 中文字幕av在线有码专区| 综合色av麻豆| 伦精品一区二区三区| 久久综合国产亚洲精品| 内射极品少妇av片p| 日韩成人av中文字幕在线观看 | 久久久久九九精品影院| 精品一区二区三区人妻视频| 日韩 亚洲 欧美在线| 乱人视频在线观看| 欧美激情国产日韩精品一区| 亚洲av熟女| 大香蕉久久网| 99riav亚洲国产免费| 欧美日韩一区二区视频在线观看视频在线 | 日韩三级伦理在线观看| 一级毛片aaaaaa免费看小| 亚洲国产欧美人成| 尾随美女入室| 嫩草影院新地址| 又黄又爽又免费观看的视频| 中国美女看黄片| 九九在线视频观看精品| 亚洲最大成人手机在线| 成人av一区二区三区在线看| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 女人被狂操c到高潮| 亚洲国产精品sss在线观看| 精品午夜福利视频在线观看一区| 日韩制服骚丝袜av| 天堂影院成人在线观看| 国产欧美日韩精品亚洲av| av专区在线播放| a级毛片免费高清观看在线播放| 免费av观看视频| 日韩欧美免费精品| 老熟妇乱子伦视频在线观看| 午夜免费激情av| 精品一区二区三区人妻视频| 午夜激情福利司机影院| 国产 一区精品| 晚上一个人看的免费电影| 国内揄拍国产精品人妻在线| 乱码一卡2卡4卡精品| 亚洲精品色激情综合| 中文字幕久久专区| 91久久精品国产一区二区三区| 亚洲国产日韩欧美精品在线观看| 亚洲av熟女| 国产精品1区2区在线观看.| 男人的好看免费观看在线视频| 色哟哟哟哟哟哟| 亚洲成人久久爱视频| 婷婷精品国产亚洲av在线| 欧美丝袜亚洲另类| 国产一区二区在线观看日韩| 国产又黄又爽又无遮挡在线| 亚洲国产欧美人成| 日韩国内少妇激情av| 天天躁日日操中文字幕| 日本黄大片高清| 51国产日韩欧美| 日本五十路高清| 特大巨黑吊av在线直播| 99热网站在线观看| 日韩一区二区视频免费看| 成人漫画全彩无遮挡| 日韩国内少妇激情av| 18禁在线无遮挡免费观看视频 | 麻豆av噜噜一区二区三区| 黄片wwwwww| 色尼玛亚洲综合影院| 深夜精品福利| 日韩在线高清观看一区二区三区| 欧美zozozo另类| 在线观看66精品国产| 亚洲欧美日韩高清专用| 国产三级在线视频| 欧美高清性xxxxhd video| 亚州av有码| 麻豆一二三区av精品| 俄罗斯特黄特色一大片| 婷婷亚洲欧美| 久久九九热精品免费| 91午夜精品亚洲一区二区三区| 成人鲁丝片一二三区免费| 热99在线观看视频| 人妻丰满熟妇av一区二区三区| 日韩强制内射视频| 欧美不卡视频在线免费观看| 一本一本综合久久| 2021天堂中文幕一二区在线观| 午夜福利成人在线免费观看| 国产精品,欧美在线| 国产伦精品一区二区三区四那| 日韩欧美免费精品| 女同久久另类99精品国产91| 国产麻豆成人av免费视频| 无遮挡黄片免费观看| 色尼玛亚洲综合影院| 日韩精品有码人妻一区| 国产黄色视频一区二区在线观看 | 久久热精品热| 欧美成人一区二区免费高清观看| 国产精品99久久久久久久久| 亚洲最大成人手机在线| 国产色爽女视频免费观看| 亚洲欧美成人综合另类久久久 | 亚洲国产欧美人成| 亚洲在线观看片| 在线免费观看的www视频| 色尼玛亚洲综合影院| 亚洲美女视频黄频| 蜜桃亚洲精品一区二区三区| 欧美又色又爽又黄视频| av女优亚洲男人天堂| 精品一区二区三区视频在线观看免费| 六月丁香七月| 少妇熟女aⅴ在线视频| 狂野欧美激情性xxxx在线观看| 午夜视频国产福利| АⅤ资源中文在线天堂| 国产精品永久免费网站| 国内揄拍国产精品人妻在线| 老司机福利观看| 欧美日韩精品成人综合77777| 亚洲欧美精品综合久久99| 亚洲国产精品sss在线观看| 干丝袜人妻中文字幕| 国产 一区精品| 中出人妻视频一区二区| 99久久九九国产精品国产免费| 女生性感内裤真人,穿戴方法视频| 啦啦啦韩国在线观看视频| 国产欧美日韩精品亚洲av| 啦啦啦观看免费观看视频高清| 哪里可以看免费的av片| 国产色婷婷99| АⅤ资源中文在线天堂| 成人一区二区视频在线观看| 变态另类丝袜制服| 国产伦精品一区二区三区四那| 久久精品影院6| 精品少妇黑人巨大在线播放 | 噜噜噜噜噜久久久久久91| 老熟妇乱子伦视频在线观看| 成人性生交大片免费视频hd| 黄片wwwwww| 亚洲三级黄色毛片| 国产黄色小视频在线观看| av.在线天堂| 国产日本99.免费观看| 色综合亚洲欧美另类图片| 亚洲人成网站在线观看播放| 18禁在线无遮挡免费观看视频 | 校园春色视频在线观看| 麻豆国产97在线/欧美| 日韩精品中文字幕看吧| 麻豆成人午夜福利视频| 日韩中字成人| 美女被艹到高潮喷水动态| 日日摸夜夜添夜夜爱| 成人毛片a级毛片在线播放| 中出人妻视频一区二区| 天堂√8在线中文| 久久久久国产精品人妻aⅴ院| 春色校园在线视频观看| 亚洲美女黄片视频| 精品一区二区三区av网在线观看| 精品免费久久久久久久清纯| 免费在线观看影片大全网站| 一卡2卡三卡四卡精品乱码亚洲| 九色成人免费人妻av| 少妇高潮的动态图| 狂野欧美白嫩少妇大欣赏| 九九久久精品国产亚洲av麻豆| 中文字幕av在线有码专区| 中国美女看黄片| 免费看a级黄色片| 又黄又爽又刺激的免费视频.| 欧美性感艳星| 国产成人精品久久久久久| 男人狂女人下面高潮的视频| 十八禁网站免费在线| 免费看光身美女| 亚洲国产精品成人久久小说 | 午夜福利在线观看吧| 婷婷精品国产亚洲av在线| 乱码一卡2卡4卡精品| 免费大片18禁| 麻豆久久精品国产亚洲av| 女的被弄到高潮叫床怎么办| 亚洲国产欧美人成| 在线观看66精品国产| 国产视频内射| 精品午夜福利在线看| 欧美激情久久久久久爽电影| 国产麻豆成人av免费视频| 国产成人91sexporn| 久久久久免费精品人妻一区二区| 美女cb高潮喷水在线观看| 日本色播在线视频| 亚洲成人精品中文字幕电影| 日韩大尺度精品在线看网址| 卡戴珊不雅视频在线播放| 波多野结衣高清无吗| av黄色大香蕉| 天美传媒精品一区二区| 一进一出抽搐gif免费好疼| 日本在线视频免费播放| 男女边吃奶边做爰视频| 亚洲色图av天堂| 最近的中文字幕免费完整| 久久久久久久久大av| 搞女人的毛片| 一级毛片我不卡| 国产高清视频在线播放一区| 欧美丝袜亚洲另类| 亚洲自偷自拍三级| 国产精品国产高清国产av| 国产成人影院久久av| 天天躁夜夜躁狠狠久久av| 99久国产av精品| 久久久精品94久久精品| 亚洲中文字幕日韩| 亚洲av不卡在线观看| a级毛片a级免费在线| 全区人妻精品视频| 成年女人毛片免费观看观看9| 女生性感内裤真人,穿戴方法视频| 一级黄色大片毛片| 美女高潮的动态| 麻豆国产97在线/欧美| 欧美区成人在线视频| 如何舔出高潮| 欧美性猛交黑人性爽| 亚洲电影在线观看av| 成年av动漫网址| 国产一区二区三区在线臀色熟女| 永久网站在线| 别揉我奶头 嗯啊视频| 欧美日韩乱码在线| 在线观看av片永久免费下载| 最近最新中文字幕大全电影3| 成人午夜高清在线视频| 婷婷精品国产亚洲av在线| 成人综合一区亚洲| 中国美女看黄片| 亚洲成人中文字幕在线播放|