• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hochschild Cohomology Rings of Temperley-Lieb Algebras?

    2015-06-01 07:34:40HuanhuanLIYungeXUYuanCHEN
    關(guān)鍵詞:排除故障原始記錄限值

    Huanhuan LI Yunge XU Yuan CHEN

    1 Introduction

    The Temperley-Lieb algebras were first introduced in 1971 in[24]to study the single bond transfer matrices for the ice model and the Potts model.Later they were independently found by Jones when he characterized the algebras arising from the tower construction of semisimple algebras in the study of subfactors(see[18]).These algebras have played a central role in the discovery by Jones of his new polynomial invariant of knots and links(see[19]),and in the subsequent developments over the past four decades relating to knot theory,topological quantum field theory,and statistical physics(see[20]).Their relationship with knot theory comes from their role in the Definition of the Jones polynomial.The theory of quantum invariants of links nowadays involves many research fields.Thus,many important kinds of algebras related to the invariants of braids or links,such as Birman Wenzl algebras(see[5]),Hecke algebras and Brauer algebras,have been of great interest in mathematics and physics.They are all deformations of certain group algebras or other well-known algebras.

    Let K be a field and m a positive integer.Recall that the Temperley-Lieb algebra Am(δ)for δ∈ K is defined to be a K-algebra with identity generated by t1,t2,···,tm?1subject tothe relations:

    It was shown in[25]that a block of a non-semisimple Temperley-Lieb algebra is Morita equivalent to the quotient algebra A=Am=KQ/I given by the quiver

    and the relations I=〈αi+1αi,βiβi+1,βi+1αi+1?αiβi,αm?1βm?1|i=1,2,···,m?2〉.As was shown in[26],the non-trivial block of the representation- finite q-Schur algebras Sq(n,r)with n≥r is also Morita equivalent to an algebra of the form Am.

    Hochschild cohomology HH?(A,M)of A with coefficients in M was introduced in[16]in order to classify,up to equivalence,all extensions of A with Kernel M,which is one-to-one correspondence with HH2(A,M).Many other applications of this cohomology have been discovered since then(see[15]).For example,separable algebras are characterized by the fact that their Hochschild(cohomology)dimension is zero,that is,HH1(A,M)=0 for every bimodule M(see[16]);the deformation theory of an algebra is controlled by its Hochschild cohomology as a graded Lie algebra under the Gerstenhaber bracket(see[11]);Hochschild cohomology is also closely related to simple connectedness,formal smoothness(or quasi-freeness in literature)(see[1,22])and so on.It is well known that HH?(A)is endowed with the so-called Gerstenhaber algebra structure under the cup product

    and the Gerstenhaber Lie bracket

    However,for most finite dimensional algebras,little is known about the Hochschild cohomology groups and even less about the Hochschild cohomology rings(see[2,4,7–10,13,27]).

    Since Hochschild cohomology is invariant under Morita equivalence(see[15]),to describe the Hochschild cohomology rings of both the Temperley-Lieb algebras and the representation- finite q-Schur algebras Sq(n,r)for n≥r,it is sufficient to deal with the basic algebra A defined as above.The K-dimensions of Hochschild cohomology groups of A were obtained in[17]by a long exact sequence of cohomology groups relating to a homological epimorphism of K-algebras,but there K-bases were not given.We begin the paper by giving a minimal projective resolution of A as an Ae-module,and then apply it to obtain K-bases of the cohomology groups in terms of parallel paths.In Section 4 we give an explicit description of the “comultiplicative” map Δ:P→P?AP to determine the cup product of HH?(A)using the composition

    P→P?AP→A?AA→A.

    As a consequence,we will give an explicit presentation of the multiplicative structure of HH?(A)under the cup product by generators and relations.

    2 The Minimal Projective Bimodule Resolution

    Throughout the paper we always assume that A is the algebra defined as in the introduction.We denote by eithe trivial path at the vertex i.Given a path p in Q,we denote by o(p)and t(p)the origin and the terminus of p respectively.

    We will employ the strategy due to Green et al in[12,14]to construct a minimal projective Ae-module resolution of A.Seti=1,2,···,m.For 1≤n≤2m?2,one defines the following elements recursively:

    Noticing that gl.dimA=2m?2,one takesif n>2m?2.Note thatis just an algebraic sum of paths of length n with the original i and containing exactly r arrows of type α.Denote by gnthe set of elements of the formThen,

    For 3≤n≤2m?2,when n=2k,

    when n=2k+1,

    In particular,we have

    In order to define the differential δ,we need the following lemma so that we have two di ff erent ways of expressing the elements of the set gnin terms of the elements of the set gn?1.The proof of Lemma 2.1 is straightforward and therefore omitted.

    Lemma 2.1For n≤1,we have

    Denote?:=?K.define

    and for 1≤n≤2m?2,δn:Pn→ Pn?1is given by

    The following theorem follows immediately from Lemma 2.1 and[12,Theorem 2.1].

    Theorem 2.1With the above notation,the complex

    is a minimal projective Ae-resolution of A,where δ0:P0→ A is the multiplication map.

    ProofLet X=g1and R=g2be the set of generators of I as above.Since A is a Koszul alg?ebra,by[3,Sect.9],it suffices to show that gnis a K-basis of the K-vector space

    We f i rst show that all thebelong to Kninductively.It is trivial for n=2.Assume that the assertion holds for n?1 and we prove it for n.By the induction hypothesis and the formula(2.1),The induction hypothesis and Lemma 2.1 show thatThe assertion follows from the fact that Kn=RXn?2∩ Xn?2R ∩XKn?1∩ Kn?1X.

    Next,gnis K-linearly independent since they have distinct supports.Also,the quadratic duality A!=kQ/I⊥of A is isomorphic to the Yoneda algebra E(A)of A,where I⊥is the ideal of KQ generated by R⊥={β1α1,βi+1αi+1+ αiβi|i=1,2,···,m ? 2}.So the Betti number of the minimal projective resolution of A over Aeis

    Hence gnis a K-basis of Kn.Then the result follows.

    3 Hochschild Cohomology Groups

    This section is devoted to finding K-bases of the Hochschild cohomology groups of A based on the minimal projective Ae-resolution constructed in the previous section.

    Applying HomAe(?,A)to the minimal resolution(P,δ),we have the complex

    Let B={e1,e2,···,em,β1,β2,···,βm?1,α1,α2,···,αm?1,β1α1,β2α2,···,βm?1αm?1}be a K-basis of algebra A,and K(B//gn)denote the vector space with a K-basis B//gn={(b,gnr,i)|We say that two paths α and β are parallel if o(α)=o(β)and t(α)=t(β).

    The following lemma is immediate,see[6,21]for details.

    Lemma 3.1HomAe(Pn,A)~=K(B//gn)as vector spaces.

    ProofIt is easy to see that

    as vector spaces.

    We fix an isomorphism φ :K(B//gn) → HomAe(Pn,A)sending(b,γ) ∈ (B//gn)to the Ae-homomorphism f(b,γ)∈ HomAe(Pn,A),which assigns o(γ)? t(γ)to b,and zero otherwise.The cochain complex above changes into

    where we still denote bythe induced linear maps.

    Lemma 3.2Kerhas a K-basisand dimKIm=m?1.

    ProofUnder the K-bases,

    B//g0={(e1,e1),(e2,e2),···,(em,em),(β1α1,e1),(β2α2,e2),···,(βm?1αm?1,em?1)}and

    B//g1={(β1,β1),(β2,β2),···,(βm?1,βm?1)(α1,?α1),(α2,?α2),···,(αm?1,?αm?1}.It is not difficult to calculate the matrix of the linear map δ?1which is

    with the right m?1 columns zero.It is clear that rankA1=m?1,and hence dimKIm=rankA1=m?1,and dimKKer=|B//g0|?rankA1=(m+m?1)?(m?1)=m.One can easily check that

    Noticing that HHn(A)=Kerwe next find out a K-basis of the kernel space Kerand the image space Imfor n>0,respectively.They will be discussed in four cases.

    Case I:n=4t,t≠0.Set

    Case II:n=4t+1,t≠0.Set

    Case III:n=4t+2.Set

    Case IV:n=4t+3.Set

    Lemma 3.3U forms a K-basis of Imand V forms a K-basis of Ker.

    ProofWe only prove the case I,and the other cases are similar and their proofs are omitted here.It is not difficult to calculate the matrix of the linear mapunder the K-bases B//gn?1=The matrix Anis

    whose first m?2t rows are zero.The rank of Anis m?2t?1 and hence dimKIm=rankAn=m?2t?1 and dimKKer=|B//gn?1|?dimKIm=2(m?2t)?(m?2t?1)=m?2t+1.

    It is easy to see that

    可靠性監(jiān)控(圖2)主要用于監(jiān)控汽車使用和維修過程的可靠性,同時(shí)也監(jiān)控系統(tǒng)功能,例如結(jié)構(gòu)改變原始記錄、維修記錄、故障庫、限值數(shù)據(jù)、排除故障數(shù)據(jù)、質(zhì)量數(shù)據(jù)、費(fèi)用數(shù)據(jù)、零部件和用于管理維修過程的其他各種程序等。

    Since the setis K-linear independent and has m?2t?1 elements,it is a K-basis of Im.

    Clearly,

    It follows that

    which is obviously K-linear independent and has m?2t+1 elements,so it is a K-basis of Ker.The proof is finished.

    Now it is a position to give a K-basis of the Hochschild cohomological space HHn(A).

    Theorem 3.1Let A=KQ/I be the K-algebra defined as in the introduction.Then we have

    (1)dimKHHi(A)=

    (2)HH0(A)has a basis

    HH4t(A)has a basis

    HH4t+1(A)has a basis

    HH4t+2(A)has a basis

    HH4t+3(A)has a basis

    Here these basis elements represent the representatives of the corresponding elements in HHn(A).

    ProofIt follows from Lemmas 3.2–3.3 and the fact that HHi(A)=Kerdirectly.

    Remark 3.1The dimension of the Hochschild cohomological space HHn(A) was obtained by de la Pea and Xi in[17]in a different way.

    4 The Cup Product

    In this section we will describe the multiplicative structure of the Hochschild cohomology ring of A in terms of parallel paths.In[23]it was shown that for any projective Ae-resolution P of a f i nite dimensional algebra A,there exists a unique(up to homotopy)chain map Δ :P → P?AP lifting the identity.P gives rise to a “cup product” of two elements η in HHm(A)and θ in HHn(A)by using the composition

    coinciding with the ordinary cup product and being independent of the projective resolution P of A and the chain map Δ.

    The following lemma provides an explicit description of the so-called“comultiplicative structure” of the generators of each Pnin(P,δ),which is key to def i ning a chain map Δ.

    Lemma 4.1For any given p=0,1,···,n,we have

    ProofWe use induction on p.There is nothing to prove provided that p=0.If p=1,thenwhich is just the de fining formula of

    Suppose now that the formula holds true for p=k.We consider the case p=k+1.By the induction hypothesis and the formula(2.1),we have

    The result follows.

    The lemma allows us to give the Definition of the map Δ :P → P?AP.First we recall the tensor product chain complex(P?AP,D)of(P,δ).Its n-th object isand the differential Dn:(P?AP)n→(P?AP)n?1is given byBy abuse of notations,we denote by othe corresponding idempotent eo(gnr,i)(resp.),and bythe generator oof Pn.

    Definition 4.1The A-A-bimodule map Δ =(Δn):P → P?AP is defined by

    for 0≤n≤2m?2 and the other Δnare all zero.

    Lemma 4.2The map Δ :(P,δ)→ (P?AP,D)defined as above is a chain map.

    ProofTo prove the result,it suffices to show that the diagram

    is commutative for n≥1.

    Letdenote the element of Pt?APn?1?t.By the Definition of Δ and=(?1)nei?βi+n?2r?1+ei?αi+n?2r+(?1)rβi?ei+n?2r+(?1)rαi?1?ei+n?2r,we have

    On the other hand,noting that

    and

    we can directly check that

    and thus Δn?1δn=DnΔnas desired.The proof is finished.

    In order to give an explicit description of the Hochschild cohomology ring of A,we first give the cup product on the level of cochains,which is essentially juxtaposition of parallel paths up to sign.

    Lemma 4.3Let A=KQ/I be the K-algebra defined as in the introduction.Then

    Hereis viewed as 0 whenever b1b2∈I.

    ProofLet ηn1=and ηn2=Using the composition

    we have

    When s≠r1or i≠k,we haveAnd when r?s≠r2or j≠k+n1?2s,we haveThus,only in the case of s=r1,i=k,r?s=r2and j=i+n1?2r1we haveBy the isomorphism of Lemma 3.1,it is easy to see that in the case of j=i+n1? 2r1,we haveand otherwise is zero.

    Theorem 4.1Let A=KQ/I be the K-algebra defined as in the introduction.

    (1)is the identity of HH?(A),and for any ηj=(βjαj,ej)∈ HH0(A),ξ∈ HH?(A),ξ/∈K,we have ηj︶ξ=ξ︶ηj=0.

    (2)Let ηn1and ηn2be the unique basis elements of HHn1(A)and HHn2(A)with n1n2>0,respectively.We have

    ProofIt follows from Lemma 4.3 directly.

    Now we can give a description of the multiplication structure of the Hochschild cohomology ring of A by giving an explicit presentation by generators and relations.Let x1,x2,···,xm?1,y,z be the indeterminates of degree 0,0,···,0,1,2 respectively.Let Λ =K[x1,x2,···,xm?1,y,z]/J,where J is the two-sided ideal of the polynomial algebra K[x1,x2,···,xm?1,y,z]generated by

    xixj=0, xiy=0, xiz=0, 1≤i,j≤m?1, y2=0, zm=0, yzm?1=0.

    Theorem 4.2Let A=KQ/I be the K-algebra defined as in the introduction.Then HH?(A) ~= Λ.

    ProofWe omit the symbol of the cup product ︶ of two elements of HH?(A)for simplicity.Clearlyis the identity of HH?(A).Denote

    By Theorem 4.1,we have

    Hence HH?(A)can be generated by x1,x2,···,xm?1,y,z over K.Also,by Theorem 4.1,it is easy to find that any two elements in HH?(A)are commutative and the following relations hold true:

    xixj=0, xiy=0, xiz=0, 1≤i,j≤m?1, y2=0, zm=0, yzm?1=0.

    Then we construct an epimorphic algebra homomorphism

    ? :K[x1,x2,···,xm?1,y,z]→ HH?(A)

    sending x1,x2,···,xm?1,y,z to x1,x2,···,xm?1,y,z,respectively.Clearly,J ? Ker? by the relations above.Noticing thatas a graded algebra satisfies that dimKΛ0=m and dimKΛj=1 for j≥ 1,we can immediately obtain that HH?(A) ~= Λ by comparing the dimensions of graded algebras HH?(A)and Λ.

    Remark 4.1Since the Hochschild cohomology of algebras is Morita-invariant,the above theorem describes the Hochschild cohomology rings of both the Temperley-Lieb algebras and the representation- finite q-Schur algebras Sq(n,r)for n≥r.

    [1]Ardizzoni,A.,Menini,C.and Stefan,D.,Hochschild cohomology and smoothness in monoidal categories,J.Pure Appl.Algebra,208,2007,297–330.

    [2]Buchweitz,R.O.,Green,E.L.,Snashall,N.and Solberg,?.,Multiplicative structures for Koszul algebras,Quart.J.Math.,59(4),2008,441–454.

    [3]Bulter,M.C.R.and King,A.D.,Minimal resolution of algebras,J.Algebra,212,1999,323–362.

    [4]Bustamante,J.C.,The cohomology structure of string algebras,J.Pure Appl.Algebra,204,2006,616–626.[5]Birman,J.and Wenzl,H.,Braids,link polynomials and a new algebra,Trans.Amer.Math.Soc.,313,1989,249–273.

    [6]Cibils,C.,Rigidity of truncated quiver algebras,Adv.Math.,79,1990,18–42.

    [7]Erdmann,K.and Holm,T.,Twisted bimodules and Hochschild cohomology for self-injective algebras of class An,Forum Math.,11,1999,177–201.

    [8]Erdmann,K.and Schroll,S.,On the Hochschild cohomology of tame Hecke algebras,Arch.Math.,94,2010,117–127.

    [9]Erdmann,K.and Snashall,N.,On Hochschild cohomology of preprojective algebras,II,J.Algebra,205,1998,413–434.

    [10]Fan,J.M.and Xu,Y.G.,On Hochschild cohomology ring of Fibonacci algebras,Frontiers of Mathematics in China,1(4),2006,526–537.

    [11]Gerstenhaber,M.,On the deformation of rings and algebras,Ann.Math.,79,1964,59–103.

    [12]Green,E.L.,Hartman,G.,Marcos,E.N.and Solberg,?.,Resolutions over Koszul algebras,Arch.Math.,85,2005,118–127.

    [13]Green,E.L.and Solberg,?.,Hochschild cohomology rings and triangular rings,Happel,D.and Zhang,Y.B.(eds.),Proceedings of the Ninth International Conference,Beijing Normal University Press,Beijing,2,2002,192–200.

    [14]Green,E.L.,Solberg,? and Zacharia,D.,Minimal projective resolutions,Trans.Amer.Math.Soc.,353,2001,2915–2939.

    [15]Happel,D.,Hochschild cohomology of finite-dimensional algebras,Lecture Notes in Mathematics,1404,Springer-Verlag,New York,1989,108–126.

    [16]Hochschild,G.,On the cohomology groups of an associative algebra,Ann.Math.,46(1),1945,58–67.

    [17]De la Pena,J.A.and Xi,C.C.,Hochschild cohomology of algebras with homological ideals,Tsukuba J.Math.,30(1),2006,61–80.

    [18]Jones,V.F.R.,Index for subfactors,Invent.Math.,72,1983,1–25.

    [19]Jones,V.F.R.,A polynomial invariant for links via von Neumann algebras,Bulletin of the Amer.Math.Soc.,129,1985,103–112.

    [20]Kau ff man,L.H.,Knots in Physics,World Scientic Press,River Edge,NJ,1994.

    [21]Strametz,C.,The Lie algebra structure on the first Hochschild cohomology group of a monomial algebra,Comptes Rendus Mathematique,334,2002,733–738.

    [22]Skowro′nski,A.,Simply connected algebras and Hochschild cohomology,Can.Math.Soc.Proc.,14,1993,431–447.

    [23]Siegel,S.F.and Witherspoon,S.J.,The Hochschild cohomology ring of a group algebra,Proc.London Math.Soc.,79(3),1999,131–157.

    [24]Temperley,H.N.V.and Lieb,E.H.,Relations between percolation and colouring problems and other graph theoretical problems associated with regular planar lattices:Some exact results for the percolation problem,Proc.R.Soc.Lon.(Ser.A),322,1971,251–280.

    [25]Westbury,B.W.,The representation theory of the Temperley-Lieb algebras,Math.Z.,219(4),1995,539–565.

    [26]Xi,C.C.,On representation types of q-Schur algebras,J.Pure Appl.Algebra,84,1993,73–84.

    [27]Xu,Y.G.and Xiang,H.L.,Hochschild cohomology rings of d-Koszul algebras,J.Pure Appl.Algebra,215,2011,1–12.

    猜你喜歡
    排除故障原始記錄限值
    計(jì)量檢定中原始記錄的重要性
    光通信傳輸網(wǎng)排除故障的關(guān)鍵技術(shù)分析
    電子測試(2018年22期)2018-12-19 05:12:22
    關(guān)于廢水排放特別限值的思考
    維修電工的五項(xiàng)操作技巧
    遼寧省遼河流域石油煉制排放限值的制定
    DZZ5溫度異常偏大的原因與分析
    中美煉鋼行業(yè)污染物排放限值研究
    淺析數(shù)字電視前端設(shè)備的技術(shù)應(yīng)用研究
    環(huán)境保護(hù)部解讀新發(fā)布的大氣污染物特別排放限值
    模板化原始記錄在應(yīng)用中存在的問題分析
    久久精品成人免费网站| 国产精品 欧美亚洲| 亚洲黑人精品在线| 日韩制服丝袜自拍偷拍| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 久久精品亚洲熟妇少妇任你| 亚洲av男天堂| 久久中文字幕一级| 国产精品国产av在线观看| 蜜桃国产av成人99| 国产免费一区二区三区四区乱码| 首页视频小说图片口味搜索| 亚洲精华国产精华精| 久久精品aⅴ一区二区三区四区| 一区二区三区激情视频| 91精品伊人久久大香线蕉| 亚洲欧洲精品一区二区精品久久久| 老鸭窝网址在线观看| 国产不卡av网站在线观看| 超碰97精品在线观看| 在线十欧美十亚洲十日本专区| 亚洲av电影在线观看一区二区三区| 国产成人av教育| cao死你这个sao货| 日韩视频一区二区在线观看| 国产伦理片在线播放av一区| 国产免费av片在线观看野外av| www.自偷自拍.com| 午夜激情av网站| 91精品伊人久久大香线蕉| 久久99热这里只频精品6学生| 午夜成年电影在线免费观看| 日韩有码中文字幕| 18在线观看网站| 亚洲精品中文字幕一二三四区 | 在线观看一区二区三区激情| 亚洲三区欧美一区| 亚洲一区中文字幕在线| 久久 成人 亚洲| 国产av国产精品国产| 多毛熟女@视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜精品久久久久久毛片777| 母亲3免费完整高清在线观看| 老司机影院毛片| 啦啦啦 在线观看视频| 久久av网站| 亚洲精品久久成人aⅴ小说| 男人舔女人的私密视频| 热re99久久精品国产66热6| 国产在视频线精品| 亚洲情色 制服丝袜| 日韩大片免费观看网站| 亚洲伊人久久精品综合| 亚洲欧美成人综合另类久久久| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品一区二区三区在线| 午夜福利在线免费观看网站| 美女高潮喷水抽搐中文字幕| 国产精品久久久人人做人人爽| av在线app专区| 黑人巨大精品欧美一区二区蜜桃| 美女视频免费永久观看网站| 亚洲精品中文字幕在线视频| 国产精品1区2区在线观看. | 另类精品久久| 一区二区三区激情视频| 黑人巨大精品欧美一区二区mp4| 精品福利观看| 丝袜脚勾引网站| 男人添女人高潮全过程视频| 新久久久久国产一级毛片| 日韩欧美国产一区二区入口| 久热爱精品视频在线9| 99热全是精品| 亚洲精品一卡2卡三卡4卡5卡 | 天天躁夜夜躁狠狠躁躁| 老汉色∧v一级毛片| 午夜视频精品福利| 老司机靠b影院| av线在线观看网站| 久久人人97超碰香蕉20202| 黑人巨大精品欧美一区二区蜜桃| 久久久久久久国产电影| 午夜精品国产一区二区电影| 欧美日韩黄片免| 国产成人欧美| 亚洲欧美激情在线| 黄色 视频免费看| 妹子高潮喷水视频| 亚洲精品国产区一区二| 美女视频免费永久观看网站| 在线观看www视频免费| 国产精品国产三级国产专区5o| 国产精品熟女久久久久浪| www日本在线高清视频| 久久久久网色| av不卡在线播放| 国产亚洲精品一区二区www | 日韩欧美一区二区三区在线观看 | 久久精品成人免费网站| 久久国产精品大桥未久av| 黑丝袜美女国产一区| 国产有黄有色有爽视频| 99精国产麻豆久久婷婷| 少妇裸体淫交视频免费看高清 | 中文精品一卡2卡3卡4更新| 久久久久视频综合| 一本色道久久久久久精品综合| 欧美黄色淫秽网站| 国产区一区二久久| 操美女的视频在线观看| 爱豆传媒免费全集在线观看| 国产成人欧美在线观看 | 国产亚洲av片在线观看秒播厂| 国产在线一区二区三区精| 在线观看一区二区三区激情| 在线观看免费视频网站a站| 十八禁高潮呻吟视频| 新久久久久国产一级毛片| 亚洲成人免费av在线播放| 亚洲国产欧美日韩在线播放| 日韩欧美国产一区二区入口| 国产日韩欧美亚洲二区| av在线老鸭窝| 欧美在线黄色| 美女中出高潮动态图| 精品一品国产午夜福利视频| 成年动漫av网址| 黄片小视频在线播放| 99re6热这里在线精品视频| 美女高潮到喷水免费观看| 久久女婷五月综合色啪小说| videosex国产| 日韩欧美免费精品| 男女边摸边吃奶| 亚洲黑人精品在线| 男女边摸边吃奶| 波多野结衣一区麻豆| 热99re8久久精品国产| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品一区二区免费开放| 精品久久久久久电影网| 成人国产av品久久久| 国产精品 国内视频| 男女边摸边吃奶| 日本wwww免费看| 99久久精品国产亚洲精品| 各种免费的搞黄视频| 两人在一起打扑克的视频| 精品欧美一区二区三区在线| 久久午夜综合久久蜜桃| 亚洲欧美日韩高清在线视频 | 一本色道久久久久久精品综合| 国产精品 欧美亚洲| 黄片播放在线免费| 99久久综合免费| 国产精品熟女久久久久浪| 国产精品99久久99久久久不卡| 午夜两性在线视频| 国产在线视频一区二区| 国产一区二区激情短视频 | 午夜91福利影院| 超碰成人久久| 9热在线视频观看99| 亚洲成人免费电影在线观看| av线在线观看网站| 国产免费av片在线观看野外av| 欧美日本中文国产一区发布| 国产av精品麻豆| 69av精品久久久久久 | 老鸭窝网址在线观看| 久久精品亚洲av国产电影网| 两人在一起打扑克的视频| 伦理电影免费视频| 91精品国产国语对白视频| 老司机深夜福利视频在线观看 | 肉色欧美久久久久久久蜜桃| 国产黄色免费在线视频| 日本wwww免费看| 黑人猛操日本美女一级片| 日日摸夜夜添夜夜添小说| www日本在线高清视频| 侵犯人妻中文字幕一二三四区| 激情视频va一区二区三区| www.自偷自拍.com| av视频免费观看在线观看| 日本精品一区二区三区蜜桃| 国产精品自产拍在线观看55亚洲 | 后天国语完整版免费观看| 免费高清在线观看视频在线观看| 操出白浆在线播放| 国产亚洲欧美精品永久| 成人18禁高潮啪啪吃奶动态图| 一级毛片电影观看| 午夜福利视频精品| 老司机在亚洲福利影院| 黄色 视频免费看| 天天躁狠狠躁夜夜躁狠狠躁| a级片在线免费高清观看视频| 日韩欧美免费精品| 嫁个100分男人电影在线观看| 日本wwww免费看| √禁漫天堂资源中文www| 黄色a级毛片大全视频| 91精品国产国语对白视频| 超碰成人久久| 欧美日韩亚洲高清精品| av线在线观看网站| av视频免费观看在线观看| 亚洲av日韩精品久久久久久密| 这个男人来自地球电影免费观看| 国产精品亚洲av一区麻豆| 中国国产av一级| 欧美国产精品va在线观看不卡| 欧美日韩亚洲高清精品| 亚洲精品久久成人aⅴ小说| 90打野战视频偷拍视频| 国产精品 国内视频| 国产国语露脸激情在线看| 丰满人妻熟妇乱又伦精品不卡| 精品久久久精品久久久| 精品国产超薄肉色丝袜足j| 免费少妇av软件| 久久精品人人爽人人爽视色| 亚洲精品自拍成人| 国产精品秋霞免费鲁丝片| www.精华液| 亚洲精品av麻豆狂野| 欧美日韩av久久| 18禁观看日本| 国产精品国产av在线观看| 日本a在线网址| 操出白浆在线播放| av天堂久久9| 岛国在线观看网站| 国产在线一区二区三区精| 久久av网站| 99国产精品一区二区蜜桃av | 热99国产精品久久久久久7| 丰满饥渴人妻一区二区三| 国产一区有黄有色的免费视频| 日韩电影二区| 99国产综合亚洲精品| 99精品久久久久人妻精品| 欧美精品av麻豆av| 91九色精品人成在线观看| 飞空精品影院首页| 80岁老熟妇乱子伦牲交| 51午夜福利影视在线观看| 国产极品粉嫩免费观看在线| 日本猛色少妇xxxxx猛交久久| 中文字幕高清在线视频| 亚洲精品在线美女| 日韩欧美一区视频在线观看| 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 男女高潮啪啪啪动态图| 国产老妇伦熟女老妇高清| 中文字幕制服av| 免费在线观看完整版高清| 久久免费观看电影| 熟女少妇亚洲综合色aaa.| 亚洲精品国产av成人精品| 999精品在线视频| 欧美午夜高清在线| 天天操日日干夜夜撸| 国产麻豆69| 中文字幕av电影在线播放| 亚洲精品在线美女| 国产主播在线观看一区二区| 免费观看人在逋| 99久久国产精品久久久| 91老司机精品| 黄色视频在线播放观看不卡| 亚洲成人免费av在线播放| 色94色欧美一区二区| 香蕉国产在线看| 欧美精品av麻豆av| 一边摸一边抽搐一进一出视频| 精品人妻一区二区三区麻豆| 成年人免费黄色播放视频| 亚洲天堂av无毛| xxxhd国产人妻xxx| 午夜两性在线视频| 日韩欧美一区二区三区在线观看 | 夫妻午夜视频| 人妻人人澡人人爽人人| 日韩欧美国产一区二区入口| www.999成人在线观看| 国产黄频视频在线观看| 欧美精品av麻豆av| 久久久久国产精品人妻一区二区| 天天影视国产精品| 久久人妻福利社区极品人妻图片| 日韩一卡2卡3卡4卡2021年| 国产成人a∨麻豆精品| 亚洲精品国产av蜜桃| 视频区欧美日本亚洲| 欧美日韩一级在线毛片| 一级毛片女人18水好多| 秋霞在线观看毛片| 两个人免费观看高清视频| 黄频高清免费视频| 首页视频小说图片口味搜索| 亚洲欧美一区二区三区久久| av天堂在线播放| 久久久国产精品麻豆| 后天国语完整版免费观看| 黑人欧美特级aaaaaa片| 国产精品免费视频内射| 美女午夜性视频免费| 中文字幕人妻丝袜制服| 老司机午夜十八禁免费视频| 王馨瑶露胸无遮挡在线观看| 久久久久久久大尺度免费视频| 欧美变态另类bdsm刘玥| 免费看十八禁软件| 两个人看的免费小视频| 动漫黄色视频在线观看| 欧美黄色片欧美黄色片| 国产精品偷伦视频观看了| 制服人妻中文乱码| 久久人人爽人人片av| 两个人免费观看高清视频| 这个男人来自地球电影免费观看| 搡老乐熟女国产| 日韩一区二区三区影片| 1024香蕉在线观看| 免费看十八禁软件| 天堂8中文在线网| 免费在线观看影片大全网站| 国产精品二区激情视频| 十八禁人妻一区二区| 亚洲av电影在线观看一区二区三区| 99热全是精品| 99精品欧美一区二区三区四区| 欧美精品一区二区免费开放| 我的亚洲天堂| 男人舔女人的私密视频| 国产精品自产拍在线观看55亚洲 | 嫩草影视91久久| 香蕉丝袜av| 欧美日韩亚洲国产一区二区在线观看 | 麻豆国产av国片精品| 美女福利国产在线| 国产亚洲av片在线观看秒播厂| 亚洲国产精品一区二区三区在线| 777米奇影视久久| 色老头精品视频在线观看| 日韩视频在线欧美| 交换朋友夫妻互换小说| 国产精品欧美亚洲77777| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 中文欧美无线码| 精品国内亚洲2022精品成人 | 欧美日韩中文字幕国产精品一区二区三区 | 18禁裸乳无遮挡动漫免费视频| 曰老女人黄片| 亚洲视频免费观看视频| 国产精品成人在线| 免费在线观看日本一区| 男人舔女人的私密视频| 丝袜美腿诱惑在线| 日本猛色少妇xxxxx猛交久久| 麻豆乱淫一区二区| 在线精品无人区一区二区三| 99久久国产精品久久久| 在线观看舔阴道视频| 亚洲第一av免费看| 亚洲精品自拍成人| 亚洲国产精品一区三区| 亚洲三区欧美一区| 久久久久精品人妻al黑| 美女主播在线视频| 丰满少妇做爰视频| 国产在线观看jvid| 18在线观看网站| 一级毛片精品| 在线观看一区二区三区激情| 老鸭窝网址在线观看| 亚洲av电影在线观看一区二区三区| 丝袜在线中文字幕| 黑丝袜美女国产一区| 午夜成年电影在线免费观看| 欧美成人午夜精品| 国产一区二区激情短视频 | 自线自在国产av| 在线看a的网站| 亚洲国产成人一精品久久久| 老司机影院毛片| 国产男人的电影天堂91| 激情视频va一区二区三区| 黄色视频不卡| 亚洲伊人久久精品综合| 两性午夜刺激爽爽歪歪视频在线观看 | 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 亚洲专区中文字幕在线| 免费高清在线观看日韩| 中文精品一卡2卡3卡4更新| 亚洲成人免费电影在线观看| 五月开心婷婷网| av又黄又爽大尺度在线免费看| 亚洲中文字幕日韩| 91成年电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇一区二区三区视频日本电影| 国产亚洲欧美在线一区二区| 亚洲综合色网址| 超碰97精品在线观看| 99精国产麻豆久久婷婷| www.熟女人妻精品国产| 亚洲全国av大片| 天天操日日干夜夜撸| 窝窝影院91人妻| av在线app专区| 亚洲国产欧美一区二区综合| 91老司机精品| 精品亚洲乱码少妇综合久久| 一级片免费观看大全| 窝窝影院91人妻| 国产又爽黄色视频| 亚洲一区二区三区欧美精品| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av香蕉五月 | av线在线观看网站| 母亲3免费完整高清在线观看| 啦啦啦在线免费观看视频4| 亚洲欧美色中文字幕在线| 一区二区三区精品91| 精品国产国语对白av| 欧美变态另类bdsm刘玥| 18禁黄网站禁片午夜丰满| 黄片小视频在线播放| 狠狠狠狠99中文字幕| 久久国产精品人妻蜜桃| 新久久久久国产一级毛片| 这个男人来自地球电影免费观看| 热re99久久国产66热| 久久久精品免费免费高清| 国产国语露脸激情在线看| 亚洲欧美日韩另类电影网站| 一个人免费在线观看的高清视频 | 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 亚洲国产中文字幕在线视频| 亚洲国产欧美日韩在线播放| 狠狠狠狠99中文字幕| 久久久久久久精品精品| 新久久久久国产一级毛片| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美一区二区三区久久| 日韩欧美一区视频在线观看| 国产成人一区二区三区免费视频网站| 九色亚洲精品在线播放| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 国产在线观看jvid| 69精品国产乱码久久久| 亚洲国产精品成人久久小说| 国产三级黄色录像| 日韩制服骚丝袜av| 黄网站色视频无遮挡免费观看| 国产av精品麻豆| 国产成人av激情在线播放| 亚洲国产毛片av蜜桃av| 欧美日韩视频精品一区| 曰老女人黄片| 亚洲九九香蕉| 亚洲精品久久午夜乱码| 美女午夜性视频免费| 久久精品久久久久久噜噜老黄| 亚洲专区国产一区二区| 国产精品av久久久久免费| 久久久久久久精品精品| 久久精品熟女亚洲av麻豆精品| 亚洲欧美成人综合另类久久久| 99热全是精品| 最近最新中文字幕大全免费视频| 亚洲精品av麻豆狂野| 考比视频在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美日韩黄片免| 高清黄色对白视频在线免费看| 午夜福利视频精品| 在线永久观看黄色视频| e午夜精品久久久久久久| 建设人人有责人人尽责人人享有的| 男女之事视频高清在线观看| 国产免费视频播放在线视频| 久久久欧美国产精品| 成人国产av品久久久| 啦啦啦在线免费观看视频4| 国产一卡二卡三卡精品| 成人三级做爰电影| 99久久人妻综合| 成人手机av| 老司机在亚洲福利影院| 99精国产麻豆久久婷婷| 免费一级毛片在线播放高清视频 | 黄色毛片三级朝国网站| 国产一卡二卡三卡精品| 久久久国产一区二区| 国产深夜福利视频在线观看| 久久性视频一级片| 亚洲欧美精品综合一区二区三区| 少妇裸体淫交视频免费看高清 | 国产91精品成人一区二区三区 | 欧美黄色淫秽网站| 国产精品国产三级国产专区5o| 久久99一区二区三区| 一本大道久久a久久精品| 色94色欧美一区二区| av网站在线播放免费| 悠悠久久av| 视频在线观看一区二区三区| 亚洲专区字幕在线| 人人妻人人澡人人爽人人夜夜| 午夜免费鲁丝| 久久毛片免费看一区二区三区| 久久久久国产一级毛片高清牌| av在线app专区| 中文字幕人妻熟女乱码| 亚洲精品第二区| 欧美在线一区亚洲| av不卡在线播放| 亚洲人成77777在线视频| 一级毛片精品| 黄色视频不卡| 国产成人av激情在线播放| 国产欧美日韩一区二区三 | 91精品伊人久久大香线蕉| 中文字幕人妻丝袜一区二区| 久久影院123| 另类亚洲欧美激情| 亚洲欧洲日产国产| 男女无遮挡免费网站观看| 欧美一级毛片孕妇| 在线观看人妻少妇| 成人国产av品久久久| 成年人午夜在线观看视频| 少妇裸体淫交视频免费看高清 | 国产一区二区三区综合在线观看| 欧美国产精品一级二级三级| 精品一区二区三卡| 亚洲第一欧美日韩一区二区三区 | 国产精品久久久久成人av| 亚洲九九香蕉| 色播在线永久视频| 色94色欧美一区二区| 国产99久久九九免费精品| 在线精品无人区一区二区三| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| 亚洲欧洲日产国产| 亚洲国产看品久久| 久久久国产一区二区| 免费少妇av软件| 精品欧美一区二区三区在线| 国产又爽黄色视频| 亚洲精品乱久久久久久| 波多野结衣av一区二区av| 18禁裸乳无遮挡动漫免费视频| 精品亚洲成国产av| 久久久久视频综合| 国产成人系列免费观看| 精品欧美一区二区三区在线| 日韩电影二区| 亚洲欧洲日产国产| 日韩欧美一区二区三区在线观看 | 天堂俺去俺来也www色官网| 久久性视频一级片| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 中文字幕制服av| 热99re8久久精品国产| 十八禁高潮呻吟视频| 久久久久国产一级毛片高清牌| 日韩 欧美 亚洲 中文字幕| 欧美中文综合在线视频| 热99久久久久精品小说推荐| 丰满迷人的少妇在线观看| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 亚洲av电影在线进入| 亚洲专区字幕在线| 国产成人精品久久二区二区91| 老熟妇乱子伦视频在线观看 | 777米奇影视久久| 日韩电影二区| 欧美大码av| 老汉色av国产亚洲站长工具| 91精品国产国语对白视频| 99精国产麻豆久久婷婷| 99国产精品一区二区三区| 最近最新免费中文字幕在线| 日韩中文字幕欧美一区二区| 欧美精品一区二区免费开放| 三上悠亚av全集在线观看| 夜夜夜夜夜久久久久| 国产精品麻豆人妻色哟哟久久| 国产激情久久老熟女| 国产精品国产av在线观看| 久久久久久久久免费视频了| av视频免费观看在线观看| 国产高清国产精品国产三级| 99re6热这里在线精品视频| 男男h啪啪无遮挡| 黄频高清免费视频| 777久久人妻少妇嫩草av网站|