• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Lie Algebras,Generalized Symmetries and Darboux Transformations of the Fifth-Order Evolution Equations in Shallow Water?

    2015-06-01 07:34:22ShoufuTIANYufengZHANGBinluFENGHongqingZHANG

    Shoufu TIAN Yufeng ZHANG Binlu FENG Hongqing ZHANG

    1 Introduction

    Group-theory methods are useful for finding symmetry reductions and corresponding groupinvariant solutions of a partial differential equations(PDEs)system(see[2,14,23]).The local theory of symmetries of differential equations has been well-established since the days of Sophus Lie.Generalized,or higher-order symmetries can be traced back to the original paper of Noether[22],and has acquired received added importance after the discovery that they play a critical role in integrable(soliton)partial differential equations(see[2,14,23]).While the local theory is very well developed,the theory of nonlocal symmetries of nonlocal differential equations remains incomplete.However,little importance is attached to the existence and applications of nonlocal symmetries[2–3,23].Recently,there is some outstanding literature on research of the generalized symmetries.Internal,external and generalized symmetries are investigated in[1].A loop algebra of nonlocal isovectors of the Korteweg-de Vries(KdV)equation is introduced in[10].By inverse recursion operators,in finitely many nonlocal symmetries and the conformal invariant forms(Schwartz forms)are researched in[6,20–21].Based on the geometric heat f l ows,symmetries,invariant solutions and reduced equations for the affine case are investigated in[11,19,25–26,38].ComplexPT-symmetric extensions of the non-PT-symmetric Burger’s equation are researched in[37].Furthermore,the introduction of potential-type symmetries(see[2])and pseudopotential-type symmetries(see[36])is proposed,which admits close prolongation extending the applicability of symmetry methods to obtain analytic solutions of evolution equations.In that context,the original given system can be embedded in some prolonged systems.Hence,these nonlocal symmetries with close prolongation are anticipated in[9,27].

    Recently,together with Bluman et al.,we use the nonclassical method to construct“nonclassical symmetries”and time-dependent exact solutions for the dimensional nonlinear Kompaneets equation(see[4]).Interestingly,each of these solutions is expressed in terms of elementary functions.Three of the classes exhibit quiescent behavior,and the other two classes exhibit blow-up behavior in finite time.As a consequence,it is shown that the corresponding nontrivial stationary solutions are unstable.By virtue of the Riemann theta function,we obtain some periodic wave solutions of nonlinear evolution equations,discrete evolution equations and supersymmetric evolution equations(see[12,29–33]).In particular,we investigate the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation and a forced Kortewegde Vries equation in fluids(see[34–35]),respectively.In this paper,we present a method to research generalized symmetries and their applications of a generalized fifth-order evolution equation by virtue of some new pseudo-potential systems.The method is applied to obtain the generalized symmetries of a generalized fifth-order Korteweg-de Vries equation,named the OWW equation.As applications of the symmetries,we further investigate Lie algebras,initial value problems and Darboux transformations of these fifth-order evolution equations.

    In 1984,Olver[24]derived a one-dimensional model for describing long,small amplitude waves in shallow water.The model can take the wave velocity or,alternatively,the surface elevation as the principal variable.Exact solutions for the first case were obtained in the work[17].The second case leads to the equation

    whereu=u(x,t)provides a surface elevation,xis the horizontal coordinate,and real constantsqi(i=1,···,6)depend on the surface tension,which are given by

    whereμdenotes a dimensionless surface tension coefficient,νis the square of the ratio of fluid depth to wave length,andχis the ratio of wave amplitude to undisturbed fluid depth.The small parametersνandχare assumed to be the same order of smallness.For no surface tension,all these coefficients are nonzero,otherwise some of them can be taken as zero values.

    The purpose of this paper is to present the method of obtaining generalized symmetries,Lie algebras,initial value problems and Darboux transformations.Taking the well-known fifthorder evolution equation,the OWW equation(1.1),as a special example,we present some structures associated with the Olver water wave(AOWW)equations,such as a Lie algebra of the generalized symmetries,which consider some new smooth functions:and a restriction:Moreover,the generalized symmetries are applied to investigate initial value problems and Darboux transformations.The results are also extended to AOWW equations,such as Lax,Sawada-Kotera,Kaup-Kupershmidt,It? and Caudrey-Dodd-Gibbon-Sawada-Kotera equations,et al.

    The rest of the paper is organized as follows.In Section 2,for nonlinear partial differential equations,we propose a detailed description of the method to construct the generalized symmetries by considering the nonlocal condition.By virtue of the method,in Section 3,we introduce the corresponding pseudo-potential systems to obtain some generalized symmetries and Lie algebras of the OWW and AOWW equations,respectively.In Section 4,we present some applications for the generalized symmetries,such as initial value problems and Darboux transformations.Finally,conclusions and discussions are presented in Section 5.

    2 Generalized Symmetries of Partial Differential Equations

    In this section,based on[1–28],we mainly present a detailed description of the method to construct the generalized symmetries by considering the nonlocal condition.

    Notational conventionsThroughout this paper,we suppose the following notations.Independent variables are denoted byxi,i=1,2,···,n,x=(x1,x2,···,xn),and dependent variables are denoted byuα,α=1,2,···,m,u=(u1,u2,···,um).Partial derivatives with respect toxiare indicated by sub-indices,andDiimplies the total derivatives with respect to some independent variablexi,

    where the unorderedk-tupleJ=(j1,j2,···,jk),0≤j1,j2,···,jk≤nstands for a multi-index of order#J=k,andDJimplies the compositionDJ=Dj1Dj2···Djk.

    Definition 2.1Suppose that N is a non-zero integer.An N-dimensional covering π of a system of partial differential equation(s)△σ[x,u]=0,σ=1,2,···,k,is a triplet

    of variables vβ:v=(v1,v2,···,vN),where smooth functions Xiβdepend on xi,uα,vβand afinite number of partial derivatives ofuα,vβ,and linear operators

    satisfy the following system:

    wheneveruα(xi)is a solution of

    As we understand hereafter that the index i runs from 1 to n and that the index β runs from 1 to N,we replace(2.2)by writing π =(vβ;Xiβ;i).The variables vβare considered as new dependent variables(the “nonlocal variables” of the theory)and the operatorsisatisfying system(2.4)are new total derivatives which are used to consider the nonlocal variables vβ.Interestingly,the operatorsisatisfy

    and these equations are compatible because the system(2.4)holds.Owing to the solutions o f systemthe total derivativesibecome ordinary partial derivatives.The system

    holds for each index β and each index i whenever uα(xi)is a solution ofThese compatible equations specify the relations between the dependent variables uαand the nonlocal variables vβ.

    The nonlocal version of the formal linearization of the systemis the matrix

    The following is our definition of nonlocal symmetries by considering the nonlocal condition.

    De finition 2.2Suppose thatσ =1,2,···,k,is a system of differentialequations,and assume thatis a covering ofA nonlocalπ-symmetry ofgiven by a generalized vector field

    of the augmented system

    is a nonlocal symmetry if and only if X satisfies

    where prX is given by

    and

    Otherwise,X is a local symmetry of the system △σ[x,u]=0.

    Now,in order to capture all possible generalized symmetries of the augmented system(2.9),as explained in[23],it is enough to consider evolutionary generalized vector fields.Thus,hereafter we shall only consider the generalized vector field X of the form

    where Gαand Hβare smooth differential functions.As we know,in this case the generalized symmetry conditions(2.10)and(2.11)imply that the in finitesimal deformation uαuα+εGαsatisfies the system △σ[x,u]=0 with first order for the deformation parameter ε,and that the in finitesimal deformation vβvβ+ εHβsatisfies the compatible system(2.9)with first order for ε.Then we have the following proposition.

    Proposition 2.1Suppose that △σ[x,u]=0,σ =1,2,···,k,is a system of partial differential equations,and assume that π =(vβ;Xiβ;i)is a covering of △σ[x,u]=0.A nonlocal π-symmetry of △σ[x,u]=0 is a generalized vector field generated by an ordered(m+N)-tuple of functions(Gα,Hβ)depending on xi,uα,vβand a finite number of xi-derivatives of u,vβ

    of the augmented system

    where Gαand Hβare differential functions,and

    if and only if X satisfies

    whenever uα(xi)is a solution of △σ[x,u]=0,where the operatorεappearing in(2.20)is given by

    Otherwise,X is a local symmetry of the system △σ[x,u]=0.

    It is worth emphasizing that(2.19)depends only on the vector G and the system △σ[x,u].From the view point of Krasil’shchik and Vinogradov[36],one can see that the vector G is the π-shadow of the nonlocal π-symmetry(Gα,Hβ).Also important to note is that the differential operatorεdefined in(2.22)is the nonlocal version of the in finite prolongation of the vector field

    by considering the fact that the derivatives of the new nonlocal variables vβcan be written in terms of the variables xi,uα,,vβand

    We always call“nonlocal symmetry” instead of“nonlocal π-symmetry”,and suppose that a covering(2.2)of the system △σ[x,u]=0 has been fixed.The fact that this method of nonlocal symmetries depends essentially on coverings indicates that one should perhaps consider nonlocal symmetries to be properly generalizing the class of intrinsic symmetries studied in[1].

    Proposition 2.2Let(Gα,Hβ)be a nonlocal π-symmetry of the system △σ[x,u]=0,where the covering π is given by(2.2),and then the vector field

    is a generalized symmetry of the augmented system(2.9).That is to say,if(Gα,Hβ)is a nonlocal π-symmetry of the system △σ[x,u]=0,the linearized system

    is satis fied withwhenever uα(xi)and vβ(xi)satisfy the augmented system(2.9).On the other hand,if the vector field(2.23)is a generalized symmetry of the augmented system(2.9),then(Gα,Hβ)is a nonlocal π-symmetry of △σ[x,u]=0,where π =(vβ;Xiβ;i)and

    Because the generalized symmetry transforms a solution into another solution(see[23]),Proposition 2.2 indicates the following corollary.

    Corollary 2.1Letandbe solutions of the augmented system(2.9),and the solution of the Cauchy problem

    is a one-parameter family of solutions to the augmented system(2.9).In particular,nonlocal symmetries transform solutions of the system △σ[x,u]=0 to solutions for the same one.

    We end this section by providing some examples.

    Example 2.1A nonlinear telegraph(NLT)system reads

    The functions

    where X1=x?u2,X2=t?logu1,and f1,f2satisfy the following linear PDE system:

    which admit the following condition:Let u1,u2be solutions of the NLT system(2.26),and the“deformation” u+ εη with x+ εξ1,t+ εξ2is also a solution of the first order in parameter ε,namely,the functions ξ1,ξ2and η satisfy the linearized NLT equation.On the other hand,in order to make this observation rigorous,we should take into account an extra nonlocal variable v1by satisfying

    Therefore,the function η in(2.27)can be rewritten as η=exp(?t),and then η is a “l(fā)ocal” and could perhaps be considered as the characteristic of a local symmetry for the following augmented system:

    Example 2.2The Burger’s equation reads

    The function

    where f=f(x,t)satisfying ft?fxx=0,admits the following condition:Let u be a solution of the Burger’s equation(2.31),the “deformation” u+ εG is also a solution of the first order in parameter ε,namely,the function G satisfies the linearized Burger’s equation.On the other hand,in order to make this observation rigorous,we would take into account an extra nonloal variable v1by satisfying

    Therefore,the function(2.32)can be rewritten asand then G is a “l(fā)ocal” and could perhaps be considered as the characteristic of a local symmetry for the following augmented system:

    Remark 2.1In Example 2.1,setting x1=x and x2=t,one has N=1,X11=u2,X21=u2,and the first two equations of(2.30)correspond to the system(2.6).Similarly,in Example 2.2,setting x1=x and x2=t,one has N=1,X11=u,and X21=ux+12u2,and the last two equations of(2.34)correspond to the system(2.6).

    Remark 2.2Since we are allowed to replace all derivatives of vβappearing in the equation(2.16)by virtue of system(2.6),it is worth emphasizing that the coefficients Gαand Hβof the vector field(2.16)are supposed to depend not only on xi,uα, finite numbers of derivatives of uα,and the new variables vβ,but also finite numbers of derivatives of vβ.This simpli fication is crucial to obtain the classi fication results.

    3 Lie Algebras and Generalized Symmetries of the OWW and AOWW Equations

    Let’s begin this part with some classical reductions of physical and mechanical interests,recent examples of the OWW equation(1.1),among others,include the following:

    (1)The Lax equation reads(see[18])

    (2)The integrable Sawada-Kotera(SK)equation reads(see[29])

    (3)The Kaup-Kupershmidt(KK)equation reads(see[15–16])

    (4)The It? equation reads(see[13])

    (5)The Caudrey-Dodd-Gibbon-Sawada-Kotera equation(CDGSK)reads(see[7–8,29–30])

    In what follows,we investigate some pseudo-potentials,generalized symmetries and Lie algebras for the OWW and AOWW equations,respectively.

    Theorem 3.1The system of equations

    with

    is completely integrable on solutions to the OWW equation for q4=2q3,where λ1,λ2,λ3are some nonzero real parameters and α(v)is an arbitrary function of v.Hence it determines a pseudo-potential v for the OWW equation.On the other hand,the following system of equations are compatible whenever u(x,t)is a solution of the OWW equation(1.1)and hence another potential w for(nonlocal)conservation laws of the OWW equation:

    where λ4and λ5are also nonzero real parameters.

    According to the idea of[5],the pseudo-potential v can be understood geometrically in terms of geodesics of the pseudo-spherical surfaces associated with the OWW equation(1.1).It is important to us that the compatible system of systems(3.6)–(3.7)yields a three-dimensional covering π of the Olver water wave equation with nonlocal variables v and w.

    Remark 3.1By taking α(v)=here vi(i=1,2,···,n)are arbitrary constants.Theorem 3.1 is the“Riccati form”of the linear problem associated with the OWW equation(1.1)(see the classical paper by Chern et al[5]).

    In what follows,we classify all first-order nonlocal π-symmetries of the OWW equation(1.1).In order to do this,one can see that it is necessary to assume that the parameter λiappearing in the systems(3.6)–(3.7)is also a ff ected by the symmetry transformation.Namely,the augmented system includes(1.1),(3.6)–(3.7)with the parameter λi.

    The evolutionary vector field is of the form

    where G,H1and H2are functions of x,t,u,v,w,λiand the derivatives of u,v and w.

    Theorem 3.2The first-order generalized symmetries of the augmented Olver water wave(AOWW)systems(1.1),(3.6)and(3.7),represented by vector fields(3.8),are linear combina-tions of

    where β(v)=(λ2q5? 2λ3q3)α(v).Consequently,the vector field X9is a nonlocal π-symmetry of the OWW equation.

    It is remarkable that the function β(v)is included in X9since it a ff ects the way in which λ varies with the in finitesimal symmetry transformation(3.17).This function is also of importance to our observations on the Lie algebra structure of nonlocal π-symmetries;see Corollary 3.1 below.We also note that X1and X2are simply the generators of shifts with respect to the independent variables:They are equivalent toandfor the OWW equation,respectively.

    Corollary 3.1The nine symmetries(3.9)–(3.17)of the OWW equation generate a Lie algebra with the commutation Table 3.1,whenever u,v and w satisfy the augmented OWW system including(1.1),(3.6)and(3.7).

    Table 3.1 The commutation table of the symmetry algebra for the OWW equationwith X0=X2?X1and X△=X0?qX4.

    Table 3.1 The commutation table of the symmetry algebra for the OWW equationwith X0=X2?X1and X△=X0?qX4.

    X1 X2 X3 X4 X5 X6 X7 X8 X9 X1 q3X1 q3X1 2q2q3X1 ?q3X1 X2 q3X2 q3X2 2q2q3X2 ?q3X2 X3 q3X3 2q2q3X3 X4 q3X4 q3X4 2q2q3X4 ?q3X4 X5 ?q3X1 ?q3X2 ?q3X4 52q33X4 ?q23X0 X6 q3X6 2q2q3X6 ?q33X4 X7 ?q3X1 ?q3X2 ?q3X3 ?q3X4 ?52q33X4 ?q3X6 ?5q2q3X6 X?X8?2q2q3X1?2q2q3X2?2q2q3X3?2q2q3X4 ?2q2q3X65q2q3X6 2q2q23X0 X9 q3X1 q3X2 q3X4 ?q23X0 q33X4 ?X? ?2q2q23X0

    Corollary 3.1 implies that the symmetries(3.9)–(3.17)generate a nine-dimensional Lie algebra G9.We stress the fact that this Lie algebra exists because we work on a fixed covering of the OWW equation:we cannot expect the “space of all nonlocal symmetries” of a given equation to possess a Lie algebra structure(see[36]).

    It is worth emphasizing that the results of Theorems 3.1–3.2 and Corollary 3.1 depend on the condition q4=2q3.In what follows,replacing the condition by q3=q4,we consider the pseudo-potentials and nonlocal π-symmetries AOWW equations by taking the SK equation(3.2)for example,the results of which are quite di ff erent from those of Theorem 3.1 since the condition is changed.

    We can obtain the following conclusions analogous to those obtained for the OWW equation.

    Theorem 3.3The SK(AOWW)equation admits a pseudo-potential v determined by the compatible equations

    Moreover,the SK equation admits a potential w determined by the following two systems of equations,which are compatible whenever u(x,t)satisfies(3.2):

    Theorem 3.4The first-order generalized symmetries of the augmented associated SK system(3.2),(3.18)and(3.19),represented by vector fields(3.8),with G,H1and H2being functions of the variables u,v,w,and the derivatives of u,v and w only,are linear combinations of

    Corollary 3.2The ten symmetries(3.20)–(3.29)of the SK equation generate a Lie algebra with the commutation Table 3.2,whenever u,v and w satisfy the augmented SK systems(3.2),(3.18)and(3.19).

    Table 3.2 The commutation table of the symmetry algebra for the SK equation.

    4 Applications:The Finite Symmetry Transformation and Darboux Transformation

    In this section,by virtue of the flow of the vector fields obtained in Theorems 3.2 and 3.4,we use our analysis to obtain explicit solutions to the OWW and AOWW(SK)equations.By using the standard theory of generalized symmetries(see[1,3,14,23–24]),we obtain a system of equations for the flow of the vector fields obtained in Theorem 3.2 and given by

    where ε denotes a flow parameter.There is no need to take into account an equation for u(ε,τ)since it is proven that actually u(ε,τ)is determined by the equations(4.1)–(4.4).

    Proposition 4.1The initial value problem(4.1)–(4.4)with initial conditions

    admits the following solution:

    by taking α(v)=where γ(τ)is given by

    From this proposition,one can construct explicit families of solutions to the interesting OWW equation.In fact,it includes a Darboux transformation.Let us assume that the “old”independent variables are τ and t,and we can obtain the following results.

    Theorem 4.1Suppose that the OWW equation(1.1),understood as an equation for v(τ,t),is invariant under the transformations τ→ x and v(τ,t)→ v(x,t).Then

    and(x,t)is obtained by inverting(4.13)as follows:

    with A(τ)and B(τ)given by(4.11)and(4.12),respectively.

    Theorem 4.2Assume that the OWW equation(1.1),understood as an equation for w(τ,t),is invariant under the transformations τ→ x and w(τ,t)→(x,t).Then

    where Γ(τ,t)satisfies the following system:

    and(x,t)is obtained by inverting(4.15)–(4.16)as follows:

    with

    Similarly,taking τ and x as the “old” independent variables,we can obtain the following results.

    Theorem 4.3Suppose that the OWW equation(1.1),understood as an equation for v(x,ε),is invariant under the transformations εt and v(x,ε)(x,t).Then

    and(x,t)is obtained by inverting(4.19)as follows:

    with A(τ)and B(τ)given by(4.11)and(4.12),respectively.

    Theorem 4.4Assume that the OWW equation(1.1),understood as an equation for w(x,ε),is invariant under the transformations εt and w(x,ε)(x,t).Then

    whereΓ(x,ε)satisfies the system(4.16),and(x,t)is obtained by inverting(4.21),(4.16)as follows:

    with

    In what follows,we can investigate the SK(AOWW)equation.Following the foregoing theory,we can obtain similar Darboux transforms.

    With initial conditions v0=v(0,τ),w0=w(0,τ),x0=x(0,τ)and t0=t(0,τ)= τ,we have a system for the flow of the vector fields obtained in Theorem 3.4 and given by

    As in the OWW equation case,we do not calculate explicitly u(ε,τ),since this function is completely determined by v(ε,τ)and w(ε,τ).

    For simplicity,we consider the SK equation(3.2)as an equation for w(τ,t)and w(x,ε).In the same way as stated in the OWW equation,we have the following theorem.

    Theorem 4.5(i)Suppose that the SK(AOWW)equation(3.2),understood as an equationforw(τ,t),is invariant under the transformationsandw(τ,t)(x,t).Then

    and(x,t)is obtained by inverting(4.25)and replacing into

    where(x,t)can be derived from(4.24)

    withv(x,t)determined by(4.24).

    (ii)Assume that the SK(AOWW)equation(3.2),understood as an equation forw(x,),is invariant under the transformationsεtandw(x,ε)(x,t).Then

    and(x,t)is obtained by inverting(4.28)and replacing into

    where(x,t)can be derived from(4.24)

    with v(x,t)is determined by(4.24).

    Following the foregoing method,by virtue of the pseudo-potential variables v(x,t),w(x,t)and generalized symmetries,we present Darboux transformations of the OWW equation(1.1)and the(SK)AOWW equation(3.2),respectively.These formulae are used to find families of non-trivial solutions to the OWW equation and SK(AOWW)equation.

    5 Conclusions and Discussions

    In this paper,we have shown that combining generalized symmetries with the nonlocal condition can result in a variety of applications.The main new progresses made in this paper in the general aspect of evolution equations are given as follows:

    (i)The generalized symmetries can be used to investigate the initial value problems.

    (ii)The generalized symmetries can be used to construct Darboux transformations.

    (iii)Lie algebras and generalized symmetries can be obtained from new pseudo-potential systems and vice versa.

    (iv)Di ff erent kinds of Darboux transformations may assume the same in finitesimal forms,and then new kinds of Darboux transformations may be obtained from old ones.

    (v)New finite-dimensional pseudo-potential systems can be solved by generalized symmetries and related Darboux transformations,and then the original evolution equation can be investigated from lower-dimensional ones owing to the existence of generalized symmetries.

    The above results are realized especially for the fifth-order evolution equation,OWW and AOWW equations.For an OWW equation,it admits a new class of pseudo-potential systems resulting in its Lie algebras,generalized symmetries,initial value problems and Darboux transformations.Since such pseudo-potential systems are of the Riccati type,more information about their bilinear forms are also researched through the Cole-Hopf transformation.

    For the purpose of extending applicability of the generalized symmetry to obtain analytic solutions of the OWW and AOWW equations,we introduce two new pseudo-potential variables v and w to form a new class of pseudo-potential systems,so that the original generalized symmetries can be transformed to some local symmetries of the new systems.Based on the generalized symmetries,we can investigate Lie algebras,initial value problems and Darboux transformations,et al.By means of the Darboux transformations,the analytic solutions of OWW and AOWW equations are obtained via the transformations of trivial solutions.Considering the complete local symmetries of the pseudo-potential systems,we can further achieve rich group invariant solutions,such as rational solutions,special function solutions,solitary wave solutions and periodic function solutions,et al.

    However,in this paper,it still remains unclear what kind of pseudo-potential systems can be used to construct the generalized symmetries of the original evolution equation and what kind of generalized symmetries can be applied to obtain nontrivial solutions.The integrability of the pseudo-potential systems should be further investigated.Furthermore,one may consider soliton solutions,rational solutions,peakon solutions,breather solutions and algebraic geometry solutions of the completely integrable pseudo-potential systems to achieve corresponding solutions of the OWW and AOWW equations,respectively.It is quite reasonable and meaningful that these matters merit our further study.

    AcknowledgementThe authors express their sincere thanks to the referees for their careful reading of the manuscript and constructive suggestions.

    [1]Anderson,I.M.,Kamran,N.and Olver,P.J.,Internal,external and generalized symmetries,Adv.Math.,100,1993,53–100.

    [2]Bluman,G.W.and Kumei,S.,Symmetries and Differential Equations,Springer-Verlag,New York,1989.

    [3]Bluman,G.W.,Temuerchaolu and Anco,S.,New conservation laws obtained directly from symmetry action on a known conservation law,J.Math.Anal.Appl.,322,2006,233–250.

    [4]Bluman,G.W.,Tian,S.F.and Yang,Z.Z.,Nonclassical analysis of the nonlinear Kompaneets equation,J.Eng.Math.,84,2014,87–97.

    [5]Chern,S.S.and Tenenblat,K.,Pseudo-spherical surfaces and evolution equations,Stud.Appl.Math.,74(1),1986,55–83.

    [6]Chen,Y.and Hu,X.R.,Lie symmetry group of the nonisospectral Kadomtsev-Petviashvili equation,Z.Naturforsch A.,62(a),2009,8–14.

    [7]Dodd,R.K.and Gibbon,J.D.,The prolongation structure of a higher order Korteweg-de Vries equation,Proc.R.Soc.Lond.A,358,1978,287–296.

    [8]Fan,E.G.,Multiple travelling wave solutions of nonlinear evolution equations using a uni fied algebraic method,J.Phys.A:Math.Gen.,35,2002,6853–6872.

    [9]Galas,F.,New nonlocal symmetries with pseudopotentials,J.Phys.A:Math.Gen.,25,1992,L981–L986.

    [10]Guthrie,G.A.and Hickman,M.S.,Nonlocal symmetries of the KdV equation,J.Math.Phys.,26,1993,193–205.

    [11]Huang,Q.and Qu,C.Z.,Symmetries and invariant solutions for the geometric heat flows,J.Phys.A:Math.Theor.,40,2007,9343–9360.

    [12]Hernandez-Heredero,R.and Reyes,E.G.,Nonlocal symmetries and a Darboux transformation for the Camassa-Holm equation,J.Phys.A:Math.Theor.,42,2009,182002.

    [13]It?,M.,An extension of nonlinear evolution equations of the K-dV(mK-dV)type to higher orders,J.Phys.Soc.,49,1980,771–778.

    [14]Ibragimov,N.H.,CRC Handbook of Lie Group Analysis of Differential Equations,vol.1,CRC Press,Boca Raton,Florida,1994.

    [15]Kaup,D.J.,On the inverse scattering problem for cubic eigenvalue problems of the class Ψxxx+6QΨx+6RΨ = λΨ,Stud.Appl.Math.,62,1980,189–216.

    [16]Kupershmidt,B.A.,A super Korteweg-de Vries equation:An integrable system,Phys.Lett.A,102,1984,213–215.

    [17]Kudryashov,N.A.and Sukharev,M.B.,Exact solutions of a non-linear fifth-order equation for describing waves on water,J.Appl.Math.Mech.,65,2001,855–865.

    [18]Lax,P.D.,Integrals of nonlinear equations of evolution and solitary waves,Comm.Pure Appl.Math.,21,1968,467–490.

    [19]Levi,D.and Winternitz,P.,Lie point symmetries and commuting flows for equations on lattices,J.Phys.A:Math.Gen.,35,2002,2249–2262.

    [20]Lou,S.Y.,A(2+1)-dimensional extension for the sine-Gordon equation,J.Phys.A:Math.Gen.,26,1993,L789–L791.

    [21]Lou,S.Y.and Hu,X.B.,In finitely many Lax pairs and symmetry constraints of the KP equation,J.Math.Phys.,38,1997,6401–6427.

    [22]Noether,E.,Invariante variations probleme,Nachr.Konig.Gesell.Wissen.Gottingen,Math.Phys.Kl.,1918,235–257(see Transport Theory and Stat.Phys.1,1971,186–207 for an English translation).

    [23]Olver,P.J.,Applications of Lie Groups to Differential Equations,2nd edition,Springer-Verlag,New York,1993.

    [24]Olver,P.J.,Hamiltonian and non-Hamiltonian models for water waves,Lecture Notes in Physics,vol.195,Springer-Verlag,New York,1984.

    [25]Qu,C.Z.,Potential symmetries to systems of nonlinear di ff usion equations,J.Phys.A:Math.Theor.,40,2007,1757–1773.

    [26]Qu,C.Z.and Zhang,C.R.,Classi fication of coupled systems with two-component nonlinear di ff usion equations by the invariant subspace method,J.Phys.A:Math.Theor.,42,2009,475201.

    [27]Reyes,E.G.,On nonlocal symmetries of some shallow water equations,J.Phys.A:Math.Theor.,40,2007,4467–4476.

    [28]Reyes,E.G.,Nonlocal symmetries and the Kaup-Kupershmidt equation,J.Math.Phys.,46,2005,073507.

    [29]Sawada,K.and Kotera,K.,A method for finding N-soliton solutions of the KdV and KdV-like equation,Prog.Theor.Phys.,51,1974–1355.

    [30]Tian,S.F.and Zhang,H.Q.,Riemann theta functions periodic wave solutions and rational characteristics for the nonlinear equations,J.Math.Anal.Appl.371,2010,585–608.

    [31]Tian,S.F.and Zhang,H.Q.,Lax pair,binary Darboux transformation and new grammian solutions of nonisospectral Kadomtsev-Petviashvili equation with the two-singular-manifold method,J.Nonlinear Math.Phys.,17(4),2010,491–502.

    [32]Tian,S.F.and Zhang,H.Q.,A kind of explicit Riemann theta functions periodic waves solutions for discrete soliton equations,Commun.Nonlinear Sci.Numer.Simulat.,16,2011,173–186.

    [33]Tian,S.F.and Zhang,H.Q.,Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV-Burgers equation,Theor.Math.Phys.,170(3),2012,287–314.

    [34]Tian,S.F.and Zhang,H.Q.,On the integrability of a generalized variable-coefficient Kadomtsev-Petviashvili equation,J.Phys.A:Math.Theor.,45,2012,055203.

    [35]Tian,S.F.and Zhang,H.Q.,On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids,Stud.Appl.Math.,132,2014,212–246.

    [36]Vinogradov,A.M.and Krasil’shchik,I.S.,A method of calculation of higher symmetries of nonlinear evolution equations and nonlocal symmetries,Dokl.Akad.Nauk SSSR,253,1980,1289–1293.

    [37]Yan,Z.Y.,The new tri-function method to multiple exact solutions of nonlinear wave equations,Phys.Scr.,78,2008,035001.

    [38]Zhang,S.L.,Lou,S.Y.and Qu,C.Z.,New variable separation approach:Application to nonlinear di ff usion equations,J.Phys.A:Math.Gen.,36,2003,12223–12242.

    久久久久久九九精品二区国产| 免费搜索国产男女视频| 1024香蕉在线观看| 久久久久亚洲av毛片大全| 国产乱人伦免费视频| 国产亚洲精品av在线| 99久久成人亚洲精品观看| 老司机午夜十八禁免费视频| 欧美激情在线99| 免费高清视频大片| 久久久久久久久久黄片| 国产精品香港三级国产av潘金莲| 日本免费一区二区三区高清不卡| 免费在线观看视频国产中文字幕亚洲| 丁香六月欧美| 精品一区二区三区av网在线观看| 又爽又黄无遮挡网站| 国产精品美女特级片免费视频播放器 | 国产男靠女视频免费网站| 国产黄片美女视频| 亚洲欧美日韩东京热| 国产探花在线观看一区二区| 国产三级在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 日本一本二区三区精品| 99久久综合精品五月天人人| 美女被艹到高潮喷水动态| 久久热在线av| 黄色丝袜av网址大全| 国产成人啪精品午夜网站| 亚洲第一欧美日韩一区二区三区| 热99re8久久精品国产| 国产亚洲av嫩草精品影院| 免费看美女性在线毛片视频| 免费电影在线观看免费观看| 亚洲成人精品中文字幕电影| 老熟妇仑乱视频hdxx| 小说图片视频综合网站| 国产精品久久久久久久电影 | 精品国内亚洲2022精品成人| 韩国av一区二区三区四区| 国产成+人综合+亚洲专区| 两性午夜刺激爽爽歪歪视频在线观看| av福利片在线观看| 黄色 视频免费看| avwww免费| 国产伦精品一区二区三区视频9 | 欧美+亚洲+日韩+国产| 日本 av在线| 亚洲精品粉嫩美女一区| 69av精品久久久久久| 麻豆国产av国片精品| 亚洲欧美日韩高清专用| 成人亚洲精品av一区二区| 99久久精品一区二区三区| 精品国产亚洲在线| 精品国产超薄肉色丝袜足j| 亚洲国产看品久久| 国产亚洲欧美在线一区二区| 欧美xxxx黑人xx丫x性爽| 日本黄色片子视频| 国内久久婷婷六月综合欲色啪| 欧美日本视频| 国产伦一二天堂av在线观看| 国产高潮美女av| 精品电影一区二区在线| 一进一出抽搐gif免费好疼| 国产99白浆流出| 2021天堂中文幕一二区在线观| 亚洲国产精品sss在线观看| 精品国产三级普通话版| 国产av不卡久久| 成在线人永久免费视频| 亚洲av熟女| 男插女下体视频免费在线播放| 三级毛片av免费| 日本在线视频免费播放| 精品国内亚洲2022精品成人| 国内精品一区二区在线观看| 免费在线观看影片大全网站| 国产不卡一卡二| 国产午夜精品久久久久久| 欧美zozozo另类| 亚洲人成电影免费在线| 国产精品久久电影中文字幕| 亚洲中文日韩欧美视频| 曰老女人黄片| 深夜精品福利| 很黄的视频免费| 国产成人精品久久二区二区免费| 精品人妻1区二区| 免费观看人在逋| 99久国产av精品| 曰老女人黄片| 国产黄a三级三级三级人| 黄色片一级片一级黄色片| 亚洲午夜理论影院| 无遮挡黄片免费观看| av在线天堂中文字幕| 欧美中文日本在线观看视频| av天堂中文字幕网| 欧美黑人欧美精品刺激| 国产视频内射| 三级男女做爰猛烈吃奶摸视频| 18禁国产床啪视频网站| 黄色片一级片一级黄色片| 香蕉久久夜色| 久久精品国产清高在天天线| 久久午夜亚洲精品久久| 香蕉久久夜色| 国产精品免费一区二区三区在线| 午夜激情福利司机影院| 老司机在亚洲福利影院| 国产精品日韩av在线免费观看| 日本撒尿小便嘘嘘汇集6| 欧美绝顶高潮抽搐喷水| 欧美黄色片欧美黄色片| 性欧美人与动物交配| 成人国产综合亚洲| 国产精品一区二区三区四区久久| 亚洲人成伊人成综合网2020| h日本视频在线播放| 在线免费观看的www视频| 亚洲人成电影免费在线| 熟妇人妻久久中文字幕3abv| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 波多野结衣巨乳人妻| 国产野战对白在线观看| 亚洲国产精品成人综合色| 国产高清videossex| 欧美日韩黄片免| 视频区欧美日本亚洲| 成人鲁丝片一二三区免费| 亚洲av五月六月丁香网| 国产精品九九99| 亚洲成a人片在线一区二区| 欧美精品啪啪一区二区三区| 国产精品一区二区三区四区久久| 精品午夜福利视频在线观看一区| 黄色 视频免费看| 亚洲七黄色美女视频| 国产激情久久老熟女| 精品国产超薄肉色丝袜足j| 久久精品综合一区二区三区| 亚洲精品乱码久久久v下载方式 | 97超视频在线观看视频| 午夜激情欧美在线| 99视频精品全部免费 在线 | 变态另类成人亚洲欧美熟女| 成人特级av手机在线观看| 免费看日本二区| 变态另类成人亚洲欧美熟女| 国产精品精品国产色婷婷| 法律面前人人平等表现在哪些方面| 国产午夜福利久久久久久| 综合色av麻豆| 一本精品99久久精品77| 国产野战对白在线观看| 亚洲五月婷婷丁香| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 国产97色在线日韩免费| 国产视频一区二区在线看| 国产私拍福利视频在线观看| 免费看日本二区| 久久香蕉精品热| 国产一区二区在线av高清观看| 国产亚洲欧美98| 国产精品一区二区三区四区免费观看 | 在线观看美女被高潮喷水网站 | 欧美不卡视频在线免费观看| 小说图片视频综合网站| 国产一区二区三区视频了| 在线视频色国产色| 国产精品一及| 舔av片在线| 成人性生交大片免费视频hd| 最新美女视频免费是黄的| 99久久99久久久精品蜜桃| 午夜视频精品福利| 国产91精品成人一区二区三区| 亚洲精品中文字幕一二三四区| 免费在线观看亚洲国产| 淫妇啪啪啪对白视频| 在线观看66精品国产| 99re在线观看精品视频| 国产伦人伦偷精品视频| 国产视频内射| 亚洲成av人片在线播放无| 波多野结衣高清无吗| 日韩av在线大香蕉| 国产成人精品久久二区二区免费| 岛国视频午夜一区免费看| 日本黄色片子视频| ponron亚洲| 欧美激情在线99| 成人一区二区视频在线观看| 国产精品久久久久久精品电影| 在线观看日韩欧美| 亚洲中文字幕日韩| 亚洲aⅴ乱码一区二区在线播放| 精品国内亚洲2022精品成人| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 一个人看的www免费观看视频| 女生性感内裤真人,穿戴方法视频| 欧美另类亚洲清纯唯美| 国产野战对白在线观看| 在线观看免费午夜福利视频| 亚洲国产高清在线一区二区三| 最近视频中文字幕2019在线8| 成人18禁在线播放| 日韩精品青青久久久久久| 夜夜爽天天搞| 亚洲无线观看免费| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 99久久久亚洲精品蜜臀av| 欧美zozozo另类| 麻豆一二三区av精品| 国产又色又爽无遮挡免费看| 午夜激情福利司机影院| 我的老师免费观看完整版| 岛国在线免费视频观看| 韩国av一区二区三区四区| 欧美黄色片欧美黄色片| 欧美国产日韩亚洲一区| 美女大奶头视频| 麻豆国产av国片精品| 老熟妇乱子伦视频在线观看| 免费观看人在逋| 国产探花在线观看一区二区| 亚洲,欧美精品.| 中出人妻视频一区二区| av天堂在线播放| 美女cb高潮喷水在线观看 | 又大又爽又粗| 国产精品一区二区三区四区免费观看 | 国产黄色小视频在线观看| 高潮久久久久久久久久久不卡| 一级a爱片免费观看的视频| 麻豆国产av国片精品| 国产黄片美女视频| 亚洲av熟女| 99国产精品99久久久久| 天堂动漫精品| 久久热在线av| 亚洲激情在线av| 中文字幕精品亚洲无线码一区| 麻豆成人av在线观看| 免费观看人在逋| 成人一区二区视频在线观看| 亚洲18禁久久av| 99热这里只有精品一区 | 精品欧美国产一区二区三| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 久久热在线av| 国产91精品成人一区二区三区| 欧美丝袜亚洲另类 | 久久精品国产99精品国产亚洲性色| 人妻夜夜爽99麻豆av| 男女视频在线观看网站免费| 一个人看视频在线观看www免费 | 首页视频小说图片口味搜索| 午夜福利在线在线| 国产麻豆成人av免费视频| 成人特级黄色片久久久久久久| 黄频高清免费视频| 久久久久免费精品人妻一区二区| 亚洲av日韩精品久久久久久密| 国产综合懂色| 欧美午夜高清在线| 亚洲第一电影网av| 久久精品aⅴ一区二区三区四区| 国产97色在线日韩免费| 女人高潮潮喷娇喘18禁视频| 热99re8久久精品国产| 999久久久精品免费观看国产| 老鸭窝网址在线观看| 韩国av一区二区三区四区| 久久精品影院6| 亚洲精品乱码久久久v下载方式 | 婷婷精品国产亚洲av在线| 久久九九热精品免费| 国产精品98久久久久久宅男小说| 69av精品久久久久久| 欧美日韩国产亚洲二区| 99国产综合亚洲精品| 免费在线观看日本一区| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 久久久成人免费电影| 狂野欧美激情性xxxx| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 在线观看66精品国产| а√天堂www在线а√下载| 午夜日韩欧美国产| 淫秽高清视频在线观看| 啦啦啦韩国在线观看视频| 国产91精品成人一区二区三区| 国内精品久久久久久久电影| ponron亚洲| 香蕉国产在线看| 亚洲专区国产一区二区| 18美女黄网站色大片免费观看| 日韩国内少妇激情av| 亚洲性夜色夜夜综合| 国产激情偷乱视频一区二区| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清在线视频| 亚洲精品色激情综合| 在线播放国产精品三级| 欧美午夜高清在线| 欧美国产日韩亚洲一区| 男女下面进入的视频免费午夜| 成人鲁丝片一二三区免费| 波多野结衣高清无吗| 操出白浆在线播放| 又粗又爽又猛毛片免费看| 香蕉国产在线看| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 国产精品99久久99久久久不卡| av视频在线观看入口| 国产伦在线观看视频一区| 亚洲无线在线观看| 91在线观看av| 久久久精品欧美日韩精品| 免费观看精品视频网站| 五月伊人婷婷丁香| 国产精华一区二区三区| 国产成人av激情在线播放| 男女午夜视频在线观看| 搡老妇女老女人老熟妇| 国产在线精品亚洲第一网站| 97碰自拍视频| 岛国在线免费视频观看| 久久热在线av| 久久人人精品亚洲av| 欧美zozozo另类| 亚洲在线自拍视频| 亚洲真实伦在线观看| 嫩草影院入口| 日日摸夜夜添夜夜添小说| 久久久久久人人人人人| 搡老妇女老女人老熟妇| 精品一区二区三区av网在线观看| 午夜免费成人在线视频| 日本 欧美在线| 一级毛片精品| 久久精品aⅴ一区二区三区四区| 精品欧美国产一区二区三| 老司机深夜福利视频在线观看| 99热只有精品国产| 亚洲一区高清亚洲精品| 大型黄色视频在线免费观看| 很黄的视频免费| 婷婷精品国产亚洲av在线| 免费在线观看成人毛片| 在线视频色国产色| 国产精品久久电影中文字幕| 精品国产美女av久久久久小说| 99久久成人亚洲精品观看| 他把我摸到了高潮在线观看| 99热这里只有是精品50| 亚洲熟妇熟女久久| 亚洲av成人一区二区三| 免费大片18禁| 欧美激情久久久久久爽电影| 99久久无色码亚洲精品果冻| 久久国产精品影院| 成年人黄色毛片网站| 欧美三级亚洲精品| 精品一区二区三区视频在线 | 老司机福利观看| 啦啦啦免费观看视频1| 成人三级做爰电影| 婷婷六月久久综合丁香| 两个人看的免费小视频| 亚洲精品粉嫩美女一区| 中文资源天堂在线| 亚洲精品中文字幕一二三四区| 欧美日韩瑟瑟在线播放| 欧美成人一区二区免费高清观看 | 很黄的视频免费| 国产三级在线视频| 色av中文字幕| 日韩欧美一区二区三区在线观看| 国产 一区 欧美 日韩| 欧美黑人欧美精品刺激| 波多野结衣巨乳人妻| 天天添夜夜摸| 日韩国内少妇激情av| 欧美zozozo另类| 黄色成人免费大全| 精品欧美国产一区二区三| 午夜视频精品福利| 成年免费大片在线观看| 国产一区在线观看成人免费| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产| 制服人妻中文乱码| 国产欧美日韩精品亚洲av| 国产伦精品一区二区三区四那| 国产精品爽爽va在线观看网站| 国产午夜精品论理片| 男女之事视频高清在线观看| 国产精品98久久久久久宅男小说| 欧美乱妇无乱码| 午夜福利高清视频| 99久久精品国产亚洲精品| 无遮挡黄片免费观看| 老司机福利观看| 色综合亚洲欧美另类图片| 制服人妻中文乱码| 成年女人永久免费观看视频| 亚洲专区字幕在线| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站在线播放欧美日韩| 欧美色视频一区免费| 大型黄色视频在线免费观看| 免费看日本二区| 国产主播在线观看一区二区| 99热这里只有是精品50| 90打野战视频偷拍视频| 日本熟妇午夜| 十八禁人妻一区二区| 我的老师免费观看完整版| 午夜激情福利司机影院| www日本黄色视频网| 法律面前人人平等表现在哪些方面| 国产91精品成人一区二区三区| 亚洲av成人精品一区久久| 国产精品九九99| 欧美日韩国产亚洲二区| 最近最新免费中文字幕在线| 免费在线观看影片大全网站| 国产69精品久久久久777片 | 一级毛片精品| 我要搜黄色片| 在线观看免费视频日本深夜| 可以在线观看的亚洲视频| 99国产极品粉嫩在线观看| 欧美成人免费av一区二区三区| 动漫黄色视频在线观看| 免费在线观看亚洲国产| 亚洲专区字幕在线| 中国美女看黄片| 欧美日韩黄片免| 精品一区二区三区四区五区乱码| 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 亚洲av日韩精品久久久久久密| 两性午夜刺激爽爽歪歪视频在线观看| 免费人成视频x8x8入口观看| 国产亚洲av高清不卡| 国产真实乱freesex| 国产av在哪里看| 欧美3d第一页| 婷婷六月久久综合丁香| 九色国产91popny在线| 国产精品日韩av在线免费观看| 熟妇人妻久久中文字幕3abv| a在线观看视频网站| 日韩人妻高清精品专区| 99久国产av精品| 国产精品免费一区二区三区在线| 亚洲av片天天在线观看| 啪啪无遮挡十八禁网站| 成人av一区二区三区在线看| 欧美中文日本在线观看视频| 18禁国产床啪视频网站| 亚洲午夜理论影院| 国产精品久久视频播放| 91字幕亚洲| 成人亚洲精品av一区二区| 88av欧美| 欧美乱色亚洲激情| 亚洲av熟女| 国产99白浆流出| xxxwww97欧美| 色综合亚洲欧美另类图片| 成人欧美大片| 99国产精品一区二区蜜桃av| av在线蜜桃| 女人被狂操c到高潮| 他把我摸到了高潮在线观看| 国产成人精品久久二区二区免费| 欧美zozozo另类| 身体一侧抽搐| 99久国产av精品| 岛国视频午夜一区免费看| 91在线观看av| 性色avwww在线观看| 亚洲av成人不卡在线观看播放网| 熟女少妇亚洲综合色aaa.| 美女高潮喷水抽搐中文字幕| 搡老熟女国产l中国老女人| 中国美女看黄片| 又粗又爽又猛毛片免费看| 精品久久久久久成人av| www.999成人在线观看| 又黄又粗又硬又大视频| 日本一二三区视频观看| 村上凉子中文字幕在线| 国产综合懂色| 国产精品女同一区二区软件 | 色吧在线观看| 精品久久久久久成人av| 中文字幕人成人乱码亚洲影| 欧美一级毛片孕妇| 国产一区二区在线观看日韩 | 一进一出抽搐动态| 18禁观看日本| 狂野欧美白嫩少妇大欣赏| 亚洲美女黄片视频| 国产精品久久电影中文字幕| 久久久久久久久久黄片| 欧美最黄视频在线播放免费| 精品久久久久久久毛片微露脸| 一个人看视频在线观看www免费 | 成人鲁丝片一二三区免费| 男人舔女人下体高潮全视频| 一本精品99久久精品77| 国产精品九九99| 老司机深夜福利视频在线观看| 亚洲五月天丁香| 人妻夜夜爽99麻豆av| 精品熟女少妇八av免费久了| 日韩欧美 国产精品| 国产美女午夜福利| 97碰自拍视频| 女人被狂操c到高潮| 99久久精品热视频| 高潮久久久久久久久久久不卡| 最近视频中文字幕2019在线8| 国产精品一区二区三区四区免费观看 | 欧美黑人欧美精品刺激| 久久久久久久久中文| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 欧美zozozo另类| av天堂中文字幕网| 国产亚洲av嫩草精品影院| 亚洲一区二区三区色噜噜| 很黄的视频免费| 99re在线观看精品视频| 一本精品99久久精品77| 色综合站精品国产| 久久久久国产精品人妻aⅴ院| 男人的好看免费观看在线视频| 97碰自拍视频| 欧美另类亚洲清纯唯美| 亚洲熟妇中文字幕五十中出| 日韩欧美在线乱码| 搡老妇女老女人老熟妇| 亚洲色图av天堂| 桃红色精品国产亚洲av| 午夜视频精品福利| 久久久久国产一级毛片高清牌| 亚洲激情在线av| 色综合婷婷激情| 国产精品 国内视频| 日韩欧美 国产精品| 国产v大片淫在线免费观看| 在线免费观看的www视频| 一区二区三区国产精品乱码| 欧美zozozo另类| 悠悠久久av| 99久久综合精品五月天人人| 岛国视频午夜一区免费看| 99久久99久久久精品蜜桃| 天天躁日日操中文字幕| 黄色 视频免费看| 狂野欧美激情性xxxx| 欧美黄色片欧美黄色片| 亚洲成av人片在线播放无| 免费人成视频x8x8入口观看| 99久久久亚洲精品蜜臀av| 国产v大片淫在线免费观看| 99精品欧美一区二区三区四区| 欧美乱码精品一区二区三区| 亚洲五月天丁香| 999精品在线视频| 国产日本99.免费观看| 99re在线观看精品视频| 亚洲在线自拍视频| 久久久精品欧美日韩精品| 日韩精品中文字幕看吧| 男人的好看免费观看在线视频| 嫩草影视91久久| 成人亚洲精品av一区二区| 国产av不卡久久| 国产毛片a区久久久久| 男人和女人高潮做爰伦理| 村上凉子中文字幕在线| 真实男女啪啪啪动态图| 久久久精品欧美日韩精品| 又紧又爽又黄一区二区| 国产麻豆成人av免费视频| 亚洲片人在线观看| 一级毛片精品| 母亲3免费完整高清在线观看| 99久久久亚洲精品蜜臀av| 成人亚洲精品av一区二区| 床上黄色一级片| 老司机在亚洲福利影院| 国产精品美女特级片免费视频播放器 | 亚洲精品中文字幕一二三四区| 九九在线视频观看精品| 精品熟女少妇八av免费久了| www日本黄色视频网|