• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Result on the Quasi-periodic Solutions of Forced Isochronous Oscillators at Resonance?

    2015-06-01 11:36:28BinLIUYingchaoTANG

    Bin LIU Yingchao TANG

    1 Introduction

    In this paper,we consider the existence of quasi-periodic solutions and the boundedness of all solutions for forced isochronous oscillators with a repulsive singularity.We also assume that the equation we considered depends on the velocity.

    Consider the second-order ordinary differential equation

    in which the potential functionVis continuous.We callx=0 an isochronous center if

    and there is a fixed numberT>0 such that every solution is periodic with periodT.Ifx=0 is an isochronous center,we call the equation above an isochronous system.A typical example of the isochronous system is

    It is easy to see that every solution of this equation is-periodic int.Another important class of isochronous systems is the asymmetric equation

    wherex+=max(x,0),x?=x?x+.This is because all solutions are periodic with the periodπ().In the above examples,the equations are both defined on the whole real line.People also consider the system

    Obviously,all solutions are 2π-periodic.The di ff erence between this equation and the first two equations is that,this equation is not defined on R,and the potential tends to in finity asx→?1.More information of isochronous centers can be found in[3].

    In 1969,Lazer and Leach studied the equation

    with a 2π-periodic functionp.They showed in[12]that,ifg(±∞)=exists and

    then this equation has at least one 2π-periodic solution.The above inequality is called the Lazer-Landesman condition.

    Since then,many mathematicians investigated the existence of periodic solutions for the equations

    wherepis periodic with period 2π(see[4–5,7–11]and the references therein).In their works,they assumed the functionto be of the form(x)=m2xor(x)=ax+?bx?.So the equation(1.1)can be viewed as a perturbation of an isochronous system.They showed that the type of Lazer-Landesman condition always plays a key role for the existence of periodic solutions.

    Bonheure,Fabry and Smets[1]studied the forced isochronous oscillators with jumping nonlinearities and a repulsive singularity.The Lazer-Landesman-type condition is a key assumption to guarantee the existence of periodic solutions in their work.In the following,we brie fly go over their result.

    Assume that the functiongis smooth and bounded,and the functionVsatisfies

    wherem∈Z+,a∈(?∞,0)andVis defined on(a,+∞).We also assume that all solutions of the unperturbed equation

    are-periodic,that is,(1.3)is an isochronous oscillator with period.In this case,the equation(1.1)is a bounded perturbation of isochronous oscillators at resonance.The second condition in(1.2)means that the equation(1.3)has a repulsive singularity ata.

    Let

    Then(1.1)has at least one 2π-periodic solution if there isg0∈[,],which is a regular value ofp?,and the number of zeros ofp??g0in[0,)is di ff erent from 2,where

    In particular,as a corollary,if the limitexists,then the condition of the Lazer-Landesman type

    guarantees the existence of 2π-periodic solutions of(1.1).

    In[17],Ortega considered the boundedness of solutions and the existence of quasi-periodic solutions for asymmetric oscillators.Following his result,there are several results(see[14,18–19]and the references therein)on the boundedness of solutions for(1.1).However,in these works,the functionVis globally defined in R.That is,they do not include the case of the oscillators with a singularity.

    In[18],Ortega also proved a variant of Moser’s small twist theorem.Under some reasonable assumptions,he showed that aC6small twist area-preserving mapping has invariant curves.Moreover,he used the variant of Moser’s small twist theorem to obtain the boundedness of a piecewise linear equation

    wherep(t)is a 2π-periodic function of classC5,hL(x)is of the following form:

    andp(t)satisfies

    In 2009,Capietto,Dambrosio and Liu[2]studied(1.1)withg(x)=0 and

    whereγis a positive integer.They showed the boundedness of solutions and the existence of quasi-periodic solutions via Moser’s twist theorem.Here,Vhas a singularity?1.As far as we know,this is the first example of the boundedness of solutions for the equations with singularities.However,this equation is not isochronous.

    In[15],Liu showed that,under the condition(1.4)and other regular assumptions onV,gandp,the equation(1.1)has many quasi-periodic solutions and all solutions are bounded.It seems that this is the first result on the existence of quasi-periodic solutions and the boundedness of all solutions for isochronous oscillators with a singularity.

    In this paper,we extend the results in[15]to the case of the equation whereedepends on the velocity.More precisely,we study the equation

    where the functionsV,gandesatisfy the following assumptions:

    (1)The functionVis defined in the interval(?1,+∞)andforx≠0,and the condition(1.2)holds.

    (2)The function

    is smooth in(?1,∞)and the limitW(x)exists.Furthermore,we assume that the following estimates hold:For each 1≤k≤6,there is a constantc0,such that

    (3) The positive functionVis smooth and for 0≤k≤6,

    whereis a positive constant.

    (4) The functiongis bounded on the interval[?1,+∞)andg(x)>0 forx>0.Moreover,the following equalities hold:

    (5) Forx>0,let Φ(x)=V(x)and the function Φ satisfies

    for every positive integerk.

    (6) There is a constantM>0,such that|e(t,x,y)|≤M,and for 1≤j+i+l≤7,

    Furthermore,there exists a function(t),such that

    Moreover,the functioneis 2π-periodic int,and

    e(?t,x,?y)=e(t,x,y).

    Then we have the following theorem.

    Theorem 1.1Under the hypotheses(1)–(6)above,for a smooth function e=e(t,x,y),if the Lazer-Landesman-type condition

    holds,wherethen all solutions of(1.5)are bounded,i.e.,foreach solution x,we have

    Furthermore,in this case,the equation(1.5)has in finite many quasi-periodic solutions.

    The idea for proving our theorem is that,under the hypothesis(1)–(6)of our theorem,we can obtain that the Poincaré map of(1.5)satisfies the assumptions of a variant of Moser’s twist theorem in[16].These conditions are analogous to those in[13].

    In the following,for simplicity and brevity,we assume thatm=1,i.e.,the solutions of the equationx″+Vx(x)=0 are 2π-periodic,andm=1 in(1.2)and the assumption(5).The proof of our statements for generalm(the functioneis also 2π-periodic int)can be treated analogously.

    The paper is organized as follows.In Section 2,we introduce action and angle variables.After that we state and prove some technical lemmas in Section 3,which are employed in the proof of our main result.In Sections 4–6,we will give an asymptotic expression of the Poincaré map and prove the main result by the twist theorem in[16].

    2 Action and Angle Variables

    The equation(1.5)can be written in the following form:

    In order to introduce action and angle variables,we consider the auxiliary autonomous system

    From our assumptions,we know that all solutions of this system are 2π-periodic int.For everyh>0,we denote byI(h)the area enclosed by the(closed)curve.Let?1

    Moreover,it is easy to see that

    Let

    Then

    Because all the solutions of the auxiliary equation(2.2)are 2π-periodic,we have

    which yields thatI(h)=2πh.

    For every(x,y)∈(?1,+∞)×R,let us define the angle and action variables(θ,I)by

    where

    Obviously,we have

    and

    In the new variables(θ,I),(2.1)becomes

    where

    We have used the equality

    Obviously,this equation is time-reversible with respect to the involution(θ,I)(?θ,I).

    3 Some Technical Lemmas

    The proof of the main theorem 1.1 is based on a variant of the small twist theorem in the reversible system(see[16]).Therefore,we state it first and then give some technical estimates which will be used in the next sections.More precisely,we may use these estimates to obtain an asymptotic expression of the Poincaré map of(2.8).

    3.1 A variant of the small twist theorem

    In this subsection,we will state a variant of the small twist theorem(see[16]).

    LetA=S1×[a,b]be a finite cylinder with a universal cover A=R×[a,b].The coordinate in A is denoted by(τ,v).Consider a map

    We assume that the map is reversible with respect to the involutionG:(θ,I)(?θ,I),that is,

    Suppose thatf:A→R×R,(τ0,v0)(τ1,v1)is a lift ofand it has the form

    whereNis an integer,δ∈(0,1)is a parameter andl1,l2,?1and?2are functions satisfying

    In addition,we assume that there exists a functionI:A→R satisfying

    Define the functions

    Small Twist Theorem(see[16,Theorem 2])Let be such that(3.1)–(3.3)hold.Assume in addition that there exists a function I satisfying(3.4)–(3.5)and numbers,with

    Then there exist >0andΔ>0such that if<Δand,the map has an invariant curveΓ.The constantis independent of .Furthermore,if we denote by μ(Γ,δ)∈S1the rotation number of,then

    Remark 3.1From the last inequality in(3.2),we know thatτ1is increasing asv0increases.This means that(3.1)is a twist map.By the proof in[16],one can see that the conclusions of this theorem still hold if the condition(3.2)is replaced by

    Remark 3.2Note thatl1(τ0,v0)=l1(?τ0,v0),andl2(τ0,v0)=?l2(?τ0,v0).If the functionIdoes not satisfyI(?τ0,v0)=I(τ0,v0),we can chooseJ(τ0,v0)=(I(τ0,v0)+I(?τ0,v0))instead ofI(τ0,v0).

    3.2 Some technical lemmas

    In order to obtain an asymptotic expression of the Poincaré map of(2.8),we must give some estimates first.In this subsection,we will deal with some technical estimates.Throughout this subsection,we suppose that the assumptions(1)–(5)stated in Section 1 hold.

    Lemma 3.1For every positive integer0≤k≤6,there is a constant c1>0,such that

    ProofAccording to[13],we know that

    and here and in the rest of this subsection,the functionWis defined by(1.6).By the assumption(2)in Section 1,it follows that

    From(3.6)and the equality(the proof can be found in[13])

    whereKis a smooth function,it follows that

    which yields,by the assumption(2)in Section 1 and the estimate on,that

    The general case can be obtained by an induction argument and a direct computation.

    Lemma 3.2There is a constant c2>0such that,for each positive integer k≤6,

    ProofLet

    ThenT?(h)=(h).On the other hand,similar to the proof of(3.6),it is not difficult to see that

    From the assumption(2)in Section 1,it follows thatBy Lemma 3.1,we have,for each positive integerk≤6,

    The conclusion of this lemma follows from this inequality and the identityT?(h)+T+(h)≡2π.

    Define a functionF

    and an operatorL

    wheref=f(x,I),h=h(I)andis the derivative ofhwith respect toI.

    The proof of the following lemma can be found in[13].

    Lemma 3.3For every smooth function g(x,I),we have

    Next,we give an estimate of the derivatives ofx=x(θ,I)andy=y(θ,I)with respect to the action variableI.

    Proposition 3.1There is a constant C>0such that,for?1≤k≤6,

    where x=x(θ,I)and y=y(θ,I)are defined implicitly by(2.6)and(2.7),respectively.

    The idea of the proof of this proposition is similar to the corresponding one in[13].A complete proof can be found in the appendix of[15].

    Note that?1≤?αh≤x≤βhand the assumption(5)in Section 1,there is a constantc3>0 such that for?I1,.Hence,by Proposition 3.1,we have

    wherec4>0 is a constant,not depending onI.

    4 An Asymptotic Formula of x(θ,I)

    In this section,we will give an asymptotic expression ofx(θ,I)whenI?1.

    From the Definition ofθ(cf.(2.6)),it follows that

    xθ(θ,I)=y(θ,I).

    Sincecombining with the above equality,we have

    That is,the functionx(θ,I)satisfies

    Let

    Then

    Obviously,there is aδ>0 such that(θ)>0 forθ∈(0,δ).By the assumption(5)in Section 1,we know that,if>0,then it is the solution of

    Let+(I)be the subset of the interval[0,2π]such that forθ∈+(I),(θ,I)>0.

    Lemma 4.1For θ∈+(I),the functionx has the following expression:

    where the functionsatisfies

    ProofIn the following,we assume thatθ∈+(I).Sinceis the solution of(4.1)with the initial conditionu(0)=0,(0)=1,we have

    whereHence,the functionis determined implicitly by

    From the hypothesis(5)in Section 1 and the Lebesgue dominated theorem,we have

    Taking the derivative with respect toIin both sides of the above equality,one has

    By the hypothesis(5)in Section 1 and the Gronwall inequality,it follows that

    The estimates for the derivatives of higher order can be obtained in a similar way.

    By the Definition ofandwe have

    and

    Now we turn to estimate the measure of the setBy the Definitions ofθand,we

    know that

    Hence,Because(1.3)is isochronous,we have,by Lemma 3.2,that

    T+(h)=2π?T?(h).

    So

    whereμdenotes the Lebesgue measure.

    Let

    Then

    andθ∈Θ+(I)??x(θ,I)>0.

    In the next section,we introduce a canonical transformation such that the transformed system is a perturbation of an integrable system.

    5 Another Set of Action and Angle Variables

    Now we consider the system(2.8).Note that

    We have,by Lemma 3.3,

    Hence,from(2.8),we know that

    Instead of(2.8),we will consider the following system:

    The relation between(2.8)and(5.1)is that if(I(t),θ(t))is a solution of(2.8)and the inverse functiont(θ)ofθ(t)exists,then(I(t(θ)),t(θ))is a solution of(5.1)and vice versa.Hence in order to find quasi-periodic solutions of(2.8)and to obtain the boundedness of the solutions,it is sufficient to prove the existence of quasi-periodic solutions and the boundedness of solutions of(5.1).This trick was used in[13]in the proof of boundedness for superquadratic potentials.

    From the Definition ofθ,we have,fory>0,

    SinceI=2πh,take the derivative with respect to the action variableIin both sides of the above equality(the angle variableθis independent ofI),it follows that

    which yields that

    Hence,we obtain that

    Ψ1(θ,I,t)=2πxI(g(x(θ,I))?e(t,x(θ,I),y(θ,I))).

    Definition 5.1We say a function g(t,ρ,θ,)∈Ok(1)if g is smooth in(t,ρ)and for k1+k2≤k,

    for some constant C>0which is independent of the arguments t,ρ,θ and.Similarly,we say a function g(t,ρ,θ,)∈ok(1)if g is smooth in(t,ρ)and for k1+k2≤k,

    Now we introduce a new action variableρ∈[1,2]and a parameter>0 byI=?2ρ.Then,I?1??0

    where

    Obviously,if?1,the solution(t(θ,t0,ρ0),ρ(θ,t0,ρ0))of(5.2)with the initial data(t0,ρ0)∈R×[1,2]is defined in the intervalθ∈[0,2π]andρ(θ,t0,ρ0)∈[,3].So the Poincarmap of(5.2)is well defined in the domain R×[1,2].

    Lemma 5.1The Poincaré map of(5.2)is reversible with respect to the involution(t,ρ)(?t,ρ).

    By(4.4)and Lemma 3.1,we know that,there is a functionηsuch that

    whereη∈O6(1).By the Definition of Θ+and Θ?,we have

    6 Proof of the Main Result

    In this section, firstly,using the estimates in Subsection 3.2,we will obtain an asymptotic expression of the Poincaré map of(5.2)as?1.After that,we can prove the main result using a variant of Moser’s small twist theorem in[16].

    We make the ansatz that the solution of(5.2)with the initial condition(t(0),ρ(0))=(t0,ρ0) is of the form

    t=t0+θ+Σ1(t0,ρ0,θ;),ρ=ρ0+Σ2(t0,ρ0,θ;).

    Then,the Poincaré map of(5.2)is

    The functions Σ1and Σ2satisfy

    where

    By Proposition 3.1 and the assumptions(1)–(5)in Section 1,we know that the terms in the right-hand side of the above equations are bounded,so we have

    wherec8>0 is a constant.Hence,forρ0∈[1,2],we may choosesufficiently small such that

    for(t0,θ)∈[0,2π]×[0,2π].Similar to the proof in[6],one can obtain

    Lemma 6.1The following estimates hold:

    ProofLet

    By(3.11)and(6.4),we have

    Taking the derivative with respect toρ0in the both sides of(6.6),we have

    Using(3.11)and(6.5),one may find a constantc9>0 such that

    Analogously,one may obtain,by a direct but cumbersome computation,that

    The estimates forfollow from a similar argument,and we omit it here.

    Now we turn to give an asymptotic expression of the Poincaré map of(5.2),that is,we study the behavior of the functions Σ1and Σ2atθ=2πas0.

    By(6.2)and Lemma 6.1,it follows that

    and

    withx=x(θ,?2ρ0),y=y(θ,?2ρ0).Here we have used thaty(?θ,?2ρ0)=?y(θ,?2ρ0)andx(?θ,?2ρ0)=x(θ,?2ρ0).By Proposition 3.1,we know that whenθ∈Θ?(I),

    which yield that

    withx=x(θ,?2ρ0),y=y(θ,?2ρ0).

    Our next task is to estimate the above two integrals.

    Lemma 6.2Ifand the assumption(4)in Section1holds,then,forany function f∈o6(1),

    ProofLet

    Note that sin>0 forθ∈(0,2π),so by the Lebesgue dominated theorem,we have

    Since

    by the assumption(4)in Section 1 and the Lebesgue dominated theorem,it follows that

    The estimates for the derivatives of higher order can be obtained in a similar way.Hence,we have proved the conclusion whenf≡0.In the general case,let

    Then

    The conclusion follows from the Lebesgue dominated theorem and the assumption(4)in Section 1.

    Lemma 6.3If the assumption(6)holds,then,for any function f1,f2∈o6(1),

    ProofLet

    Note that sin>0 forθ∈(0,2π),so by Lebesgue dominated theorem,we have

    Since

    by the assumption(6)in Section 1 and the Lebesgue dominated theorem,it follows that

    The estimates for the derivatives of higher order can be obtained in a similar way.Hence,we have proved the conclusion whenf1=f2≡0.In the general case,let

    Then

    The conclusion follows from the Lebesgue dominated theorem and the assumption(6)in Section 1.

    Similarly,we have the following Lemma.

    Lemma 6.4If the assumption(6)in Section1holds,then

    From these lemmas,we have the following lemma.

    Lemma 6.5The following estimates hold:

    ProofBy(4.2)–(4.3),the Definition of Θ+and(5.3),it follows that

    Let

    Then there are two functionsφ1andφ2,such that the Poincaré map of(5.2),given by(6.1),is of the form

    whereφ1,φ2∈o6(1).

    Note that,by the Lazer-Landesman condition 4g+>maxθ?(θ),we know that

    Let

    Then

    The other assumptions of Ortega’s theorem are veri fied directly.Hence,for sufficiently small,there is an invariant curve of Φ in the annulus(t0,ρ0)∈S1×[1,2].The boundedness of the solutions to our original equation(1.5)can be obtained by the existence of such invariant curves,and the precise proof can be found in[14].

    Moreover,the solutions starting from such curves are quasi-periodic solutions.Using the Poincaré-Birkho ff fixed point theorem,there is a positive integern0,such that,for anyn≥n0,there are at least two periodic solutions of(1.5)with the minimal period 2nπ(see[6]).

    Since then,we are done with the proof of the existence of the quasi-periodic solutions and boundedness of all solutions for reversible forced isochronous oscillators with a repulsive singularity.

    [1]Bonheure,D.,Fabry,C.and Smets,D.,Periodic solutions of forced isochronous oscillators at resonance,Discrete and Continuous Dynamical Systems,8,2002,907–930.

    [2]Capietto,A.,Dambrosio,W.and Liu,B.,On the boundedness of solutions to a nonlinear singular oscillator,Z.angew.Math.Phys.60,2009,1007–1034.

    [3]Chavarriga,J.and Sabatini,M.,A survey of isochronous centers,Qualitative Theory of Dynamical Systems1,1999,1–70.

    [4]Del Pino,M.and Man′asevich,R.,In finitely many 2π-periodic solutions for a problem arising in nonlinear elasticity,J.Differential Equations,103,1993,260–277.

    [5]Del Pino,M.,Man′asevich,R.and Montero,A.,T-periodic solutions for some second order differential equations with singularities,Proc.Roy.Soc.Edinburgh Sect.A,120,1992,231–243.

    [6]Dieckerho ff,R.and Zehnder,E.,Boundedness of solutions via the twist theorem,Ann.Scula.Norm.Sup.Pisa Cl.Sci.,14(1),1987,79–95.

    [7]Fabry,C.,Landesman-Lazer conditions for periodic boundary value problems with asymmetric nonlinearities,J.Differential Equations,116,1995,405–418.

    [8]Fabry,C.,Behavior of forced asymmetric oscillators at resonance,Electron.J.Differential Equations,2000,2000,1–15.

    [9]Fabry,C.and Fonda,A.,Nonlinear resonance in asymmetric oscillators,J.Differential Equations,147,1998,58–78.

    [10]Fabry,C.and Man′asevich,R.,Equations with ap-Laplacian and an asymmetric nonlinear term,Discrete Continuous Dynamical Systems,7,2001,545–557.

    [11]Fabry,C.and Mawhin,J.,Oscillations of a forced asymmetric oscillator at resonance,Nonlinearity,13,2000,493–505.

    [12]Lazer,A.C.and Leach,D.E.,Bounded perturbations of forced harmonic oscillators at resonance,Ann.Mat.Pura Appl.,82,1969,49–68.

    [13]Levi,M.,Quasiperiodic motions in superquadratic time-periodic potentials,Commun.Math.Phys.,143,1991,43–83.

    [14]Liu,B.,Boundedness in nonlinear oscillations at resonance,J.Differential Equations,153,1999,142–174.[15]Liu,B.,Quasi-periodic solutions of forced isochronous oscillators at resonance,J.Differential Equations,246,2009,3471–3495.

    [16]Liu,B.and Song,J.,Invariant curves of reversible mappings with small twist,Acta Math.Sin.,20,2004,15–24.

    [17]Ortega,R.,Asymmetric oscillators and twist mappings,J.London Math.Soc.,53,1996,325–342.

    [18]Ortega,R.,Boundedness in a piecewise linear oscillator and a variant of the small twist theorem,Proc.London Math.Soc.,79,1999,381–413.

    [19]Ortega,R.,Twist mappings,invariant curves and periodic differential equations,Progress in Nonlinear Differential Equations and Their Applications,43,Grossinho M.R.et al,eds,Birkh¨auser,2001,85–112.

    欧美精品高潮呻吟av久久| 国产精品蜜桃在线观看| xxxhd国产人妻xxx| 老司机影院成人| 99久久人妻综合| 国产探花极品一区二区| 69精品国产乱码久久久| 制服人妻中文乱码| 婷婷色av中文字幕| 捣出白浆h1v1| 亚洲色图 男人天堂 中文字幕| 欧美另类一区| 国产精品久久久久久精品电影小说| videos熟女内射| 啦啦啦 在线观看视频| 婷婷色麻豆天堂久久| 一边亲一边摸免费视频| 午夜激情av网站| 久久狼人影院| 亚洲av国产av综合av卡| 国产精品欧美亚洲77777| 国产精品嫩草影院av在线观看| 亚洲精品国产av蜜桃| 亚洲男人天堂网一区| 天天躁夜夜躁狠狠久久av| 中国三级夫妇交换| 在现免费观看毛片| 国产xxxxx性猛交| 国产高清不卡午夜福利| 国产成人91sexporn| 国产1区2区3区精品| 国产亚洲一区二区精品| 黄片小视频在线播放| 天天躁夜夜躁狠狠久久av| 日韩制服骚丝袜av| 啦啦啦在线免费观看视频4| a级毛片黄视频| 男女午夜视频在线观看| 国产熟女欧美一区二区| 免费不卡黄色视频| 王馨瑶露胸无遮挡在线观看| 欧美日韩一级在线毛片| 亚洲精品国产一区二区精华液| 丝袜美足系列| 久久久久久人人人人人| 黄色一级大片看看| 久久久精品国产亚洲av高清涩受| 精品久久久精品久久久| 极品少妇高潮喷水抽搐| 男女免费视频国产| 国产视频首页在线观看| 最近2019中文字幕mv第一页| 宅男免费午夜| 日本一区二区免费在线视频| av卡一久久| 亚洲专区中文字幕在线 | 日韩成人av中文字幕在线观看| 亚洲三区欧美一区| 赤兔流量卡办理| www.av在线官网国产| 精品少妇黑人巨大在线播放| 亚洲久久久国产精品| 欧美激情 高清一区二区三区| 免费高清在线观看日韩| 在线观看免费日韩欧美大片| 国产亚洲欧美精品永久| 毛片一级片免费看久久久久| 啦啦啦啦在线视频资源| 国产一区有黄有色的免费视频| 99re6热这里在线精品视频| 色精品久久人妻99蜜桃| 色吧在线观看| www.熟女人妻精品国产| 精品第一国产精品| 亚洲色图综合在线观看| 一边亲一边摸免费视频| 欧美日韩视频高清一区二区三区二| 国产1区2区3区精品| 免费日韩欧美在线观看| 国产乱来视频区| 少妇精品久久久久久久| 一本一本久久a久久精品综合妖精| 人体艺术视频欧美日本| 亚洲精品视频女| 观看av在线不卡| 搡老乐熟女国产| 男男h啪啪无遮挡| 热re99久久精品国产66热6| 欧美激情 高清一区二区三区| 色94色欧美一区二区| 91aial.com中文字幕在线观看| 午夜激情久久久久久久| 午夜91福利影院| 丝袜喷水一区| 麻豆av在线久日| 成人影院久久| 亚洲精品国产区一区二| 久久国产精品大桥未久av| 国产成人91sexporn| 夜夜骑夜夜射夜夜干| 免费少妇av软件| 国产成人精品久久二区二区91 | 午夜91福利影院| 在线亚洲精品国产二区图片欧美| 免费观看人在逋| 精品久久蜜臀av无| 久久久久精品性色| 蜜桃在线观看..| 国产精品一国产av| 男男h啪啪无遮挡| 午夜福利视频在线观看免费| 永久免费av网站大全| www.精华液| 国产日韩欧美视频二区| 午夜福利免费观看在线| 日本vs欧美在线观看视频| 亚洲综合精品二区| 另类亚洲欧美激情| 69精品国产乱码久久久| 精品国产国语对白av| 一级爰片在线观看| 欧美亚洲 丝袜 人妻 在线| 看免费av毛片| 国产xxxxx性猛交| 午夜日本视频在线| netflix在线观看网站| 国产一区有黄有色的免费视频| 母亲3免费完整高清在线观看| 制服人妻中文乱码| 极品少妇高潮喷水抽搐| 欧美亚洲 丝袜 人妻 在线| 亚洲 欧美一区二区三区| 老熟女久久久| 亚洲精品视频女| xxxhd国产人妻xxx| 青春草视频在线免费观看| 又大又爽又粗| 欧美日韩国产mv在线观看视频| 国产一区有黄有色的免费视频| 亚洲国产欧美一区二区综合| av在线播放精品| 精品亚洲成a人片在线观看| 在线看a的网站| 制服人妻中文乱码| 一个人免费看片子| 街头女战士在线观看网站| 日日爽夜夜爽网站| 日韩电影二区| 久久久久精品久久久久真实原创| 狂野欧美激情性bbbbbb| 成人亚洲精品一区在线观看| 欧美另类一区| 精品人妻一区二区三区麻豆| 国产极品天堂在线| 久久 成人 亚洲| 丁香六月天网| 免费人妻精品一区二区三区视频| 日韩欧美精品免费久久| 男女无遮挡免费网站观看| 亚洲精品久久久久久婷婷小说| 亚洲色图综合在线观看| tube8黄色片| 电影成人av| av国产精品久久久久影院| 精品人妻一区二区三区麻豆| 精品福利永久在线观看| 丁香六月欧美| 一区福利在线观看| 欧美日韩视频精品一区| 女性被躁到高潮视频| 免费看不卡的av| 最黄视频免费看| 欧美乱码精品一区二区三区| 午夜福利,免费看| 亚洲国产av影院在线观看| 日韩 欧美 亚洲 中文字幕| 高清黄色对白视频在线免费看| 丰满迷人的少妇在线观看| 久久久久久人妻| 免费女性裸体啪啪无遮挡网站| 国产片内射在线| 三上悠亚av全集在线观看| 51午夜福利影视在线观看| 中文字幕最新亚洲高清| 女人高潮潮喷娇喘18禁视频| 日韩一本色道免费dvd| 啦啦啦视频在线资源免费观看| 亚洲国产毛片av蜜桃av| 婷婷色综合大香蕉| 久久久久网色| 色94色欧美一区二区| 亚洲精品国产一区二区精华液| 欧美亚洲日本最大视频资源| 国产av码专区亚洲av| 国产精品一区二区在线不卡| 亚洲精品一区蜜桃| 欧美精品一区二区免费开放| www日本在线高清视频| 欧美黄色片欧美黄色片| 日韩av免费高清视频| 亚洲精品国产区一区二| 伊人亚洲综合成人网| 最近中文字幕高清免费大全6| 99久久人妻综合| av网站免费在线观看视频| 日韩成人av中文字幕在线观看| 国产野战对白在线观看| 日本色播在线视频| 中文乱码字字幕精品一区二区三区| 国产成人一区二区在线| 亚洲综合色网址| 飞空精品影院首页| 制服丝袜香蕉在线| 久久97久久精品| 男人添女人高潮全过程视频| 亚洲国产av影院在线观看| 午夜激情av网站| av有码第一页| 91老司机精品| 国产午夜精品一二区理论片| 精品久久蜜臀av无| 伊人久久国产一区二区| av免费观看日本| 美女国产高潮福利片在线看| 欧美日韩综合久久久久久| 免费av中文字幕在线| 国产深夜福利视频在线观看| 男人操女人黄网站| 免费日韩欧美在线观看| 黑丝袜美女国产一区| 国产日韩一区二区三区精品不卡| 日韩视频在线欧美| 亚洲熟女精品中文字幕| 男人爽女人下面视频在线观看| 啦啦啦 在线观看视频| 色综合欧美亚洲国产小说| 性色av一级| 肉色欧美久久久久久久蜜桃| 综合色丁香网| 韩国高清视频一区二区三区| 三上悠亚av全集在线观看| 久久久国产一区二区| 中文字幕高清在线视频| 亚洲综合精品二区| 国产成人午夜福利电影在线观看| 亚洲激情五月婷婷啪啪| 91老司机精品| 99久久人妻综合| 肉色欧美久久久久久久蜜桃| 国产成人啪精品午夜网站| 青春草国产在线视频| 久久毛片免费看一区二区三区| 肉色欧美久久久久久久蜜桃| 久久久国产一区二区| 亚洲成人一二三区av| 美女高潮到喷水免费观看| 国产精品一国产av| 亚洲婷婷狠狠爱综合网| 亚洲国产精品国产精品| 51午夜福利影视在线观看| 久久人人爽av亚洲精品天堂| 一区二区三区乱码不卡18| 99热全是精品| 亚洲成人国产一区在线观看 | 母亲3免费完整高清在线观看| 久久久久精品国产欧美久久久 | 亚洲成人av在线免费| 亚洲一区二区三区欧美精品| 一本色道久久久久久精品综合| 老司机亚洲免费影院| 欧美老熟妇乱子伦牲交| 久久性视频一级片| 一二三四中文在线观看免费高清| www.自偷自拍.com| 久久精品国产亚洲av高清一级| 日本wwww免费看| 亚洲自偷自拍图片 自拍| 天天躁狠狠躁夜夜躁狠狠躁| 美女大奶头黄色视频| 爱豆传媒免费全集在线观看| 欧美国产精品va在线观看不卡| 一区福利在线观看| 哪个播放器可以免费观看大片| 亚洲精品国产av成人精品| 人妻一区二区av| 极品人妻少妇av视频| 一级毛片我不卡| 新久久久久国产一级毛片| 男女下面插进去视频免费观看| www.精华液| 亚洲欧美激情在线| 无遮挡黄片免费观看| 中文字幕人妻丝袜制服| 亚洲欧洲日产国产| 国产精品一区二区精品视频观看| 欧美精品高潮呻吟av久久| 欧美精品一区二区大全| 色吧在线观看| 中文精品一卡2卡3卡4更新| 丁香六月欧美| 一级爰片在线观看| 国产黄频视频在线观看| 中文字幕av电影在线播放| 巨乳人妻的诱惑在线观看| 欧美人与性动交α欧美精品济南到| 老司机在亚洲福利影院| videosex国产| 国产日韩一区二区三区精品不卡| 精品亚洲成a人片在线观看| 久久性视频一级片| 欧美人与性动交α欧美软件| 国产成人一区二区在线| 亚洲国产欧美在线一区| 欧美日韩亚洲高清精品| 色精品久久人妻99蜜桃| 精品久久久精品久久久| 日韩,欧美,国产一区二区三区| 又粗又硬又长又爽又黄的视频| 超碰97精品在线观看| 久久久久视频综合| 黄色视频在线播放观看不卡| 亚洲,欧美精品.| 久久久精品国产亚洲av高清涩受| 欧美日韩精品网址| 久久国产精品大桥未久av| 久久午夜综合久久蜜桃| 欧美av亚洲av综合av国产av | 亚洲国产精品成人久久小说| 久久久久久久久久久免费av| 熟女少妇亚洲综合色aaa.| 晚上一个人看的免费电影| 在线天堂最新版资源| 激情五月婷婷亚洲| 黑人巨大精品欧美一区二区蜜桃| 电影成人av| 美女福利国产在线| 国产淫语在线视频| 亚洲欧美成人综合另类久久久| 亚洲欧美中文字幕日韩二区| 国产成人精品福利久久| 国产精品三级大全| 亚洲图色成人| 亚洲一区二区三区欧美精品| 精品少妇内射三级| 久久天堂一区二区三区四区| 日本wwww免费看| 一边摸一边做爽爽视频免费| 免费高清在线观看日韩| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 这个男人来自地球电影免费观看 | 欧美日韩一区二区视频在线观看视频在线| 伦理电影免费视频| 91成人精品电影| 午夜av观看不卡| 亚洲精品日本国产第一区| 国产成人午夜福利电影在线观看| 免费高清在线观看视频在线观看| 热re99久久国产66热| 国产日韩欧美在线精品| 国产成人免费观看mmmm| 人人妻,人人澡人人爽秒播 | 欧美中文综合在线视频| 久久精品aⅴ一区二区三区四区| av又黄又爽大尺度在线免费看| 亚洲成人精品中文字幕电影| 少妇的丰满在线观看| 亚洲国产精品sss在线观看| 性欧美人与动物交配| 无遮挡黄片免费观看| 女人被狂操c到高潮| 日韩成人在线观看一区二区三区| 午夜福利成人在线免费观看| 午夜a级毛片| 国产亚洲欧美精品永久| 男女做爰动态图高潮gif福利片 | 一a级毛片在线观看| 色av中文字幕| 色综合亚洲欧美另类图片| 久久久久精品国产欧美久久久| 欧美午夜高清在线| 午夜免费鲁丝| 亚洲中文av在线| 亚洲中文日韩欧美视频| 日韩欧美免费精品| 激情在线观看视频在线高清| 视频在线观看一区二区三区| 999久久久精品免费观看国产| 欧美成狂野欧美在线观看| 亚洲精品中文字幕在线视频| 国产麻豆成人av免费视频| 黑人巨大精品欧美一区二区蜜桃| 在线av久久热| av在线播放免费不卡| 国产激情久久老熟女| 久久婷婷人人爽人人干人人爱 | 久久久久久久午夜电影| 美国免费a级毛片| 午夜亚洲福利在线播放| 国语自产精品视频在线第100页| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看 | 国产精品久久电影中文字幕| 日韩欧美一区二区三区在线观看| 久久久久久亚洲精品国产蜜桃av| 在线观看66精品国产| 在线观看免费视频网站a站| 视频在线观看一区二区三区| 久久 成人 亚洲| 午夜影院日韩av| 大香蕉久久成人网| 色播在线永久视频| 一区福利在线观看| 精品无人区乱码1区二区| 午夜两性在线视频| 电影成人av| 午夜福利影视在线免费观看| 欧美黑人精品巨大| 波多野结衣一区麻豆| 757午夜福利合集在线观看| 国产三级黄色录像| 国产高清videossex| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 国产激情欧美一区二区| avwww免费| 午夜老司机福利片| 侵犯人妻中文字幕一二三四区| АⅤ资源中文在线天堂| 女人被狂操c到高潮| 色哟哟哟哟哟哟| 成人手机av| 久久婷婷成人综合色麻豆| av福利片在线| 人人妻人人澡欧美一区二区 | av在线播放免费不卡| 亚洲一区高清亚洲精品| 日本欧美视频一区| 亚洲精品国产色婷婷电影| 黄片小视频在线播放| 精品国产乱子伦一区二区三区| 国产黄a三级三级三级人| 亚洲午夜理论影院| 18禁美女被吸乳视频| 老熟妇乱子伦视频在线观看| 成年人黄色毛片网站| 麻豆久久精品国产亚洲av| 可以在线观看的亚洲视频| 99国产极品粉嫩在线观看| 欧美一级毛片孕妇| 亚洲,欧美精品.| 久久人人爽av亚洲精品天堂| 亚洲中文av在线| 日日摸夜夜添夜夜添小说| 免费高清视频大片| 黄色丝袜av网址大全| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 黄片播放在线免费| 好男人电影高清在线观看| 久久久久久久精品吃奶| 看黄色毛片网站| 国产精品久久久久久亚洲av鲁大| 精品国产美女av久久久久小说| 国产亚洲欧美精品永久| 亚洲,欧美精品.| 精品国内亚洲2022精品成人| 欧美激情高清一区二区三区| 老司机在亚洲福利影院| 久久久国产成人免费| 国产三级在线视频| 欧美中文综合在线视频| 久久久水蜜桃国产精品网| 国产亚洲精品一区二区www| 日日干狠狠操夜夜爽| 亚洲熟女毛片儿| 国产熟女午夜一区二区三区| 久久久国产欧美日韩av| 丰满人妻熟妇乱又伦精品不卡| 国产精品二区激情视频| 黑人操中国人逼视频| 一a级毛片在线观看| 午夜久久久久精精品| 天堂动漫精品| 欧美乱色亚洲激情| 嫁个100分男人电影在线观看| 一区二区三区高清视频在线| 欧美一级毛片孕妇| 中文字幕人妻丝袜一区二区| 丁香六月欧美| 久久久久久久精品吃奶| 丝袜在线中文字幕| 在线av久久热| 涩涩av久久男人的天堂| 免费在线观看黄色视频的| 精品熟女少妇八av免费久了| 欧美乱码精品一区二区三区| 色综合站精品国产| 欧美最黄视频在线播放免费| 亚洲少妇的诱惑av| 亚洲七黄色美女视频| 伦理电影免费视频| 亚洲熟女毛片儿| 啦啦啦 在线观看视频| 老司机午夜福利在线观看视频| 精品国产国语对白av| 一二三四社区在线视频社区8| 免费在线观看亚洲国产| 国产精品国产高清国产av| 国产一区二区激情短视频| 成人国语在线视频| 亚洲精品中文字幕在线视频| 国产精品 国内视频| 国产av一区在线观看免费| 18禁观看日本| av视频在线观看入口| 可以在线观看毛片的网站| 国产又爽黄色视频| av超薄肉色丝袜交足视频| 久久国产亚洲av麻豆专区| 国产精品香港三级国产av潘金莲| 精品国产一区二区久久| 少妇粗大呻吟视频| 日韩高清综合在线| 麻豆成人av在线观看| cao死你这个sao货| av电影中文网址| 黄色视频不卡| 国产精品久久电影中文字幕| 大型黄色视频在线免费观看| 黄片大片在线免费观看| 又紧又爽又黄一区二区| 69av精品久久久久久| 亚洲中文日韩欧美视频| 国产精品日韩av在线免费观看 | 国产精品免费视频内射| 欧美黄色片欧美黄色片| 黄色a级毛片大全视频| 天堂√8在线中文| 日日摸夜夜添夜夜添小说| 久久久久久久午夜电影| 在线观看舔阴道视频| 黄色视频,在线免费观看| 久久精品亚洲熟妇少妇任你| 欧美日韩乱码在线| 成人国产综合亚洲| 亚洲精华国产精华精| 精品国产超薄肉色丝袜足j| 午夜精品在线福利| 久久人人97超碰香蕉20202| 国内精品久久久久久久电影| 亚洲国产毛片av蜜桃av| 校园春色视频在线观看| 少妇被粗大的猛进出69影院| 两个人看的免费小视频| 黄色视频不卡| 可以在线观看毛片的网站| 深夜精品福利| 亚洲色图综合在线观看| 亚洲中文av在线| 国产精品亚洲美女久久久| 给我免费播放毛片高清在线观看| 久久久国产欧美日韩av| 精品国产乱子伦一区二区三区| 亚洲av第一区精品v没综合| 中文亚洲av片在线观看爽| 女人被狂操c到高潮| 国产私拍福利视频在线观看| 熟妇人妻久久中文字幕3abv| 久久香蕉激情| avwww免费| 色播在线永久视频| 丝袜人妻中文字幕| 亚洲美女黄片视频| 啦啦啦观看免费观看视频高清 | 日韩中文字幕欧美一区二区| 日本撒尿小便嘘嘘汇集6| 岛国视频午夜一区免费看| 国产精品乱码一区二三区的特点 | 国产精品久久久av美女十八| 精品国产乱子伦一区二区三区| 欧美在线一区亚洲| 人人妻,人人澡人人爽秒播| 亚洲天堂国产精品一区在线| 搡老妇女老女人老熟妇| 久久久久久人人人人人| 午夜福利成人在线免费观看| 国产亚洲欧美在线一区二区| 变态另类成人亚洲欧美熟女 | 婷婷六月久久综合丁香| 亚洲国产欧美网| 青草久久国产| 午夜a级毛片| 国产成人精品久久二区二区免费| 一区二区三区精品91| 亚洲成人精品中文字幕电影| 窝窝影院91人妻| 在线观看午夜福利视频| 日韩精品青青久久久久久| 午夜福利成人在线免费观看| 在线永久观看黄色视频| 91大片在线观看| 99精品欧美一区二区三区四区| 亚洲在线自拍视频| 一个人免费在线观看的高清视频| 搡老熟女国产l中国老女人| 午夜亚洲福利在线播放| 欧美精品亚洲一区二区| 国产色视频综合| 人人妻,人人澡人人爽秒播| 亚洲av电影不卡..在线观看| 欧美午夜高清在线| 看黄色毛片网站| 国产成人精品久久二区二区91| 久久香蕉精品热|