• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    BSDEs with Jumps and Path-Dependent Parabolic Integro-Differential Equations?

    2015-06-01 07:34:42FaleiWANG

    Falei WANG

    1 Introduction

    Linear backward stochastic differential equations(BSDEs for short)were introduced by Bismut[2]in 1973.Pardoux and Peng[16]established the existence and uniqueness theorem for nonlinear BSDEs under a standard Lipschitz condition in 1990.Then,Peng[18–19]and Pardoux and Peng[17]introduced the nonlinear Feynman-Kac formula,which provides a probabilistic representation for a wide class of semilinear partial differential equations(see also[13]).Since then,especially after the publication of the paper[11],in which the applications of BSDEs in finance were discussed,the theory of BSDE has received wide attention for both theoretical research and applications.

    Recently,Dupire[7]introduced a new functional Ito?’s formula,which non-trivially generalized the classical one through a new notion-path derivative(see[4–6]for more general and systematic research).It extends the It? stochastic calculus to functionals of a given process.It provides an excellent tool for the study of path-dependence.In fact,he showed that a smooth path functional solves a linear path-dependent PDE if its composition with a Brownian motion generates a martingale,which provided a functional extension of the classical Feynman-Kac formula.Moreover,by virtue of the BSDE approach,we obtained the existence and uniqueness of the smooth solution to the semilinear path-dependent PDE(see[21]).These methods are mainly based on stochastic calculus.

    The aim of this paper is to generalize the above results to the case of BSDEs with both Brownian motion and a Poisson random measure.Consider the following BSDE with jumps:

    where X is a d-dimensional di ff usion satisfying the SDE

    in which b:RdRd, σ :RdRd×d, β :Rd× ERdare some measurable functions,and f:Λ × Rn× Rn×d× L2(E,E,λ;Rn)Rnis a non-anticipative functional with respect to X.Note that(1.1)is“non-Markovian”.We will prove that under certain smooth assumptions(see Section 4)the solution(Y(t),Z(t),K(t))to(1.1)solves the following type of PDE,which is said to be path-dependent parabolic integro-differential equations(PIDEs for short).For each l∈ {1,···,n},

    where the derivative is the Dupire’s path derivative(see Section 2.1).More speci fically,the path-function u(t,X(s)0≤s≤t):=Y(t,ω)is the unique-solution to the path-dependent PIDEs(1.3).We refer to Buckdahn-Pardoux[3]for the Markovian case when both Φ and f are functions of the forward di ff usion.The results of this paper non-trivially generalize the ones of[3](see also[1])for the path-dependent situation.

    The paper is organized as follows.In Section 2,we present some existing results in the theory of functional It?’s formula and BSDEs that we will use in this paper.In Section 3,we state the nonlinear Feynman-Kac formula for the “discrete functional” form.Then,in Subsections 4.1–4.2,we first establish some estimates and regularity results for the solution to BSDEs with path.Finally,in Subsection 4.3,we obtain our main results,i.e.,Theorems 4.4 and 4.5,which provide a one to one correspondence between BSDEs and the path-dependent PIDEs.

    When the coefficients of BSDE are only Lipschitz functions,we usually can not obtain the smooth results given in this paper,and therefore a new type of viscosity solutions is required.In the Brownian motion case,we refer to[20]for the corresponding comparison theorem.Moreover,[8]introduced a di ff erent stochastic approach to derive a maximum principle for semilinear pathdependent partial differential equations.For a recent account and development of this theory,we refer the readers to[9–10].

    2 Preliminaries

    2.1 Functional It?’s formula

    The following notations are mainly from Dupire[7].

    Let T>0 be fixed.For each t ∈ [0,T],we denote by Λtthe set of c`adl`ag Rd-valued functions on[0,t].For each γ ∈ ΛT,the value of γ at time s ∈ [0,T]is denoted by γ(s).Thus γ = γ(s)0≤s≤Tis a c`adl`ag process on[0,T]and its value at time s is γ(s).The path of γ upto time t is denoted by γt,i.e., γt= γ(s)0≤s≤t∈ Λt.Denote We sometimes speci fically write

    γt= γ(s)0≤s≤t=(γ(s)0≤s

    to indicate the terminal position γ(t)of γt,which often plays a special role in this framework.For each γt∈ Λ and x ∈ Rd,we denote by γt(s)the value of γtat s ∈ [0,t]and:=(γt(s)0≤s

    Now consider the function u of path,i.e.,u:ΛR.This function u=u(γt)γt∈Λcan also be regarded as a family of real valued functions

    u(γt)=u(t,γt(s)0≤s≤t)=u(t,γt(s)0≤s

    We also denote u(γxt):=u(t,γt(s)0≤s

    We introduce the distance on Λ.Let〈·,·〉and|·|denote the inner product and the norm in Rd.For each 0 ≤ t≤≤ T and γt,t∈ Λ,we denote

    It is obvious that Λtis a Banach space with respect to‖ ·‖.Since Λ is not a linear space,d∞is not a norm.

    Definition 2.1(Continuous) A function u:ΛR is said to be Λ-continuous at γt∈ Λ,if for any ε >0,there exists δ>0 such that for eacht∈ Λ with d∞(γtt)< δ,we have|u(γt)? u(γt)|< ε.u is said to be Λ-continuous if it is Λ-continuous at each γt∈ Λ.

    Remark 2.1In our framework,we often regard u()as a function of t,γtand x,i.e.,u()=u(t,γt(s)0≤s

    Definition 2.2Given u:ΛR and γt∈ Λ,if there exists p ∈ Rd,such that

    then we say that u is(vertically)differentiable at γtand denote Dxu(γt)=p.u is said to be vertically differentiable in Λ if Dxu(γt)exists for each γt∈ Λ.We can similarly define the Hessian Dxxu(γt).It is an S(d)-valued function defined on Λ,where S(d)is the space of all d×d symmetric matrices.

    For each γt∈ Λ,we denote

    It is clear that γt,s∈ Λs.

    Definition 2.3For a given γt∈ Λ,if we have

    then we say that u(γt)is(horizontally)differentiable in t at γtand denote Dtu(γt)=a.u is said to be horizontally differentiable in Λ if Dtu(γt)exists for each γt∈ Λ.

    Definition 2.4define Cj,k(Λ)as the set of functions u defined on Λ,which are j times horizontally and k times vertically differentiable in Λ,such that all these derivatives are Λ-continuous.

    Definition 2.5Function u is said to have the horizontal local Lipschitz property if and only if

    Definition 2.6u is said to be inif u ∈ C1,2(Λ)and for ? =u,Dtu,Dxu,Dxxu,we have

    where C and k are some constants depending only on ?.

    Example 2.1If u(γt)=f(t,γt(t))with f ∈ C1,1([0,T[×R),then Dtu(γt)= ?tf(t,γt(t)), Dxu(γt)= ?xf(t,γt(t)),which are the classic derivatives.In general,these derivatives also satisfy the classic properties:linearity,the product rule and the chain rule.

    The functional It? formula for continuous martingale was firstly obtained by Dupire[7],and then generalized by Cont and Fournié[4]to more general formulation.

    Theorem 2.1Let(Ω,F,(Ft)t∈[0,T],P)be a probability space.X is a semimartingale and u is in(Λ).If Dxu has the horizontal local Lipschitz property,then for any t∈ [0,T[:

    Remark 2.2If u∈(Λ),the horizontal local Lipschitz property for Dxu does not hold in general.

    In this paper,we will use the following functional It? formula.

    Theorem 2.2Let(Ω,F,(Ft)t∈[0,T],P)be a probability space.X=M+A is a semimartingale,where M is a continuous local martingale and A is a finite variation process.If u∈then for any t∈ [0,T[,

    We give the sketch of proof of Theorem 2.2,which is essentially from Cont and Fournié[4].

    ProofWithout loss of generality,we assume that X and |ΔX(s)|are bounded.Otherwise,for each p,denote τp:=inf{s ≥ 0:|X(s)|≥ p orand consider a process Xτp.

    Let us introduce a sequence of random subdivisions of[0,t],and define the following sequence of stopping times:

    Then sup{|X(u)?tends to 0 as n → ∞.We set

    Recall that u∈and

    (note that(56)also converges to 0 in[4]),and then using the same method as in[4],one can get

    which completes the proof.

    2.2 BSDEs

    Let(Ω,F,P)be a completed probability space.The filtration(Ft)0≤t≤Tis generated by the following two mutually independent stochastic processes defined on(Ω,F,P),and augmented by all P-null sets:

    (1)A d-dimensional standard Wiener process{B(t)}t≥0.

    (2)A Poisson random measure μ on R+× E,where E:=Rd{0}is equipped with its Borel f i eld E,with a compensator ν(dt,de)=dtλ(de),such that{([0,t]×A)=(μ?ν)([0,t]×A)}t≥0is a martingale for all A ∈ E satisfying λ(A)< ∞.λ is assumed to be a σ- finite measure on(E,E)satisfying

    It is also a right continuous filtration.

    Remark 2.3We assume that the L′evy measure λ satis fies(2.3)instead of<∞,and then the jump-di ff usion process X in the sequel satisfies the conditions of the functional It? formula(2.2).

    We also introduce the following spaces of processes which will be used frequently in the sequel:

    Let us consider a function f:Ω×Rn×Rn×d×L2(E,E,λ;Rn)Rn,which is P-measurable for each(y,z,k)∈ Rn×Rn×d×L2(E,E,λ;Rn).For the function f,we will make the following assumptions:

    (A1)f(·,0,0,0)∈ H2(0,T;Rn).

    (A2)There exists a constant C ≥ 0,such that for all t∈[0,T],y,y∈Rn,z,z∈Rn×d,k,k ∈ L2(E,E,λ;Rn),P-a.s.

    The following result on BSDEs with jumps is by now well-known,and for its proof the readers are referred to Lemma 2.4 in[22]or Theorem 2.1 in[1].

    Lemma 2.1Let f satisfy the conditions(A1)–(A2),and then for each ξ∈ L2(FT;Rn),the BSDE with jump

    has a unique adapted solution

    (Y(t),Z(t),K(t))0≤t≤T∈ B2.

    We have the following comparison theorem for solutions to(2.4)(see Proposition 2.6 in[1]).

    Lemma 2.2(Comparison Theorem)Let h:Ω×[0,T]×R×Rd×RR be P×B×Bd×B-measurable and satisfy that for any y,y∈R,z,∈Rd,q,∈R,and t∈[0,T],there exists some constant K>0,such that

    (i)

    (ii)

    (iii)qh(t,y,z,q)is non-decreasing.

    Furthermore,let l:Ω × [0,T]× ER be P × B(E)measurable and satisfy

    0≤l(t,e)≤K(1∧|e|), e∈E.

    Set

    Given ξ1,ξ2∈ L2(FT;R),we have that f2satisfies(A1)–(A2).Denote by(Y1,Z1,K1)and(Y2,Z2,K2)the solutions to the BSDE with the data(ξ1,f1)and(ξ2,f2),respectively.Then we have the following result:If ξ1≥ ξ2and f1(t,y,z,k) ≥ f2(t,y,z,k),a.s.,a.e.for any(y,z,k)∈R×Rd×L2(E,E,λ;R),then Y1(t)≥ Y2(t),a.s.,for all t∈ [0,T].

    For each i∈{1,2},the drivers giare given by

    gi(s,y,z,u)=f(s,y,z,u)+?i(s), ds×dP-a.e.,

    where ?i∈ H2(0,T;Rn)and f satisfies the assumptions(A1)–(A2).The following lemma is due to Buckdahn-Pardoux[3].

    Lemma 2.3Let ξi∈ L2(FT;Rn).Then the solution(Yi,Zi,Ki)to the BSDE(2.4)with the data(ξi,gi)satisfies the following estimate:For any p ≥ 2,there exists Cpdepending on T and p,such that

    Remark 2.4Note that in Lemma 2.3,we assume only that ξi∈ L2(FT)and the process ?i∈H2(t,T;Rn)to guarantee the solvability of the BSDE.However,if p≥2 and the right-hand side is∞,the estimate obviously holds.

    3 Nonlinear Feynman-Kac Formula for “Discrete Functional” Form

    Cnwill denote respectively the set of functions of class Cnfrom Rpinto Rq,the set of those functions of class Cn(Rp;Rq)whose partial derivatives of order less than or equal to n are bounded Lipschitz continuous functions,and the set of those functions of class Cn(Rp;Rq),which together with all their partial derivatives of order less than or equal to n are in Cl,lip(Rp;Rq),where Cl,lip(Rp;Rq)is the space of all Rq-valued continuous functions ? defined on Rp,such that

    Here C and k are some constants depending only on ?.

    In this section,we shall study the nonlinear Feynman-Kac formula when the BSDEs with jumps are of the “discrete functional” form.We refer to[12]for the BSDEs case(see also[14–15]).Consider the following(discrete)functional-type BSDEs defined on an arbitrary interval[t,T]?[0,T]:For each s∈[t,T],

    where 0=t0≤ t1≤ ···≤ tN=T is a given partition on[0,T].We denote any solution to(3.1),whenever it exists,by(Xt,x,Yt,x,Zt,x,Kt,x)to indicate its dependence on the initial data(t,x).For convenience,for any x=(x1,···,xN)∈ RNdand k=1,···,N,set

    In particular,denote

    Then(3.1)can be rewritten as

    For each k=N,N ? 1,···,1,consider a sequence of semilinear PIDEs with parameters,defined recursively in a “backward” manner as follows:First, fixx(N?1)as a parameter,and define

    Next,for each k=N,N ? 1,···,1,we fixx(k?1)as a parameter,and consider the following PIDEs:For each(t,x)∈ [tk?1,tk)×Rd,

    For ?∈C2(Rd;R),the operator L is given by

    Now suppose that all PIDEs have classical solutions which are denoted by uki,i=1,···,n,k=N,N ? 1,···,1.For convenience,set

    Finally,for t∈ [0,T],if t∈ (tk?1,tk],k=N,N ?1,···,2 or t∈ [t0,t1],denote

    Then,we have the following nonlinear Feynman-Kac formula.

    Theorem 3.1Assume that all PIDEs in(3.2)have classical solutions whose derivatives are of polynomial growth.Then,the process(Y,Z,K)defined by(3.3)solves BSDE(3.1)on[0,T].

    ProofWe shall check the case t∈ [tN?1,tN],and the other cases can be argued in the same way.

    Applying the It?’s formula and by the Definition of uN,we deduce that

    From(3.2),we obtain that(Y,Z,K)solves the BSDE on(tN?1,T].Note that at t=tN?1,

    From the Definitions of the functions uN?1and vN?1,we can similarly prove that(Y,Z,K)solves the BSDE on(tN?2,tN?1].Continuing this way for N steps,the proof is completed.

    We should note that various assumptions can be made to guarantee the existence and uniqueness of the classical solution to the system of PIDEs,as well as the adapted solution to the BSDE(3.1).In particular,by Theorem 4.1 in[3],we have the following lemma.

    Lemma 3.1Let b∈β :Rd× ERdbe measurable.For all e∈ E,β(·,e)∈there exists a constant K ≥ 0,such that

    For each i∈ {1,···,N},fi(s,x1,···,xN,y,z,k)∈ C0,0,2([0,T]×R(N?1)d×Rd×Rn×Rn×d×L2(E,E,λ;Rn);Rn)and

    Moreover,for each s ∈ [0,T],fi(s,x1,···,xN,y,z,k)∈(R(N?1)d×Rd×Rn×Rn×d×L2(E,E,λ;Rn);Rn).Functions ?yfi(t,·), ?zfi(t,·), ?kfi(t,·)are bounded Lipschitz functions,and so are their derivatives of order one with respect to xN,y,z,k.Furthermore,all their Lipschitz coefficients are uniformly bounded.If for each i ∈ {1,···,N},gi(x1,···,xN) ∈and

    then all PDEs in(3.2)have classical solutions.

    Note that when we say the(Frechet)derivative w.r.t k is bounded,we mean that its norm in L2(E,E,λ;Rn)is bounded.In the sequel,we always assume that b,σ,β satisfy the above conditions.

    Remark 3.1From(3.3),the process Z is left continuous with right limit(LCRL for short).Since the Brownian motion is continuous,we can also define Z by Z(t)in(3.3).

    4 Nonlinear Feynman-Kac Formula for Functional Form

    In this section,we will generalize the nonlinear Feynman-Kac formula for the path-dependent situation.The following directional derivatives will be used frequently in the sequel.

    Definition 4.1Suppose that Φ is an Rn-valued function on ΛT.Then Φ is said to be in C2(ΛT;Rn),if it is twice continuously Frechet differentiable at each γ ∈ ΛT. Φ is said to be inand there exist some constants C ≥ 0 and k ≥ 0 depending only on Φ such that for each s≤ t∈ [0,T],γ,∈ ΛT,

    with Ψ =Analogously,for each t∈ [0,T],we can define

    Remark 4.1Since ΛTis a Banach space with respect to the uniform norm,for each γ,bounded linear map,andis a ΛT× ΛTRnbounded linear map.Example 4.1If Φ(γ)=?(γ(s))ds for some ? ∈then Φ ∈

    In the rest of this paper,we shall make use of the following assumptions on the generator f and the terminal Φ of our BSDE.

    (H1) Φ is an Rn-valued function on ΛT.Moreover,Φ ∈with the Lipschitz coefficients C and k.

    (H2)f(γt,y,z,k)is an Rn-valued continuous function on Λ × Rn× Rn×d×L2(E,E,λ;Rn).For any γt∈ Λ,(y,z,k)f(γt,y,z,k)is in,(y,z,k),,are in,(y,z,k)→is a Lispchitz function and(y,z,k),,z,k),are in Cl,lip(Rn×Rn×d×L2(E,E,λ;Rn);Rn)for any(y,z,k),γtf(γt,y,z,k)is in, γt,,are inγt,,,,,are in Cl,lip(Λt;Rn).They are all continuous in t,and so are their derivatives.Moreover,all their Lipschitz coefficients are uniformly bounded.

    (H3)f(γt,y,z)=(t,γt(t),y,z,k),where

    For each t∈ [0,T],(t,·)∈(Rd×Rn×Rn×d×L2(E,E,λ;Rn);Rn)and ?yf(t,·),?zf(t,·),?k(t,·)are in Cb,lip(Rd×Rn×Rn×d×L2(E,E,λ;Rn);Rn),and so are their derivatives of order one with respect to x,y,z,k.Moreover,all their Lipschitz coefficients are uniformly bounded.

    It is obvious that the assumption(H3)implies the assumption(H2).

    Assume that(H1)–(H2)hold.For any γt∈ Λ,(Yγt(s),Zγt(s),Kγt(s))t≤s≤Tis the solution to the following BSDE:

    where

    By Lemma 2.1,for each γt∈ Λ,(4.1)has a unique solution(Yγt,Zγt,Kγt)∈ B2and Yγt(t)defines a deterministic mapping from Λ to Rn.

    4.1 Property of solution to the BSDE with jumps

    We next establish higher-order moment estimates for the solution of the BSDE(4.1).Without loss of generality,the Lipschitz coefficients of f are also denoted by C and k.For convenience,define Yγt(s),Zγt(s),Kγt(s)for any t,s ∈ [0,T],γt∈ Λ by Yγt(s)=Yγt(s ∨ t),while Zγt(s)=0 and Kγt(s)=0 for s

    From Lemma 2.3 and Proposition 3.5 in[21],we deduce the following theorem.

    Theorem 4.1For any p≥2,there exist some constants Cp>0 and q>0 depending on C,T,k,p,such that for any t,t∈ [0,T],γt,t∈ Λ,h,∈ R{0},

    whereis an orthonormal basis of Rd.

    Now we define

    Theorem 4.2For each γt∈ Λ,has a version which is a.e.in C0,2([0,T]× Rd).In particular,Dxu(γt),Dxxu(γt)exist and u ∈

    ProofTo simplify presentation,we shall only prove the case when n=d=1,as the higher-dimensional case can be treated in the same way without substantial difficulty.

    Since for each h,∈R{0}and k,∈R,

    using the Kolmogorov’s criterion,the existence of a continuous derivative ofwith respect to x follows from the above estimates,as so is the existence of mean-square derivatives ofand with respect to x,which is mean square continuous in x.Denote them by(DxYγt,DxZγt,DxKγt).

    By the Definition of vertical derivatives,Dxu(γt)exists.We shall prove u(γt)is Λ-continuous.Putting s=t in the BSDE(4.1)and taking expectation,we get

    For each γt,∈ Λ with t≥ t,

    where we have used the assumptions(H1)–(H2)in the last inequality.Applying Theorem 4.1,we can find some constant C1depending only on C,k and T so that

    By a similar argument,we have u ∈

    By Lemma 4.1,we conclude that‖Kγt(s)‖Eare in Lp(FT)for any p>0.Since(DxYγt,DxZγt,DxKγt)is the solution to the following linearized BSDE:

    the existence of a continuous second-order partial derivative ofwith respect to x is proved in a similar fashion and this completes the proof.

    4.2 Path regularity of processes Z and K

    In[3],when the BSDE is the state-dependent case,i.e.,f=f(t,γ(t),y,z,k)and Φ =?(γ(T)),it is shown that Z,K and Y are connected in the following sense under appropriate assumptions:

    In this section,we extend this result to the path-dependent case.Indeed,we have below a formula relating Z,K with Y.

    Theorem 4.3Under assumptions(H1)–(H2),for each fixed γt∈ Λ,the processes(Zγt(s),have the following a.s.left continuous version given by

    A direct consequence of Theorem 4.3 is the following result.

    Lemma 4.1For each p≥2,there exist some constants Cpand q depending only on C,T,k and p,such that

    and

    Now we give the proof of Theorem 4.3.

    Proof of Theorem 4.3To simplify presentation,we shall only prove the case when n=d=1,as the higher-dimensional case can be treated in the same way without substantial difficulty.We will suppress the superscript γtfor notational convenience.

    Step 1For each s ∈ [0,T)and a positive integer m,we introduce a mappingΛsΛs:

    wherek=0,1,···,m.Denoteand then there exists some constant C,such that

    By Lemma 2.3,we also haveConsequently,u(Xs)=Y(s).

    Step 2Denote Φm():= Φ(γm())and fm(s,y,z,k):=f(γm(s),y,z,k).Then for each m,there exist some functions ?mdefined on Λt×Rm×dand ψmdefined on[t,T]×Λt×Rm×d×Rn×Rn×d×L2(E,E,λ;R),such that

    Indeed,set

    Recalling the assumptions(H1)–(H2),we obtain thatwhere

    In particular,

    Furthermore,for each fixedtand i∈ {1,···,m},ψim(s,t,x1,···,xm,y,z,k)∈ C0,0,2([t,T]×R(m?1)d×Rd×Rn×Rn×d×L2(E,E,λ;Rn);Rn),where

    For each

    Functionsandare bounded Lipschitz functions,and so are their derivatives of order one with respect to xm,y,z,k.

    Now consider the following BSDEs,for any≥ t,∈ Λ,

    DenoteBy Theorems 3.1,4.2 and Lemma 3.1(see also Lemma 3.10 in[21]),we can get u(m)(γt)∈Moreover,for each s∈ [t,T],s∈ Λ,and l∈ {1,···,n},

    In particular,for each s∈[t,T],

    Denote by C0a constant that depends only on C,T and k,which is allowed to change from line to line.From Lemma 2.3,for each∈ Λ,

    Moreover,we also deduce that

    Thus,it holds that

    By Lemma 2.3,which implies that

    Step 3From BSDE(4.1),we see that the compensated processes of jumps of Y are given by

    Since Y(s)=u(Xs),we also have the representation

    We claim that the function tis left continuous for each γt∈ Λ and x ∈ Rd.Recalling the proof of Theorem 4.2,for each γt∈ Λ and x ∈ Rd,there exists some constant C1depending on γt,x,such that

    Thus the integrand in(4.6)is predictable,and from the uniqueness of the integral representation,we obtain the desired result.

    4.3 Path-dependent parabolic integro-differential equations

    We now establish the relationship between our BSDE and the following path-dependent parabolic integro-differential equation:

    where u=(u1,···,un):ΛRnis a function on Λ and

    We immediately obtain the following theorem.

    Theorem 4.4Assume that assumptions(H1)–(H2)hold,and let u ∈be a solution to(4.7).Then for each γt∈ Λ,we have u(γt)=Yγt(t),where(Yγt(s),Zγt(s),Kγt(s))t≤s≤Tis the unique solution to the BSDE(4.1).Consequently,the path-dependent PDE(4.7)has at most one-solution.

    ProofWe again suppress the superscript γtfor notational convenience.Applying thefunctional It’s formula(2.2)to u(Xs)on s ∈ [t,T),for each l∈ {1,···,n},

    Since u solves PDE(4.7),we have that

    Recalling u(XT)=Φ(XT)and u∈(Y(s),Z(s),K(s))=(u(Xs),Dxu(Xs?)σ(X(s?)),is the unique solution to the BSDE(4.1).In particular,u(γt)=Yγt(t).This completes the proof.

    By Theorem 4.4 and Lemma 2.2,we have the following comparison theorem of pathdependent PIDE.

    Lemma 4.2Let n=1.We assume that f=fi,Φ = Φi,i=1,2 satisfy the same assumptions as in Lemma 2.2 and Theorem 4.4.Moreover,

    (i)f1(γt,y,z,k)≤ f2(γt,y,z,k),for each(γt,y,z,k)∈ Λ × R × Rd× L2(E,E,λ;R);

    (ii) Φ1(γT)≤ Φ2(γT)for each γT∈ ΛT.

    If ui∈is the solution to(4.7)associated with(f,Φ)=(fi,Φi),i=1,2,respectively,then for each γt∈ Λ,u1(γt)≤ u2(γt).

    We are now in a position to prove the converse to the above result.

    Theorem 4.5Under assumptions(H1)–(H2),the function u defined in(4.2)is the unique-solution to the path-dependent PIDE(4.7).

    ProofLet δ>0 be such that t+δ≤ T.We again suppress the superscript γtfor notational convenience.Hence

    By(4.8)and the proof of Theorem 4.3,we obtain a.s.(choosing a subsequence if necessary)

    Moreover,for each∈ Λdwith,

    Now applying theformula,we deduce that

    Thus by(4.5),(4.9)and the dominated convergence theorem,we have

    where

    Recalling(4.4),we can find some constant c depending only on C,T,γtand k so that

    Hence

    Finally,taking expectation on both sides of(4.10)yields

    Thus u∈and it satisfies(4.7).

    Remark 4.2We make assumptions(H1)–(H2).Then

    is the unique solution to the BSDE(2.4).

    Remark 4.3In the case that Φ(γ)= ?(γ(T))for some ? ∈and f satisfies(H3),the above result is the nonlinear Feynman-Kac formula,which is given by Buckdahn-Pardoux[3].

    Example 4.2Suppose n=d=1 and

    where f satis fies(H3).In this case,the BSDE(4.1)has the explicit solution as follows:

    Given Φ :ΛTR,

    for some ? ∈(R),then for each γt∈ Λt,

    Using the classic Feynman-Kac formula,we deduce that

    is the solution to the following parabolic integro-differential equation:

    Thus

    By the de finitions of horizontal derivatives and vertical derivatives,we have

    Consequently,

    which satis fies(4.7).

    AcknowledgementsThe author would like to thank Prof.Peng,S.for his careful reading,helpful discussions and suggestions.The author also thanks the editor and two anonymous referees for their helpful suggestions.

    [1]Barles,G.,Buckdahn,R.and Pardoux,E.,Backward stochastic differential equations and integral-partial differential equations,Stochastics Stochastics Rep.,60,1997,57–83.

    [2]Bismut,J.M.,Conjugate convex functions in optimal stochastic control,J.Math.Anal.Appl.,44,1973,384–404.

    [3]Buckdahn,R.and Pardoux E.,BSDEs with jumps and associated integro-partial differential equations,preprint.

    [4]Cont,R.and Fournié,D.A.,Change of variable formulas for non-anticipative functionals on path space,J.Funct.Anal.,259(4),2010,1043–1072.

    [5]Cont,R.and Fournié,D.A.,A functional extension of the It? formula,C.R.Math.Acad.Sci.Paris.,348(1),2010,57–61.

    [6]Cont,R.and Fournié,D.A.,Functional It? calculus and stochastic integral representation of martingales,Ann.Probab.,41(1),2013,109–133.

    [7]Dupire,B.,Functional It? calculus,Portfolio Research Paper 2009-04,Bloomberg.

    [8]Ekren,I.,Keller,C.,Touzi,N.and Zhang,J.,On viscosity solutions of path dependent PDEs,Ann.Probab.,42(1),2014,204–236.

    [9]Ekren,I.,Touzi,N.and Zhang,J.,Viscosity solutions of fully nonlinear parabolic path dependent PDEs:Part I.arXiv:1210.0006

    [10]Ekren,I.,Touzi,N.and Zhang,J.,Viscosity solutions of fully nonlinear parabolic path dependent PDEs:Part II.arXiv:1210.0007

    [11]El Karoui,N.,Peng,S.and Quenez,M.C.,Backward stochastic differential equation in finance,Math.Finance,7(1),1997,1–71.

    [12]Hu,Y.and Ma,J.,Nonlinear Feynman-Kac formula and discrete-functional-type BSDEs with continuous coefficients,Stochastic Process.Appl.,112(1),2004,23–51.

    [13]Ma,J.and Yong,J.,Forward-backward stochastic differential equations and their applications,Lecture Notes in Mathematics,1702,Springer-Verlag,Berlin,1999.

    [14]Ma,J.and Zhang,J.,Representation theorems for backward SDEs,Ann.Appl.Probab.,12(4),2002,1390–1418.

    [15]Ma,J.and Zhang,J.,Path regularity for solutions of backward stochastic differential equations,Probab.Theory Related Fields.,122(2),2002,163–190.

    [16]Pardoux,E.and Peng,S.,Adapted solutions of backward stochastic equations,Systems Control Lett.,14,1990,55–61.

    [17]Pardoux,E.and Peng,S.,Backward stochastic differential equations and quasilinear parabolic partial differential equations,Stochastic Partial Differential Equations and Their Applications,B.L.Rozuvskii and R.B.Sowers(eds.),Lect.Notes Control Inf.Sci.,Vol.176,Springer-Verlag,Berlin,Heidelberg,New York,1992,200–217.

    [18]Peng,S.,Probabilistic interpretation for systems of quasilinear parabolic partial differential equation,Stochastics Stochastics Rep.,37,1991,61–74.

    [19]Peng,S.,A nonlinear Feynman-Kac formula and applications,Control Theory,Stochastic Analysis and Applications(Hangzhou,1991),World Sci.Publ.,River Edge,NJ,1992,173–184.

    [20]Peng,S.,Note on viscosity solution of path-dependent PDE and G-martingales.arXiv:1106.1144

    [21]Peng,S.and Wang,F.,BSDE,path-dependent PDE and nonlinear Feynman-Kac Formula.arXiv:1108.4317

    [22]Tang,S.and Li,X.,Necessary conditions for optimal control of stochastic systems with random jumps,SIAM J.Control Optim.,32(5),1994,1447–1475.

    黑人欧美特级aaaaaa片| 欧美午夜高清在线| 久久午夜亚洲精品久久| 97人妻精品一区二区三区麻豆 | 国产成人系列免费观看| 可以在线观看毛片的网站| 欧美成人性av电影在线观看| 亚洲成人国产一区在线观看| 中文字幕久久专区| 热99re8久久精品国产| 99久久精品国产亚洲精品| 国产麻豆成人av免费视频| 免费不卡黄色视频| 久久九九热精品免费| 天天添夜夜摸| 色在线成人网| 一边摸一边做爽爽视频免费| 亚洲av片天天在线观看| 欧美中文日本在线观看视频| 99riav亚洲国产免费| 久99久视频精品免费| 69av精品久久久久久| 在线永久观看黄色视频| 黑人巨大精品欧美一区二区mp4| 久久性视频一级片| 国产精品久久久人人做人人爽| 婷婷精品国产亚洲av在线| 亚洲五月色婷婷综合| 黑人操中国人逼视频| 制服人妻中文乱码| 99久久综合精品五月天人人| 日本vs欧美在线观看视频| 国产成人一区二区三区免费视频网站| 这个男人来自地球电影免费观看| 久久人妻熟女aⅴ| 日韩精品免费视频一区二区三区| 97碰自拍视频| 美女免费视频网站| 亚洲少妇的诱惑av| 少妇 在线观看| 日日摸夜夜添夜夜添小说| 国产av又大| 国产精品九九99| 一区二区日韩欧美中文字幕| 在线十欧美十亚洲十日本专区| 亚洲中文日韩欧美视频| 中文字幕精品免费在线观看视频| 亚洲av电影不卡..在线观看| 亚洲色图 男人天堂 中文字幕| 欧美黄色片欧美黄色片| 国产亚洲精品久久久久久毛片| 久久久久久免费高清国产稀缺| 又黄又爽又免费观看的视频| 啦啦啦韩国在线观看视频| 最近最新中文字幕大全电影3 | 国产精品国产高清国产av| 欧美国产日韩亚洲一区| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品成人免费网站| 亚洲狠狠婷婷综合久久图片| 俄罗斯特黄特色一大片| 国产精品爽爽va在线观看网站 | 亚洲午夜精品一区,二区,三区| 欧美国产精品va在线观看不卡| 久久 成人 亚洲| 人人澡人人妻人| 亚洲精品国产色婷婷电影| 欧美中文综合在线视频| 欧美另类亚洲清纯唯美| 亚洲成a人片在线一区二区| 欧美日韩一级在线毛片| 日韩高清综合在线| 欧美日韩中文字幕国产精品一区二区三区 | 中文字幕人妻熟女乱码| 欧美丝袜亚洲另类 | 少妇粗大呻吟视频| 亚洲五月色婷婷综合| 天天一区二区日本电影三级 | 亚洲中文av在线| 成年人黄色毛片网站| 99久久综合精品五月天人人| 日韩一卡2卡3卡4卡2021年| 97超级碰碰碰精品色视频在线观看| e午夜精品久久久久久久| 制服诱惑二区| 亚洲人成电影免费在线| 亚洲精品久久国产高清桃花| 变态另类丝袜制服| 日韩 欧美 亚洲 中文字幕| 国产成人欧美| 国产亚洲精品一区二区www| 久久久国产成人精品二区| 如日韩欧美国产精品一区二区三区| 亚洲精品国产精品久久久不卡| 欧美在线黄色| 999久久久精品免费观看国产| 久久 成人 亚洲| 在线播放国产精品三级| 色综合欧美亚洲国产小说| 成年女人毛片免费观看观看9| 国产av精品麻豆| 香蕉丝袜av| 久久中文字幕一级| 欧美成人性av电影在线观看| 亚洲九九香蕉| 嫩草影院精品99| 免费搜索国产男女视频| 久久九九热精品免费| 免费在线观看亚洲国产| 老司机午夜十八禁免费视频| 精品日产1卡2卡| svipshipincom国产片| 欧美中文综合在线视频| 一级作爱视频免费观看| 后天国语完整版免费观看| 如日韩欧美国产精品一区二区三区| 久久香蕉激情| 国产黄a三级三级三级人| 99在线人妻在线中文字幕| 成人免费观看视频高清| 国产野战对白在线观看| 国产真人三级小视频在线观看| 久久精品aⅴ一区二区三区四区| 国产一区二区三区综合在线观看| 90打野战视频偷拍视频| 久久久国产精品麻豆| 淫秽高清视频在线观看| 久久中文字幕人妻熟女| 精品国产乱码久久久久久男人| 日本黄色视频三级网站网址| 亚洲av成人不卡在线观看播放网| 无遮挡黄片免费观看| 久久天堂一区二区三区四区| 亚洲精品久久成人aⅴ小说| 久久久久久久午夜电影| 亚洲国产精品成人综合色| 国产av又大| 在线观看免费日韩欧美大片| 一级,二级,三级黄色视频| 这个男人来自地球电影免费观看| 国产成人影院久久av| 精品国产一区二区久久| 十八禁人妻一区二区| 大香蕉久久成人网| 欧美成狂野欧美在线观看| 午夜精品久久久久久毛片777| 欧美日韩一级在线毛片| 国产精品亚洲av一区麻豆| 精品午夜福利视频在线观看一区| 亚洲免费av在线视频| 精品一区二区三区四区五区乱码| 性欧美人与动物交配| 欧美中文日本在线观看视频| 伦理电影免费视频| 久久热在线av| 国产精品1区2区在线观看.| 夜夜看夜夜爽夜夜摸| 日韩精品青青久久久久久| 韩国精品一区二区三区| avwww免费| 国产三级黄色录像| 黄色视频,在线免费观看| а√天堂www在线а√下载| 国产精品日韩av在线免费观看 | 亚洲av电影不卡..在线观看| a在线观看视频网站| 亚洲av电影在线进入| 久热这里只有精品99| 日韩成人在线观看一区二区三区| 欧美日本亚洲视频在线播放| 久久婷婷人人爽人人干人人爱 | 久久久久国内视频| 99精品久久久久人妻精品| 久久精品成人免费网站| 国产熟女午夜一区二区三区| 国产精华一区二区三区| 首页视频小说图片口味搜索| 国产日韩一区二区三区精品不卡| 国产1区2区3区精品| 亚洲第一欧美日韩一区二区三区| 午夜福利在线观看吧| 最近最新中文字幕大全免费视频| 免费搜索国产男女视频| 亚洲精品国产精品久久久不卡| av天堂在线播放| 波多野结衣高清无吗| 999久久久国产精品视频| 男女午夜视频在线观看| 午夜福利欧美成人| 99精品欧美一区二区三区四区| 国产成人精品久久二区二区91| 久久香蕉激情| 色综合欧美亚洲国产小说| 真人做人爱边吃奶动态| 亚洲欧美激情在线| 最好的美女福利视频网| 亚洲国产看品久久| 十八禁网站免费在线| 午夜亚洲福利在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 中出人妻视频一区二区| 黄色a级毛片大全视频| 国产熟女xx| 亚洲五月色婷婷综合| 18禁观看日本| 日韩欧美一区视频在线观看| 欧美日本中文国产一区发布| 精品免费久久久久久久清纯| 国产麻豆69| 精品久久久久久久久久免费视频| 国产精品野战在线观看| 老司机深夜福利视频在线观看| 欧美激情久久久久久爽电影 | 午夜福利欧美成人| 男女午夜视频在线观看| 婷婷六月久久综合丁香| 亚洲中文av在线| 欧美日本中文国产一区发布| or卡值多少钱| 国内毛片毛片毛片毛片毛片| 欧美在线一区亚洲| 国产区一区二久久| 50天的宝宝边吃奶边哭怎么回事| 亚洲午夜精品一区,二区,三区| 伊人久久大香线蕉亚洲五| 日韩精品免费视频一区二区三区| 变态另类丝袜制服| 成在线人永久免费视频| 中亚洲国语对白在线视频| 久久九九热精品免费| tocl精华| 正在播放国产对白刺激| 熟妇人妻久久中文字幕3abv| 亚洲 国产 在线| 亚洲第一青青草原| 最近最新中文字幕大全免费视频| 午夜精品久久久久久毛片777| 九色国产91popny在线| 可以在线观看毛片的网站| 亚洲中文字幕日韩| 亚洲第一av免费看| 亚洲av电影在线进入| 亚洲成av人片免费观看| 亚洲avbb在线观看| 黑人操中国人逼视频| 欧美精品啪啪一区二区三区| 欧美成人午夜精品| ponron亚洲| 久久国产乱子伦精品免费另类| 少妇被粗大的猛进出69影院| 老汉色av国产亚洲站长工具| 国产精品av久久久久免费| 国产av又大| 少妇的丰满在线观看| 成人18禁在线播放| 精品国产乱子伦一区二区三区| 久久国产精品人妻蜜桃| 黄片播放在线免费| 久久精品国产99精品国产亚洲性色 | 99国产极品粉嫩在线观看| 国产av在哪里看| 99re在线观看精品视频| 国产黄a三级三级三级人| 国产高清有码在线观看视频 | 男人的好看免费观看在线视频 | 少妇裸体淫交视频免费看高清 | 一进一出抽搐动态| 18禁黄网站禁片午夜丰满| 伦理电影免费视频| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美日韩在线播放| 99久久久亚洲精品蜜臀av| 婷婷精品国产亚洲av在线| 久久国产精品男人的天堂亚洲| 99热只有精品国产| 免费高清在线观看日韩| 欧美激情高清一区二区三区| 最近最新中文字幕大全免费视频| 欧美色视频一区免费| 国产熟女午夜一区二区三区| 三级毛片av免费| 日本三级黄在线观看| 人人澡人人妻人| 女性被躁到高潮视频| 亚洲伊人色综图| 精品国产美女av久久久久小说| 国产高清有码在线观看视频 | 欧美乱码精品一区二区三区| 999久久久国产精品视频| 长腿黑丝高跟| 又大又爽又粗| 午夜久久久久精精品| 欧美精品亚洲一区二区| av欧美777| 亚洲九九香蕉| 性少妇av在线| 岛国在线观看网站| 国产主播在线观看一区二区| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| 精品久久久久久久人妻蜜臀av | 久久久水蜜桃国产精品网| 成人手机av| 国产精品永久免费网站| 欧美乱码精品一区二区三区| 乱人伦中国视频| 香蕉丝袜av| 亚洲欧美精品综合久久99| 欧美乱码精品一区二区三区| 不卡一级毛片| 国产精品一区二区三区四区久久 | 97人妻精品一区二区三区麻豆 | 午夜福利高清视频| 少妇被粗大的猛进出69影院| 最近最新免费中文字幕在线| 国产成人啪精品午夜网站| 少妇熟女aⅴ在线视频| 国产野战对白在线观看| 成在线人永久免费视频| x7x7x7水蜜桃| 窝窝影院91人妻| 在线十欧美十亚洲十日本专区| 91成人精品电影| 亚洲欧美一区二区三区黑人| 日本一区二区免费在线视频| 国产精品一区二区免费欧美| 精品少妇一区二区三区视频日本电影| 色综合亚洲欧美另类图片| 国产精华一区二区三区| 中文字幕最新亚洲高清| 国产午夜福利久久久久久| 免费高清在线观看日韩| 亚洲欧美激情综合另类| 亚洲一区二区三区不卡视频| 在线观看一区二区三区| 久久久久久久久久久久大奶| 日本在线视频免费播放| 乱人伦中国视频| 女性生殖器流出的白浆| 夜夜夜夜夜久久久久| 超碰成人久久| 国产免费av片在线观看野外av| 国产高清videossex| 波多野结衣巨乳人妻| 国产精品1区2区在线观看.| 久久天堂一区二区三区四区| 青草久久国产| 国产激情欧美一区二区| 伊人久久大香线蕉亚洲五| 俄罗斯特黄特色一大片| 亚洲男人的天堂狠狠| 一区二区三区激情视频| 久久久久久大精品| 午夜福利成人在线免费观看| 精品国产超薄肉色丝袜足j| 亚洲片人在线观看| 男女下面插进去视频免费观看| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 亚洲中文av在线| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品一区二区www| 黑人巨大精品欧美一区二区蜜桃| 黑丝袜美女国产一区| 免费在线观看亚洲国产| 亚洲国产精品合色在线| 一区二区日韩欧美中文字幕| 香蕉国产在线看| 精品一区二区三区av网在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲七黄色美女视频| 在线播放国产精品三级| 在线观看舔阴道视频| 99久久久亚洲精品蜜臀av| 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| 97人妻精品一区二区三区麻豆 | 国产一卡二卡三卡精品| 12—13女人毛片做爰片一| 国产一区二区在线av高清观看| 狂野欧美激情性xxxx| 亚洲 欧美 日韩 在线 免费| 美女高潮到喷水免费观看| 成人亚洲精品av一区二区| 中文亚洲av片在线观看爽| 亚洲av电影在线进入| 日韩欧美在线二视频| 亚洲精品国产区一区二| 国产精品自产拍在线观看55亚洲| 国产av一区在线观看免费| 黑人巨大精品欧美一区二区蜜桃| 嫁个100分男人电影在线观看| 搞女人的毛片| 99在线人妻在线中文字幕| 亚洲男人的天堂狠狠| 亚洲 国产 在线| 大型av网站在线播放| 精品一区二区三区av网在线观看| 国产精品香港三级国产av潘金莲| 久久香蕉激情| 在线观看免费视频日本深夜| 日韩欧美免费精品| 看免费av毛片| 精品一品国产午夜福利视频| 国内精品久久久久久久电影| 97人妻天天添夜夜摸| 99在线人妻在线中文字幕| 久久久久精品国产欧美久久久| 亚洲av成人不卡在线观看播放网| 日韩有码中文字幕| 亚洲精品一区av在线观看| 亚洲一区高清亚洲精品| 久久亚洲精品不卡| 日韩欧美国产在线观看| 99精品欧美一区二区三区四区| 看免费av毛片| 黄色视频,在线免费观看| 又黄又粗又硬又大视频| 亚洲av熟女| 午夜激情av网站| 视频在线观看一区二区三区| 在线观看www视频免费| 国产熟女午夜一区二区三区| 亚洲 国产 在线| 97超级碰碰碰精品色视频在线观看| 亚洲自拍偷在线| 亚洲av电影不卡..在线观看| 在线永久观看黄色视频| 一级毛片女人18水好多| 国产午夜精品久久久久久| 亚洲av成人一区二区三| 两个人视频免费观看高清| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利影视在线免费观看| 久久香蕉国产精品| 91在线观看av| 免费人成视频x8x8入口观看| 侵犯人妻中文字幕一二三四区| 久久九九热精品免费| 日本免费一区二区三区高清不卡 | 亚洲第一av免费看| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 亚洲国产欧美网| 18禁美女被吸乳视频| 国产精品98久久久久久宅男小说| tocl精华| 国产亚洲精品第一综合不卡| 色av中文字幕| 亚洲男人天堂网一区| 99精品在免费线老司机午夜| 久久人妻福利社区极品人妻图片| 一边摸一边抽搐一进一出视频| 99riav亚洲国产免费| 免费在线观看影片大全网站| 女人精品久久久久毛片| 午夜福利一区二区在线看| 亚洲在线自拍视频| 午夜福利免费观看在线| 天天一区二区日本电影三级 | 18禁观看日本| 99久久综合精品五月天人人| 18禁国产床啪视频网站| 一区二区三区国产精品乱码| 国产成人精品久久二区二区91| 欧美成人午夜精品| 无人区码免费观看不卡| 国产精品久久久av美女十八| 午夜久久久久精精品| 久久香蕉国产精品| 亚洲最大成人中文| 国产色视频综合| 日韩欧美国产一区二区入口| 婷婷丁香在线五月| 国产一卡二卡三卡精品| 热re99久久国产66热| 久久精品国产亚洲av高清一级| 精品不卡国产一区二区三区| bbb黄色大片| 亚洲自拍偷在线| 高清在线国产一区| 琪琪午夜伦伦电影理论片6080| 老司机深夜福利视频在线观看| 久久精品91无色码中文字幕| 国产精品99久久99久久久不卡| 久久中文字幕人妻熟女| 亚洲午夜理论影院| 黄色视频不卡| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 亚洲国产精品999在线| 国产成人av教育| 波多野结衣高清无吗| 黄色片一级片一级黄色片| 悠悠久久av| 国产亚洲av嫩草精品影院| 亚洲五月色婷婷综合| 亚洲黑人精品在线| 亚洲自偷自拍图片 自拍| 90打野战视频偷拍视频| 精品国内亚洲2022精品成人| 丁香欧美五月| 国产精品秋霞免费鲁丝片| 免费在线观看影片大全网站| 一本久久中文字幕| 国产乱人伦免费视频| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 亚洲精品美女久久久久99蜜臀| 日韩欧美国产在线观看| 欧美黑人精品巨大| 久久精品国产99精品国产亚洲性色 | 亚洲在线自拍视频| 一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆| 乱人伦中国视频| 一区在线观看完整版| 久久久久久免费高清国产稀缺| 日韩高清综合在线| 亚洲专区国产一区二区| 69av精品久久久久久| 在线十欧美十亚洲十日本专区| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品综合一区在线观看 | 一级毛片女人18水好多| 亚洲激情在线av| 可以免费在线观看a视频的电影网站| 国产99白浆流出| 国产精华一区二区三区| 久久香蕉精品热| 桃红色精品国产亚洲av| 一级a爱视频在线免费观看| 国产成人精品无人区| 天天一区二区日本电影三级 | 色播在线永久视频| 国产亚洲欧美在线一区二区| 两个人看的免费小视频| 在线观看免费视频网站a站| 久久精品国产99精品国产亚洲性色 | 一边摸一边做爽爽视频免费| 1024视频免费在线观看| 国产成+人综合+亚洲专区| 亚洲免费av在线视频| 涩涩av久久男人的天堂| 69精品国产乱码久久久| 97人妻天天添夜夜摸| 久久久久久久精品吃奶| 无限看片的www在线观看| 丝袜美腿诱惑在线| av电影中文网址| 免费高清在线观看日韩| 国产亚洲精品综合一区在线观看 | 亚洲精品国产一区二区精华液| 欧美一区二区精品小视频在线| 一区二区三区精品91| 黄色成人免费大全| av视频在线观看入口| 在线观看舔阴道视频| 日韩欧美一区视频在线观看| 国产成人欧美在线观看| 午夜福利高清视频| 国产av又大| 久久婷婷成人综合色麻豆| 亚洲精品久久国产高清桃花| 老司机在亚洲福利影院| 51午夜福利影视在线观看| 在线十欧美十亚洲十日本专区| 日韩视频一区二区在线观看| 午夜免费鲁丝| 在线免费观看的www视频| 91大片在线观看| 免费在线观看完整版高清| 91大片在线观看| 亚洲精品美女久久av网站| 99久久99久久久精品蜜桃| 日韩欧美免费精品| 老司机深夜福利视频在线观看| 欧美成人性av电影在线观看| 亚洲午夜精品一区,二区,三区| a级毛片在线看网站| 香蕉久久夜色| 男女之事视频高清在线观看| 麻豆一二三区av精品| 亚洲无线在线观看| 搡老熟女国产l中国老女人| 中文字幕另类日韩欧美亚洲嫩草| 亚洲最大成人中文| 视频在线观看一区二区三区| 欧美精品啪啪一区二区三区| 麻豆av在线久日| 在线观看免费视频日本深夜| 日本 欧美在线| 国产精品亚洲美女久久久| 国产av精品麻豆| 国产精品乱码一区二三区的特点 | 女性被躁到高潮视频| 99国产精品一区二区蜜桃av| 欧美绝顶高潮抽搐喷水| 久久久久久久久久久久大奶| 侵犯人妻中文字幕一二三四区| 亚洲五月婷婷丁香| 欧美日韩黄片免| 如日韩欧美国产精品一区二区三区| 亚洲一区中文字幕在线| 人成视频在线观看免费观看| 成人特级黄色片久久久久久久| 国产av精品麻豆| 日韩国内少妇激情av| 岛国视频午夜一区免费看| 黄片播放在线免费| 亚洲精品国产精品久久久不卡| 一区二区三区国产精品乱码| 国产成人精品在线电影| 国产激情欧美一区二区|