• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Tangent Bundle of a Hypersurface in a Riemannian Manifold?

    2015-06-01 07:34:30ZhonghuaHOULeiSUN

    Zhonghua HOU Lei SUN

    1 Introduction

    Let(M,g)be a Riemannian manifold,and TM be the tangent bundle of M.Let Gsbe the Sasaki metric on TM introduced by Sasaki[13]in terms of g.

    The geometry of(TM,Gs)and the unit tangent sphere bundle(S(TM),Gs)have attracted many mathematicians in the last decades.Kowalski[5]showed that if(TM,Gs)is locally symmetric,then the base metric is flat and so does Gs.Musso and Tricerri[9]proved that(TM,Gs)has constant scalar curvature if and only if(M,g)is flat.Nagano[10],Tachibana and Okumura[15]studied the almost complex structure on(TM,Gs).Nagy[11]studied the geometry of the unit tangent sphere bundle of a surface.Klingenberg and Sasaki[2]showed that(S(TS2(1)),Gs)is isometric to the elliptic space of curvatureNagy[12],Sasaki[14],Konno and Tanno[3–4]studied the geodesics and Killing vector fields on(S(TM),Gs).Tashiro[16–17]studied the contact structure on S(TM).

    Deshmukh,Al-Odan and Shaman[1]considered an orientable hypersurface Mnof the Euclidean space Rn+1and observed that the tangent bundle TM of M is an immersed submanifold of the Euclidean space R2n+2.They obtained expressions for the horizontal and vertical lifts of the vector fields on M and showed that the induced metric on TM is not a natural metric in general.In the special case that the induced metric on TM becomes a natural metric,they proved that the tangent bundle TM is trivial.

    In this paper,we suppose that Mnis a hypersurface of a Riemannian manifold(Nn+1,G).We use the moving frame method to study the geometry of the tangent bundle TMnwith the induced metric from(TN,Gs).

    In Section 3,we study the extrinsic geometry of TMnin(TNn+1(c),Gs)where Nn+1(c)is a space form of constant curvature c.In Section 4,we study the integrability of the almost complex structure J on TM and the K¨ahlerian form ω on TM induced by J.

    2 Preliminaries

    Suppose that(N,G)is an(n+1)-dimensional Riemannian manifold.Let D be the Levi-Civita connection in N,and π :TN →N be the natural projection.Through out this paper,we use the Einstein convention and the following ranges of indices:

    Let({yA})and({yA},{vB})be local coordinate systems in N and TN,respectively.Denote

    At first,we introduce the following lemmas.

    Lemma 2.1(cf.[5])Let(N,G)be a Riemannian manifold and Y ∈ Γ(TN)be a vector field on N which is locally represented byThen the vertical and horizontal lifts YVand YHof Y over TN are given by

    respectively,whereare the Christo ff el symbols of D.

    Lemma 2.2(cf.[5])The Lie bracket of vector fields over TN is completely determined by

    where X,Y ∈ Γ(TN)andis the Riemannian curvature operator of N.

    The Sasaki metric Gson TN can be described as follows.

    Definition 2.1(cf.[13])Let(N,G)be a Riemannian manifold.The Sasaki metric Gson TN is defined by

    for any point(y,v)∈TN and vectors X,Y∈TyN.

    By direct computation,we have the following lemma.

    Lemma 2.3(cf.[7])Let(N,G)be a Riemannian manifold,and TN be the tangent bundle with the Sasaki metric Gs.Then the Levi-Civita connectionon(TN,Gs)is determined by

    for any point(y,v)∈TN and vectors X,Y∈TyN.

    3 Geometry of the Tangent Bundle of a Hypersurface

    Suppose that f:Mn→Nn+1is a smooth immersion from Mninto Nn+1.Let

    df(x):TxM→Tf(x)N

    be the differential map of f at any x∈M.We define the smooth immersion F:TM→TN to be

    for any point(x,u)∈TM.

    Lemma 3.1Suppose that h and ν are the second fundamental form and the unit normal vector field of M in N,respectively.Let Xhand Xvbe the horizontal and the vertical lifts of X ∈ Γ(TM)onto TM,respectively,with respect to g=f?G.Then the differential map dF of F is defined by

    for any point(x,u)∈TM and the vector field X ∈ Γ(TM).

    ProofFor any(x,u)∈TM,we have F(x,u)=(f(x),df(x)u)∈TN.Let()andbe the local coordinates around(x,u)and F(x,u).Letbe the Levi-Civita connection of the induced metric g.Then the local representation of f(x) is of the form

    (f1(x1,···,xn),···,fn+1(x1,···,xn)).

    Moreover,we have

    Therefore,

    It follows from(3.3)–(3.4)that

    On the other hand,from Lemma 2.1,we have

    Therefore,

    It follows from(3.3)that

    Lemma 3.1 follows immediately from(3.6)and(3.8).

    From Lemma 3.1,we have the following lemma.

    Lemma 3.2Denote=F?Gs.Then at any point(x,u)∈ TM,we have

    for any X,Y ∈ Γ(TM).

    Remark 3.1From(3.9)of Lemma 3.2,we can see that(TM,g)is not a natural metric.

    Suppose that(Nn+1(c),G)is a space form of constant section curvature c.The Riemannian curvature operator of(Nn+1(c),G)is given by

    for any X,Y,Z∈Γ(TN).

    Suppose that f:(M,g)→(Nn+1(c),G)is an isometrical immersion of Mninto Nn+1(c).Let A be the shape operator of M in Nn+1(c).Consider F:(TM,g)→(TNn+1(c),Gs)defined by(3.1).Then TM is a submanifold of TN with codimension 2.

    In the sequel,we proceed to study the extrinsic geometry of TM in(TNn+1(c),Gs).

    The two local orthonormal normal vector fields ν1,ν2of TM in TNn+1(c)are given by

    where τ2=1+g(A(u),A(u))with τ>0 at any point(x,u) ∈ TM,so that the normal bundle T⊥(M)of TM in TN is locally spanned by ν1and ν2.

    From now on,we denote brie fly X:=[df(x)X]f(x)and

    for any X∈TxM.

    Let{e1,···,en}be a local orthonormal frame field on(M,g),and{θ1,···,θn}be its dual frame field.We denote

    for any u=Γ(TM).It follows from(3.9)that

    Moreover,(3.2)and(3.12)turn into

    respectively.From(3.17),we obtain

    Using(3.11),from Lemma 2.3,we have

    Moreover,we also have

    From(3.19)–(3.20),we can see that

    From(3.19)to(3.21),we immediately obtain the following proposition.

    Proposition 3.1Let?⊥be the normal connection of(TM,)in TNn+1(c).Then

    where for any 1≤i≤n,

    ProofSince{ν1,ν2}is a local orthonormal frame field of T⊥M,we have

    for any 1 ≤ i≤ n and α =1,2.Substituting(3.19)–(3.21)into(3.25),we obtain(3.23).The proof of Proposition 3.1 is completed.

    From(3.19)–(3.21),we can immediately obtain the following lemma.

    Lemma 3.3Denote byαthe shape operator of TM with respect to ναfor α =1,2.Then

    Using Lemma 3.3,we can prove the following proposition.

    Proposition 3.2The second fundamental form σ of TM is determined by

    for any 1≤i,j≤n.

    ProofIt is well-known that σ = σανα,where for any,∈Γ(TF(x,u)TM).Substituting(3.26)into(3.28),we obtain.

    This completes the proof of Proposition 3.1.

    Theorem 3.1Let Mnbe an immersed hypersurface of a space form Nn+1(c).Denote bythe mean curvature vector field of TM in TNn+1(c).Suppose that the length ofis invariant along every fibre of TM.Then we have that

    (1)If c≥0,M is totally geodesic in Nn+1(c).

    (2)If c<0,M is an isoparametric hypersurface with at most three distinct principal curvatures{?√?c,0,√?c}with multiples{m?,m0,m+},whose second fundamental form is parallel.

    ProofLetbe the mean curvature vector field of TM.Choose{ei}such that hij= λiδij.Then it follows from Proposition 3.2 that

    where H is the mean curvature of M,and{Hk}are the coefficients of the covariant derivative of H.Taking the squared length on both sides of the above equation,we obtain

    Since the length ofis invariant along the fibres,by the above equation,we have

    It follows that

    So we have

    where

    From(3.31),we have F2=F4=F6=0 for any(u1,···,un),which is equivalent to

    From the first equality of(3.32),we have Hk=0 for any 1≤k≤n,which means that M is of the constant mean curvature.

    The second equality of(3.32)implies that λi(+c)=0 for any 1 ≤ i≤ n.It follows that every principal curvature λiis constant for all 1 ≤ i≤ n.

    When c≥ 0,λi=0,for all 1≤ i≤ n.In this case,Mnis totally geodesic in Nn+1(c).

    When c<0,λi=0,?√?c or√?c.We suppose that λi=0 for 1≤ i≤ m0,λi= ?√?c for m0+1≤i≤m0+m?and λi=?√?c for m0+m?+1≤i≤m0+m?+m+=n.

    The third equality of(3.32)turns into

    It follows from the above equality and the assumptions that

    for any 1≤i

    Suppose that 1≤i≤j≤k≤n.It is seen from(3.34)that hijk=0,and now that i,j or j,k lie in the same range of indices.For i,j,k lying in the di ff erent ranges of indices,from(3.33),we have hijk=0.It follows that hijk=0 for any 1≤i,j,k≤n,which means that Mnhas a parallel second fundamental form in Nn+1(c).This completes the proof of Theorem 3.1.

    Remark 3.2Miyaoka[6]studied the geometries of isoparametric hypersurfaces with at most three distinct principal curvatures in a space form Nn+1(c)of the constant curvature c with c≥0.Our result gives a geometrical description of this kind of hypersurfaces with c<0.

    By Theorem 3.1,we immediately obtain the following corollary.

    Corollary 3.1Let Mnbe a smooth hypersurface of a space form Nn+1(c)with c≥0.Then the following statements are equivalent:

    (1)The length of the mean curvature fieldof TM is invariant along the fibres of TM;

    (2)TM is totally geodesic in(TNn+1(c),Gs);

    (3)TM is minimal in(TNn+1(c),Gs);

    (4)M is totally geodesic in Nn+1(c).

    Munteanu[8]computed the Riemannian curvature tensor of TN endowed with the general metric Ga,b.For(TNn+1(c),Gs),we have the following lemma.

    Lemma 3.4(cf.[8])Suppose that(Nn+1(c),G)is a space form of the constant sectional curvature c.Then the Riemannian curvature tensorof(TNn+1(c),Gs)is given by

    for any X,Y,Z∈Γ(TN)at point(y,v)∈TN.

    By direct computation,we obtain the following lemma.

    Lemma 3.5Let Mnbe a hypersurface of(Nn+1(c),G).Let{e1,···,en}be a local orthonormal frame field on M,and ν be the unit normal vector field of M.Then

    where V=and

    Lemma 3.6Under the assumptions as in Lemma 3.5,suppose in addition thatand{ν1,ν2}are chosen as in(3.17).Then we have

    Denote bythe Riemannian curvature tensor and by⊥the normal curvature tensor of TM in TNn+1(c).Then we have the following Gauss-Codazzi equations:

    for any X,Y,Z ∈ Γ(T(TM))and ξ∈ Γ(T⊥(TM)).

    By Proposition 3.1,we have the following theorem.

    Theorem 3.2Let Mnbe a smooth hypersurface of a space form Nn+1(c).If the normal bundle of TM in TN is flat,then Mnis flat and totally geodesic in Nn+1(c),and vise versa.

    ProofLet{e1,···,en}be a local orthonormal frame field on M such that hij= λiδij.Then(3.16)and(3.26)–(3.27)turn into

    where

    Since the normal curvatures of TM are determined by

    it follows that the normal bundle of TM is flat in TN if and only if

    for any(x,u)∈TM and 1≤i,j≤n.From the Wiengarten formula(3.43),we have

    Using(3.41)and(3.44),we havefrom which we get

    It follows that

    By a direct but not difficulty computation,we can see that

    Substituting(3.49)–(3.50)into(3.47)and sorting it,we get

    for all 1≤i,j≤n.From(3.48)and(3.51),we obtain

    for all 1 ≤ i,j≤ n.Suppose in(3.52)that u=ukek=0,and fromat any point x∈M for all 1≤i,j≤n,we have+c=0 at any x∈M for all 1≤i≤n,which implies that Nn+1(c)is of the non-positive curvature.Suppose in(3.52)that δij=1 and c<0,i.e.,λi≠0 at any x∈M for all 1≤i≤n,and we have that

    which implies that λi=0 at any x ∈ M for all 1 ≤ i≤ n.It is contradictory to our assumption,and we have that=0 at any point x∈M for all 1≤i,j≤n if and only if M is flat and totally geodesic in Nn+1(c).It is seen from(3.53)that,in this case,=0 for all 1≤i,j≤n.

    The reverse is trivial.This completes the proof of Theorem 3.2.

    4 The Almost Complex Structure on TM

    In this section,we study the almost complex structure J on TM,which is compatible withand the K¨ahlerian form ω on TM induced by J.

    4.1 The induced almost complex structure on TM

    Let{e1,e2,···,en}be a local orthonormal frame field and{}be the associated connection forms on M.We describe the almost complex structure J on TM as follows:

    where α,β,γ and ρ are the smooth functions on TM to be determined.Since J is compatible with,we have

    Substituting(4.1)into(4.2),we get

    Thus,J is determined by

    for any 1≤i≤n.

    The Nijenhuis tensor of J is defined to be

    NJ(X,Y)=[X,Y]+J[JX,Y]+J[X,JY]?[JX,JY]

    for any X,Y ∈ Γ(T(x,u)TM).It is easy to see that

    NJ(Y,X)=?NJ(X,Y),NJ(X,Y)=?NJ(JX,JY),NJ(X,Y)=JNJ(JX,Y).

    Therefore,we have

    NJ(Xv,Yv)=?NJ(JXv,JYv),NJ(Xv,Yh)=JNJ(JXv,Yh)

    for any point(x,u)∈TM and X,Y∈TxM.Since J is an isomorphism from H(x,u)to V(x,u),it follows that J is integrable if and only if NJ(Xh,Yh)=0 for any X,Y∈Γ(TM).

    Let us computefor any 1≤i≤n.It is known that

    from which we have

    At first,we have

    From the Definition of,we can see that

    Substituting(4.7)into(4.6)and using(4.5),we obtain

    Using(4.8)–(4.9),we have

    where we have used

    Therefore,

    It follows that

    Since=0,we have

    It follows that for any differentiable function ? on TM,

    By using(4.12),we have

    and

    Substituting(4.13)–(4.15)into(4.11),we obtain

    It follows from(4.5),(4.10)and(4.16)that

    where

    Theorem 4.1Let Mnbe a smooth hypersurface of Nn+1,and J be the almost complex structure on(TM,).Then J is integrable if and only if M is flat and is locally a product of a part of the principal curvature line and a piece of the(n?1)-dimensional totally geodesic submanifold of Nn+1.

    ProofFrom(4.17),one can see that J is integrable if and only ifat any point(x,u)∈TM for any 1≤i,j,k≤n.

    Let{ei}be a local orthonormal frame field on M such that hij= λiδij.ThenIt follows from(4.12)that

    for any 1≤l,p≤n.Therefore,we have for any 1≤l≤n,that

    Suppose thatfor any 1≤i,j,k≤n at any point(x,u)∈TM.Then()=0 for any 1≤i,j,k,l≤n at any point(x,u)∈TM.

    Computingand putting u=0,we get

    for any 1≤i,j,k,l≤n at any point x ∈ M.Substituting(4.23)into(4.19),we obtain

    At the point x∈M where(4.24)is trivial.

    Suppose thatat the given point x∈ M.For u ∈ TxM with τ≠1,we have

    Multiplying λkukon both sides of(4.25)and taking sum with respect to k,we obtain

    It follows that

    Substituting(4.26)into(4.25),we get

    for any i≠j.Suppose that λ1≠0.Then from(4.27),we have

    for any j>1.The condition that τ≠1 implies that It follows from(4.28)thatλ1u1≠0.Taking j=1 in(4.27),we obtain that λi=0 for any i>1.

    So there is at most one nonzero principal curvature of the shape operator A at any point of M.It follows that

    for any i≠j and k≠l,which together with(4.23)implies that=0 for any i≠j and k≠l,which implies that M is flat.

    Suppose that=0 for any 1≤i,j,k≤n at any point(x,u)∈TM.Then(4.18)turns into

    or equivalently

    for any fixed 1≤ i,j,r≤ n.Denote Λij=hpijup.Then(4.29)turns into

    for any fixed 1≤i,j,r≤n with i≠j.

    At the point x∈M where(4.30)is trivial.At the point x ∈ M where λk≠for some 1 ≤ k ≤ n,we can suppose that λ1≠0 and λk=0 for 2≤ k ≤ n.

    Suppose that i=1 in(4.30).Then

    for any fixed 1

    for any fixed 1

    for all 1 ≤ i,j,k ≤ n where λj,k=ek(λj).It follows from(4.33)that

    for any 1

    which implies that

    for all 1

    for all 1≤ j,k ≤ n.It follows from(4.36)–(4.37)that

    for any 1

    Taking the partial derivative on both sides of(4.39)with respect to u1and using(4.20),we have

    It follows from(4.36)and(4.39)–(4.40)that

    for all 1

    for all 1

    for all 1

    Let γ be a part of the curvature line with respect to the principal curvature λ1and Un?1be the maximal integral submanifold of Ln?1through every point of γ.Then it follows from(4.36)that Un?1is totally geodesic in Nn+1.The second equality of(4.41)implies that Mnis locally a Cartesian product of γ and Un?1.

    The proof of sufficiency is trivial.This completes the proof of Theorem 4.1.

    4.2 The induced Khlerian form on TM

    It is known that the Khlerian 2-form ω of TM is defined to be

    for all vector fields,∈(TM),where J is determined by(4.4).Let{e1,e2,···,en}be an orthonormal frame on M such that hij= λiδij.By direct computation,we have

    It is known that the exterior differential of ω is defined by

    for all vector fields,,∈(TM).

    By using(4.5),we have

    Theorem 4.2Suppose that Mnis a smooth hypersurface of Nn+1and ωis the K¨ahlerian2-form on(TM,g,J).If(TM,g,J,ω)is almost K¨ahlerian,then M is locally a product of a part of the principal curvature line and a piece of the(n?1)-dimensional totally geodesic submanifold of Nn+1.

    ProofBy Definition,(TM,g,J,ω)is almost K¨ahlerian if dω=0 onTM,which implies that the right-hand sides of(4.50)–(4.53)are zero.

    We suppose that dω=0 onTM.From(4.52),we have

    for any fixed j≠k and all(x,u)∈TM.

    Choose uk=1 and uj=0 in(4.54)for any other j≠k.Then it follows that

    which implies that there is at most one nonzero principal curvature at any x∈M,whose multiple is 1.When λ1= ···= λn=0 at x ∈ M,the right-hand sides of(4.50)–(4.53)are identically zero.Without loss of generality,we suppose that λ1≠0 and λk=0 for all 2 ≤ k ≤ n in an open subset W of M.From(4.51),we have

    for all 2≤j,k≤n at any(x,u)∈TM where x∈W.It follows immediately from(4.55)that

    for all 1≤i≤n and 2≤j,k≤n.Substituting(4.56)with i=1 into(4.56),we obtain

    from which we have

    for all 2≤j,p≤n at any(x,u)∈TM where x∈M and u∈TxM with u1≠0.Let u1tend to 0 in(4.59)and(4.60).It follows that

    Substituting(4.61)into(4.59)and(4.60),and using(4.61)once more,we obtain

    for all 1≤i≤n and 2≤j≤n at any x∈W.It follows from(4.57)and(4.62)that all of hijk’s are zero except for h111.Note that for hij= λiδij,

    for all 1 ≤ i,j,k ≤ n where λj,k=ek(λj).It follows that

    for any 2≤i,j≤n and 1≤k≤n.From(4.64),we can see that

    By applying the similar discussion as in the proof of Theorem 4.1,we can see that M is locally a product of a part of the principal curvature line and a piece of the(n?1)-dimensional totally geodesic submanifold of Nn+1.This completes the proof of Theorem 4.2.

    AcknowledgementThe authors wish to make a grateful acknowledgement to the referees for their advice on the original manuscript.

    [1]Deshmukh,S.,Al-Odan,H.and Shaman,T.A.,Tangent bundle of the hypersurfaces in a Euclidean space,Acta.Math.Acad.Paedagog.Nyh′azi(N.S.),23(1),2007,71–87.

    [2]Klingenberg,W.and Sasaki,S.,On the tangent sphere bundle of a 2-sphere,Toh?ku Math.J.,27,1975,49–56.

    [3]Konno,T.,Killing vector fields on tangent sphere bundles,Kodai Math.J.,21,1998,61–72.

    [4]Konno,T.and Tanno S.,Geodesics and Killing vector fields on the tangent sphere bundle,Nagoya Math.J.,151,1998,91–97.

    [5]Kowalski,O.,Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold,J.Reine Angew.Math.,250,1971,124–129.

    [6]Miyaoka,R.,Complete hypersurfaces in the space form with three principal curvatures,Math.Z.,179,1982,345–354.

    [7]Munteanu,M.I.,Cheeger Gromoll type metrics on the tangent bundle,Sci.Ann.Univ.Agric.Sci.Vet.Med.,49(2),2006,257–268.

    [8]Munteanu,M.I.,Some aspects on the geometry of the tangent bundles and tangent shpere bundles of a Riemannian manifold,Mediterr.J.Math.,5,2008,43–59.

    [9]Musso,E.and Tricerri,F.,Riemannian metrics on tangent bundles,Ann.Math.Pura Appl.,150(4),1988,1–20.

    [10]Nagano,T.,Isometries on complex-product spaces,Tensor,New Series,9,1959,47–61.

    [11]Nagy,P.T.,On the tangent sphere bundle of a Riemannian 2-manifold,Toh?ku Math.J.,29,1977,203–208.

    [12]Nagy,P.T.,Geodesics on the tangent sphere bundle of a Riemannian manifold,Geom.Dedicata.,7(2),1978,233–243.

    [13]Sasaki,S.,On the differential geometry of tangent bundles of Riemannian manifolds I,II,Toh?ku Math.J.,10,1958,338–354;14,1962,146–155.

    [14]Sasaki,S.,Geodesics on the tangent sphere bundles over space forms,J.Reine Angew.Math.,288,1976,106–120.

    [15]Tachibana,S.and Okumura,M.,On the almost-complex structure of tangent bundles of Riemannian spaces,Toh?ku Math.J.,14(2),1962,156–161.

    [16]Tashiro,Y.,On contact structure of hypersurfaces in complex manifolds I,II,Toh?ku Math.J.,15,1963,62–78;167–175.

    [17]Tashiro,Y.,On contact structures of tangent sphere bundles,Toh?ku Math.J.,21,1969,117–143.

    欧美日韩瑟瑟在线播放| 亚洲av中文字字幕乱码综合| 成年女人毛片免费观看观看9| 三级毛片av免费| 久久久久性生活片| 在线免费观看不下载黄p国产 | 嫩草影院入口| 18美女黄网站色大片免费观看| 99久久无色码亚洲精品果冻| 毛片一级片免费看久久久久 | 美女高潮喷水抽搐中文字幕| 波多野结衣高清作品| a级毛片免费高清观看在线播放| 国产精品精品国产色婷婷| а√天堂www在线а√下载| 亚洲精品影视一区二区三区av| 午夜精品在线福利| 日本撒尿小便嘘嘘汇集6| 内地一区二区视频在线| 久久伊人香网站| 日本在线视频免费播放| 日韩大尺度精品在线看网址| 9191精品国产免费久久| 一本综合久久免费| av福利片在线观看| 亚洲国产高清在线一区二区三| 国产高清视频在线播放一区| 91午夜精品亚洲一区二区三区 | 精品国产三级普通话版| 亚州av有码| 国产精品自产拍在线观看55亚洲| 精品久久国产蜜桃| 国产三级黄色录像| 一夜夜www| 午夜精品在线福利| 国内精品久久久久久久电影| 色av中文字幕| 国产色爽女视频免费观看| 可以在线观看毛片的网站| 特级一级黄色大片| 看十八女毛片水多多多| av在线蜜桃| 亚洲自拍偷在线| 草草在线视频免费看| 99在线人妻在线中文字幕| 超碰av人人做人人爽久久| 亚洲aⅴ乱码一区二区在线播放| 午夜老司机福利剧场| 精品熟女少妇八av免费久了| 亚洲成a人片在线一区二区| 免费在线观看亚洲国产| 非洲黑人性xxxx精品又粗又长| 性欧美人与动物交配| 级片在线观看| 免费av观看视频| 欧美精品啪啪一区二区三区| 欧美三级亚洲精品| 国产午夜福利久久久久久| 亚洲中文字幕日韩| 日本免费一区二区三区高清不卡| 搡老岳熟女国产| 99热只有精品国产| 亚洲性夜色夜夜综合| 51午夜福利影视在线观看| 久久午夜福利片| 久久午夜亚洲精品久久| 国内精品久久久久久久电影| 蜜桃久久精品国产亚洲av| 日本一本二区三区精品| 真人做人爱边吃奶动态| 亚洲成av人片在线播放无| 亚洲av五月六月丁香网| 身体一侧抽搐| 亚洲国产精品sss在线观看| 亚洲,欧美精品.| 免费观看人在逋| 亚洲欧美日韩卡通动漫| 好男人在线观看高清免费视频| 欧美3d第一页| 国产又黄又爽又无遮挡在线| 啦啦啦韩国在线观看视频| 亚洲无线观看免费| 国产精品98久久久久久宅男小说| 久久热精品热| 18禁黄网站禁片免费观看直播| 亚洲激情在线av| 欧美黑人欧美精品刺激| 欧美日韩乱码在线| 午夜精品在线福利| 亚洲精品456在线播放app | 老司机午夜十八禁免费视频| 国产成人啪精品午夜网站| av专区在线播放| 亚洲最大成人中文| 不卡一级毛片| 精品久久久久久久久亚洲 | 人人妻,人人澡人人爽秒播| 久久欧美精品欧美久久欧美| 日本成人三级电影网站| 波多野结衣高清无吗| 九九久久精品国产亚洲av麻豆| 国产一区二区在线av高清观看| 日本a在线网址| 真人一进一出gif抽搐免费| 麻豆av噜噜一区二区三区| 国产久久久一区二区三区| 午夜视频国产福利| 国产精品国产高清国产av| 国产精品一区二区性色av| 午夜免费成人在线视频| 久久久成人免费电影| 九九热线精品视视频播放| 俺也久久电影网| 欧美丝袜亚洲另类 | 亚洲人成网站高清观看| 久久精品国产亚洲av涩爱 | 午夜影院日韩av| 色吧在线观看| 淫秽高清视频在线观看| 欧美黑人巨大hd| 欧美丝袜亚洲另类 | 欧美最黄视频在线播放免费| 国产探花极品一区二区| 欧美日韩黄片免| 18禁黄网站禁片免费观看直播| 国产三级黄色录像| 高清毛片免费观看视频网站| 免费在线观看亚洲国产| 国产又黄又爽又无遮挡在线| 黄色配什么色好看| 嫩草影视91久久| 男女床上黄色一级片免费看| 日本a在线网址| 99热6这里只有精品| 日韩欧美在线二视频| 757午夜福利合集在线观看| 精品久久久久久久久亚洲 | 亚洲美女搞黄在线观看 | 亚洲av一区综合| 免费观看的影片在线观看| 欧美色欧美亚洲另类二区| 亚洲天堂国产精品一区在线| 日韩欧美在线乱码| 老熟妇乱子伦视频在线观看| 波多野结衣高清无吗| 91麻豆精品激情在线观看国产| 超碰av人人做人人爽久久| 精品欧美国产一区二区三| 极品教师在线视频| 99久久99久久久精品蜜桃| 精品一区二区三区人妻视频| 日韩中字成人| 综合色av麻豆| 禁无遮挡网站| 内地一区二区视频在线| 亚洲无线观看免费| 麻豆久久精品国产亚洲av| 热99在线观看视频| 亚洲性夜色夜夜综合| 精品一区二区三区视频在线| 别揉我奶头 嗯啊视频| 国产探花极品一区二区| 此物有八面人人有两片| 天堂√8在线中文| 99riav亚洲国产免费| 午夜福利成人在线免费观看| 麻豆一二三区av精品| 亚洲第一区二区三区不卡| 国产精品av视频在线免费观看| 亚洲狠狠婷婷综合久久图片| 桃红色精品国产亚洲av| 国产成人啪精品午夜网站| 韩国av一区二区三区四区| 亚洲 欧美 日韩 在线 免费| 草草在线视频免费看| 精品免费久久久久久久清纯| 国内精品久久久久久久电影| 欧美潮喷喷水| 动漫黄色视频在线观看| 草草在线视频免费看| 欧美成人a在线观看| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| ponron亚洲| 在线免费观看的www视频| 国产成人影院久久av| www.熟女人妻精品国产| 免费看光身美女| 无遮挡黄片免费观看| 18禁在线播放成人免费| 中文字幕精品亚洲无线码一区| 久久久精品大字幕| 一个人看的www免费观看视频| 亚洲自拍偷在线| 色综合站精品国产| 别揉我奶头~嗯~啊~动态视频| 成人美女网站在线观看视频| 久久国产精品影院| 一a级毛片在线观看| 一个人免费在线观看电影| 三级毛片av免费| 亚洲av中文字字幕乱码综合| 老熟妇仑乱视频hdxx| 亚洲av免费在线观看| 亚洲黑人精品在线| 最新在线观看一区二区三区| 中文资源天堂在线| 亚洲精品亚洲一区二区| 亚洲国产欧洲综合997久久,| 男女视频在线观看网站免费| 国产精品亚洲av一区麻豆| 午夜免费男女啪啪视频观看 | 国产日本99.免费观看| 午夜精品一区二区三区免费看| 永久网站在线| 免费电影在线观看免费观看| 毛片一级片免费看久久久久 | 亚洲精品久久国产高清桃花| 欧美高清性xxxxhd video| 日日摸夜夜添夜夜添av毛片 | 精品久久久久久,| 少妇裸体淫交视频免费看高清| 国产精品嫩草影院av在线观看 | 久久性视频一级片| 一本精品99久久精品77| 亚洲经典国产精华液单 | 亚洲成a人片在线一区二区| 国产aⅴ精品一区二区三区波| 成年女人看的毛片在线观看| 亚洲精品亚洲一区二区| 国产私拍福利视频在线观看| 99久久无色码亚洲精品果冻| 日韩欧美在线二视频| 白带黄色成豆腐渣| 国产精品av视频在线免费观看| 免费搜索国产男女视频| 欧美黄色淫秽网站| 亚洲人成伊人成综合网2020| 欧美丝袜亚洲另类 | 免费在线观看日本一区| 欧美区成人在线视频| 久久婷婷人人爽人人干人人爱| 一区二区三区免费毛片| 亚洲av不卡在线观看| 免费看光身美女| 亚洲国产精品999在线| 嫩草影院精品99| 成年免费大片在线观看| 中文资源天堂在线| 亚洲精品成人久久久久久| 91在线精品国自产拍蜜月| 成年女人毛片免费观看观看9| 伊人久久精品亚洲午夜| 一级a爱片免费观看的视频| 国内毛片毛片毛片毛片毛片| 最新在线观看一区二区三区| 亚洲,欧美,日韩| 亚洲成人中文字幕在线播放| 一个人免费在线观看电影| 成人av在线播放网站| 中文字幕av在线有码专区| 国产三级中文精品| 我要看日韩黄色一级片| 久久久久性生活片| 亚洲国产精品合色在线| avwww免费| 欧美色视频一区免费| netflix在线观看网站| 午夜免费成人在线视频| 我要搜黄色片| 国产精品伦人一区二区| 国产白丝娇喘喷水9色精品| 他把我摸到了高潮在线观看| 97热精品久久久久久| 国产综合懂色| 婷婷亚洲欧美| www.色视频.com| 久久久久九九精品影院| 成人美女网站在线观看视频| 欧美一区二区精品小视频在线| 丰满乱子伦码专区| xxxwww97欧美| 好看av亚洲va欧美ⅴa在| 丁香欧美五月| 欧美激情在线99| 国产精品久久电影中文字幕| 国产精品98久久久久久宅男小说| 免费电影在线观看免费观看| 最近在线观看免费完整版| 脱女人内裤的视频| 此物有八面人人有两片| 观看美女的网站| 国产久久久一区二区三区| 精品国产亚洲在线| 精品久久久久久久久av| 久久久久国内视频| 99精品在免费线老司机午夜| 国产精品影院久久| 亚洲欧美日韩卡通动漫| 天堂网av新在线| 国产精品综合久久久久久久免费| 美女大奶头视频| 中亚洲国语对白在线视频| 99久久精品国产亚洲精品| 少妇的逼水好多| av国产免费在线观看| 免费观看的影片在线观看| 国产精品人妻久久久久久| 欧美又色又爽又黄视频| 亚洲av熟女| 看免费av毛片| 自拍偷自拍亚洲精品老妇| 欧美激情在线99| 国产成人a区在线观看| 亚洲真实伦在线观看| 中国美女看黄片| 高潮久久久久久久久久久不卡| 国产午夜精品久久久久久一区二区三区 | eeuss影院久久| 俺也久久电影网| 欧美高清成人免费视频www| 精品国产三级普通话版| 午夜福利视频1000在线观看| 午夜免费男女啪啪视频观看 | 日韩欧美在线乱码| 91av网一区二区| 久久午夜亚洲精品久久| 中文资源天堂在线| 亚洲激情在线av| 午夜激情福利司机影院| 亚洲av二区三区四区| 在线免费观看的www视频| 夜夜夜夜夜久久久久| 国产精品98久久久久久宅男小说| 在线免费观看的www视频| 很黄的视频免费| 小说图片视频综合网站| 十八禁网站免费在线| 老司机午夜福利在线观看视频| 国产一区二区三区视频了| 国产精品精品国产色婷婷| 国产大屁股一区二区在线视频| 亚洲精品一区av在线观看| 嫁个100分男人电影在线观看| netflix在线观看网站| 黄片小视频在线播放| 一级av片app| 国产免费一级a男人的天堂| 两个人视频免费观看高清| 亚洲三级黄色毛片| 中文字幕人成人乱码亚洲影| 亚洲国产色片| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| 久久久久性生活片| 三级男女做爰猛烈吃奶摸视频| 久久久久久久午夜电影| 欧美高清性xxxxhd video| 国产三级中文精品| 夜夜爽天天搞| 国产精品野战在线观看| 少妇丰满av| 国产美女午夜福利| 日本熟妇午夜| 亚洲av成人av| 男人和女人高潮做爰伦理| 午夜精品一区二区三区免费看| 婷婷精品国产亚洲av在线| 国模一区二区三区四区视频| 成人精品一区二区免费| 国产精品av视频在线免费观看| x7x7x7水蜜桃| 欧美区成人在线视频| 淫秽高清视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产三级中文精品| 欧美xxxx性猛交bbbb| 国内精品一区二区在线观看| 亚洲av成人av| 欧美极品一区二区三区四区| 国产免费一级a男人的天堂| 啪啪无遮挡十八禁网站| 国产伦精品一区二区三区四那| 国产主播在线观看一区二区| 国产中年淑女户外野战色| 精品一区二区三区视频在线观看免费| 国产精品自产拍在线观看55亚洲| 尤物成人国产欧美一区二区三区| 自拍偷自拍亚洲精品老妇| 亚洲五月婷婷丁香| 国产精品亚洲美女久久久| 亚洲18禁久久av| 老司机福利观看| 日韩人妻高清精品专区| 午夜福利在线观看吧| 丁香六月欧美| 亚洲激情在线av| 人妻久久中文字幕网| 国产三级中文精品| 久久久久九九精品影院| 欧美绝顶高潮抽搐喷水| 亚洲精品粉嫩美女一区| 久久伊人香网站| 亚洲乱码一区二区免费版| 久久午夜亚洲精品久久| 免费无遮挡裸体视频| 噜噜噜噜噜久久久久久91| 男女那种视频在线观看| 在线观看一区二区三区| 久久99热6这里只有精品| 国产午夜福利久久久久久| 日韩av在线大香蕉| 18+在线观看网站| 欧美黄色片欧美黄色片| 午夜福利成人在线免费观看| 亚洲精品在线观看二区| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av| 最近视频中文字幕2019在线8| 久久国产精品人妻蜜桃| 日韩中字成人| 亚洲人成伊人成综合网2020| 成年女人看的毛片在线观看| 久久6这里有精品| 在线国产一区二区在线| 天堂动漫精品| 在线播放国产精品三级| 久久国产乱子伦精品免费另类| 99精品久久久久人妻精品| 在线a可以看的网站| 日本a在线网址| 赤兔流量卡办理| 免费电影在线观看免费观看| 色综合欧美亚洲国产小说| 精品人妻偷拍中文字幕| 久久天躁狠狠躁夜夜2o2o| 欧美绝顶高潮抽搐喷水| 国产三级黄色录像| 99热这里只有是精品50| 久久精品久久久久久噜噜老黄 | 哪里可以看免费的av片| 中出人妻视频一区二区| 日韩精品青青久久久久久| 午夜福利视频1000在线观看| 成年版毛片免费区| 亚洲av一区综合| 赤兔流量卡办理| 少妇的逼好多水| 日本在线视频免费播放| 少妇人妻一区二区三区视频| 国产成人av教育| 动漫黄色视频在线观看| 亚洲五月天丁香| 内射极品少妇av片p| 乱人视频在线观看| 看免费av毛片| 丰满人妻一区二区三区视频av| 国产精品永久免费网站| 一级a爱片免费观看的视频| 在线看三级毛片| 亚洲 欧美 日韩 在线 免费| 色精品久久人妻99蜜桃| 免费看光身美女| 极品教师在线免费播放| 国产精品电影一区二区三区| 丰满的人妻完整版| 极品教师在线视频| 国产三级在线视频| xxxwww97欧美| 日本三级黄在线观看| 精品人妻偷拍中文字幕| 久久午夜亚洲精品久久| 国产伦在线观看视频一区| 免费av毛片视频| 亚洲欧美日韩高清专用| www.熟女人妻精品国产| 亚洲最大成人中文| 国产午夜精品久久久久久一区二区三区 | 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| 亚洲国产色片| 小说图片视频综合网站| 亚洲av熟女| 内射极品少妇av片p| 90打野战视频偷拍视频| 看免费av毛片| 免费高清视频大片| 久久久精品大字幕| 在线免费观看的www视频| 国产综合懂色| 国产精品一及| av黄色大香蕉| 美女黄网站色视频| 九色国产91popny在线| 婷婷六月久久综合丁香| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人中文字幕在线播放| 一级av片app| 亚洲国产精品999在线| 国产单亲对白刺激| 久久国产乱子伦精品免费另类| 麻豆av噜噜一区二区三区| 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 日韩欧美国产一区二区入口| 国产成人aa在线观看| ponron亚洲| 久9热在线精品视频| 在线天堂最新版资源| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av| 男女视频在线观看网站免费| 老熟妇乱子伦视频在线观看| 欧美激情在线99| 亚洲av五月六月丁香网| 久久久久久久精品吃奶| 欧美精品啪啪一区二区三区| 99国产精品一区二区蜜桃av| 欧美激情久久久久久爽电影| 日本免费a在线| 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 国产精品人妻久久久久久| 露出奶头的视频| 看黄色毛片网站| 听说在线观看完整版免费高清| 可以在线观看毛片的网站| 久久久久久国产a免费观看| 国产伦精品一区二区三区四那| 国产三级黄色录像| 午夜免费男女啪啪视频观看 | 久9热在线精品视频| 国产免费一级a男人的天堂| 国产真实乱freesex| 在线观看av片永久免费下载| 99精品久久久久人妻精品| 久久久久久九九精品二区国产| 亚洲人与动物交配视频| 国产免费一级a男人的天堂| 精品一区二区三区视频在线| 精品人妻偷拍中文字幕| 在线免费观看不下载黄p国产 | 两性午夜刺激爽爽歪歪视频在线观看| 日本黄色视频三级网站网址| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 在线观看午夜福利视频| 国产极品精品免费视频能看的| 欧美xxxx性猛交bbbb| 日韩欧美精品v在线| 成年免费大片在线观看| 国产真实伦视频高清在线观看 | 成年女人看的毛片在线观看| 男插女下体视频免费在线播放| 网址你懂的国产日韩在线| 毛片一级片免费看久久久久 | 脱女人内裤的视频| 亚洲熟妇熟女久久| 午夜日韩欧美国产| 国产精品女同一区二区软件 | 网址你懂的国产日韩在线| 免费搜索国产男女视频| 亚洲av二区三区四区| 国产成人影院久久av| 精品一区二区三区人妻视频| 日韩 亚洲 欧美在线| 人人妻人人澡欧美一区二区| 久久草成人影院| 男人舔女人下体高潮全视频| 久久久久精品国产欧美久久久| 亚洲18禁久久av| 亚洲中文日韩欧美视频| 精品免费久久久久久久清纯| 欧美不卡视频在线免费观看| 十八禁人妻一区二区| 91久久精品电影网| 欧美色欧美亚洲另类二区| 五月伊人婷婷丁香| 日韩欧美在线二视频| 亚洲精品色激情综合| 怎么达到女性高潮| 国产一区二区三区在线臀色熟女| 中文字幕av在线有码专区| 听说在线观看完整版免费高清| 久久久久免费精品人妻一区二区| 日本a在线网址| 女同久久另类99精品国产91| 1024手机看黄色片| 国产乱人视频| 91麻豆av在线| 久久久久久久久大av| 日日夜夜操网爽| 国产精品精品国产色婷婷| 欧美不卡视频在线免费观看| 国产精华一区二区三区| 成人av一区二区三区在线看| 精品无人区乱码1区二区| 亚洲成人中文字幕在线播放| 精品人妻一区二区三区麻豆 | 日本三级黄在线观看| 久久中文看片网| 真人做人爱边吃奶动态| 男女之事视频高清在线观看| av福利片在线观看| 一级作爱视频免费观看| 99国产极品粉嫩在线观看| 老司机午夜福利在线观看视频| 精品一区二区免费观看| 男女那种视频在线观看| 亚洲精品色激情综合| 国产亚洲精品综合一区在线观看| 亚洲最大成人av| 国产精品国产高清国产av| 男插女下体视频免费在线播放| 在线观看av片永久免费下载|