• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Randomly Weighted LAD-Estimation for Partially Linear Errors-in-Variables Models

    2015-06-01 07:34:26XiaohanYANGRongJIANGWeiminQIAN

    Xiaohan YANG Rong JIANG Weimin QIAN

    1 Introduction

    Consider a partially linear errors-in-variables(EV for short)model as follows:

    where xi∈ Rpare unobservable explanatory variables,Xi∈ Rpare manifest variables,β0∈ Rpis an unknown parameter vector,Tiis a scalar co-variate,the function g(·)is unknown,Yi∈ R are responses,and(ε,uT)T∈ Rp+1are independent with a common error distribution that is spherically symmetric.Spherical symmetry implies that εiand each component of uihave the same distribution,which ensures model identi fiability and means that(ε,uT)T=dRUp+1(R is a nonnegative random variable,Up+1is a uniform random vector on Ωp={a:a ∈ Rp+1,‖a‖=1},R and Up+1are independent),and(ε,uT)Tand x are independent.A detailed coverage of linear errors-in-variables models can be found in[7].More work on nonlinear models with measurement errors can be found in[2].Recently,the model(1.1)has been studied by Cui and Li[5],Liang et al.[13],Zhu and Cui[24]and so on.Cui and Li[5]and Liang et al.[13]discussed the least square estimators for the parametric and nonparametric components by the nearest neighbor estimation and the general kernel smoothing for the nonparametric component,respectively.The quantile estimate of the slope parameter β0has been studied by He and Liang[8].

    It is well known that the least square(LS for short)method is one of the oldest and most widely used statistical tools for linear models.But,the LS estimate can be sensitive to outliers and therefore,non-robust.Unlike the LS method,the least absolute deviation(LAD for short)method is not sensitive to outliers and produces robust estimates.Due to the developments in theoretical aspects and the availability of computing power,the LAD method has become increasingly popular.In particular,it has many applications in econometrics and biomedical studies(see[1,10]),among many others.

    However,the asymptotic distribution of the estimators by the LAD method is generally related to nuisance parameter that can not be conveniently estimated.The randomly weighted method can provide a way of assessing the distribution of the estimators without estimating the nuisance parameter.The random weighting method was first proposed by Zheng[23].An advantage of the random weighting method is that no observation is repeatedly used within each replicate of the random weighting,though each observation may be weighted unequally.This method has been used in many applications as an alternative to the bootstrap method.For example,Rao and Zhao[16]used this method to derive the approximate distribution of the M-estimator in the linear regression model.Cui et al.[6]proposed a random weighting method for the proportional hazards model.Wang et al.[19]extended the method to the censored regression model.Jiang et al.[9]discussed randomly weighted least square estimators for the unknown parameters in semi-linear EV model.A statistical analysis of the LAD method used in the partially linear regression model(1.1)with additive measurement errors,however,still seems to be missing.The objective of the present paper is to fill this gap.

    In this paper,our objective is to apply the randomly weighted LAD-estimation(RWLADE for short)to partially linear EV models,and establish the asymptotic normality of the RWLADE for the parameter.These results can be used to construct confidence intervals for β0.Furthermore,we propose a LAD-test for partially linear EV models.The LAD-test has been used by Zhao and Chen[22]to test linear hypotheses in the linear model.But the critical values of the test statistic are related to estimators of nuisance parameters.Chen et al.[3]proposed an easy and convenient randomly weighting resampling method to determine the critical values for testing linear hypotheses in the least absolute deviation regression.Motivated by this idea,we also use the randomly weighted method to determine the critical values for testing hypotheses in partially linear EV models.

    The outline of the paper is as follows.In Section 2,we define the weighting scheme to be used,hence the RWLADE for β0,and then the test statistics of it.Section 3 is the statement of the main results for β0,and the chi-square distributions of test statistics of the proposed estimators are also given in this section.In Section 4,simulations are carried out to assess the finite sample performance of the method and also an illustration of the method to a real example is given in this section.Some concluding remarks are given in Section 5.All the technical proofs are delayed in the appendix of Section 6.

    2 Definition of the Estimators

    For technical convenience we will assume that Tiare con fined to the interval[0,1].Throughout,we shall employ a constant C(0

    For any t∈ [0,1],we arrange|T1?t|,|T2?t|,···,|Tn?t|in an increasing order:

    (ties are broken by comparing indices).Obviously,R(1,t),R(2,t),···,R(n,t)is a permutation of{1,2,···,n}.Choose a group of fixed nonnegative numbers{dni:i=1,2,···,n}and let k ≡ knbe a natural number dependent solely on n.Suppose that{dni:i=1,2,···,n}and k satisfy

    Now we can define a probability weight vector wni(t)=wni(t;T1,T2,···,Tn),i=1,2,···,n which satisfies wnR(i,t)(t)=dni,i=1,2,···,n.Obviously,1 ≤ dni≤ n,1 ≤ wni(t)≤ n for any i=1,2,···,n,t∈ [0,1].These assumptions are commonly assumed when de fining weight nonnegative functions.For example,

    where Si=(T(i)+T(i?1)),i=1,···,n,S0=0,Sn=1 for any i=1,2,···,n,t∈ [0,1].

    In this paper,for any sequence of variables or functions(S1,···,Sn),we always denote ST=(S1,···,Sn),andThe conversion from S towill be applied to Yi,Xi,xi,εi,uiand g(Ti).For example,Xi?The fact that g(t)=E(Yi?|Ti=t)suggests

    as the nearest neighbor pseudo-estimator of g(·).

    However,since β0is an unknown vector,we have to estimate β0first.Sinceare unobservable,the least square method may be invalid.Instead of the generalized least square method used in[5],we can obtainthe estimator of β0,as follows:

    But the asymptotic covariance matrix ofinvolves the density of the errors and nuisance parameters and therefore is difficult to estimate reliably.To overcome this problem,we propose the following distributional approximation based on random weighting by exogenouslygenerated i.i.d.random variables.The approach can be implemented with the simple LAD programming again.

    Let v1,···,vnbe a sequence of independent and identically distributed(i.i.d.)nonnegative random variables,with mean and variance both equal to 1.The standard exponential distribution has mean and variance equal to 1.define

    In this paper,we are also interested in testing the hypothesis

    where H is a known p×q matrix of rank q,and b0∈Rpis a known vector(0

    To develop an analogue with the least absolute deviation,it is natural to consider the test statistic

    where

    But the limiting distribution of Mnalso involves the density function of the error terms.Chen et al.[3]proposed an easy and convenient randomly weighted resampling method to determine the critical values for testing nested linear hypotheses in the least absolute deviation regression.Motivated by this idea,we introduce a test statistic M?non randomly weighted method and on the suitable centering adjustments.The approach can be implemented with the simple LAD programming again.define

    where

    3 Main Results

    Let the components be xi=(xij).Denote hi=(hi1,hi2,···,hip)T=xi? E(xi|Ti),1 ≤i≤n.We make the following assumptions.

    Assumption 3.1the random weights v1,···,vnare i.i.d.with P(vi≥ 0)=1,E(vi)=Var(vi)=1,and the sequence viand Yi,Xi,xiare independent.

    Assumption 3.2the distribution function F of ε1,···,εnis absolutely continuous,with continuous density f uniformly bounded away from 0 and∞and F(0)=.

    Assumption 3.3ER2<+∞and P(R=0)=0.

    Assumption 3.4The distribution of T1is absolutely continuous and its density r(t)satisfies

    Assumption 3.5Σ =Cov(x1?E(x1|T1))is a positive de finite matrix.

    Assumption 3.6E(|ε1|2+‖x1‖2+‖u1‖2)< ∞;g and g2jare continuous functions on the interval[0,1],where g2j=E(x1j|T1=t)is the jth component of g2(t)=E(x1|T1=t)for 1≤j≤p.

    Assumption 3.7E(|ε1|4+‖x1‖4+‖u1‖4)< ∞;g and g2jsatisfy the Lipschitz condition and g2j=E(x1j|T1=t)is a bounded function of t for 1≤j≤p.

    Remark 3.1Assumption 3.1 is commonly assumed in the random weighting method(see[19]).Assumptions 3.2–3.3 are often used in the LAD estimator(see[4,H1–H4]).Assumptions 3.4–3.6 are necessary for studying the optimal convergence rate of the nonparametric regression estimates and Assumption 3.7 guarantees the asymptotic normality of√n(?β),essentially the same as the conditions 1–4 of[5].

    3.1 Random weighting LAD-estimation

    Theorem 3.1Suppose that Assumptions 3.1–3.7 and(2.2)–(2.3)hold,and then

    Particularly,when vi≡1,we have

    where

    Theorem 3.2Suppose that the conditions of Theorem 3.1 hold,and then

    Comparing(3.1)with(3.3),for the multivariate Kolmogorov-Smirnov distance betweenandwe have

    where L?,P?denote the corresponding distribution and probability conditionally on(X1,Y1,T1),···,(Xn,Yn,Tn).And the approximate to the distribution ofby using random weights is valid in the weak sense.

    Remark 3.2From Theorems 3.1–3.2,it is clear thatis a consistent estimator of β0and the conditionally limiting distribution offor observations given is the same as that ofConsequently,we can take the conditional distribution ofas an approximation to that ofwithout estimating the asymptotic covariance matrix when making the confidence interval for parameters.In practical applications,this can be done by the Monte Carlo method.Speci fically,one can generate random weights repeatedly for(2.6)and then obtain RWLADE of the regression parameters.Then the empirical distribution of the produced estimates is used as an approximation to the distribution of the LAD-estimator of β0.For example,in deriving the(1 ? α)100%confidence interval for β0,one can implement the random weighting N times to obtain the estimates,···,and hence use the lower and upperquantiles of these quantities as the approximation of the lower and upper limits of the confidence interval.

    3.2 LAD-test

    Theorem 3.3Suppose that the conditions of Theorem 3.1 hold,and under the null hypothesis(2.4),then

    where Hn=H(HTΣH)?12,Ai=and

    where“”denotes approximation to the corresponding distribution,S=

    3.3 Random weighting LAD-test

    Theorem 3.4Suppose that the conditions of Theorem 3.1 hold,and under the null hypothesis(2.4),then

    and

    Further by(3.6)–(3.7),we have

    where Z is the chi-squared variable with q degrees of freedom.

    Remark 3.3Theorems 3.3–3.4 show that the limiting distribution ofunder the null hypothesis(2.7)is the same as the null limiting distribution of Mn.Therefore,we can directly use the conditional distribution ofas an approximation to the null distribution of Mnand determine the critical values of the test statistic Mnwithout estimating the nuisance parameters.It is desired to determine a sequence cn(α)such thatP(Mn>cn(α))= α under H0,for a given level α ∈ (0,1).As shown in the sequel,the(1 ? α)quantile(α)of the conditional distribution offor givencan be taken as an approximation to cn(α),and this can be carried out by the following procedure.Take N large enough and generate N independent replicates of random weights to obtain N randomly weighting estimates,j=1,···,N,so then the p-value of testing the hypothesis is approximately equal to ? {j:>Mn,j=1,···,N}/N.A test at the nominal signi ficance level α is to reject H0if Mnis larger than the sample(1?α)quantile ofand to accept H0otherwise.It is easy to show that,for the given nominal signi ficant level α∈(0,1),the test Mnwith the critical value(α)has the same asymptotic level and asymptotic power as the test with the critical value cn(α)obtained by estimating nuisance parameters.

    4 Simulation and Real Data Study

    In this section,we conduct simulation studies to assess the finite sample performance of the proposed procedures and illustrate the proposed methodology on AIDS clinical trials.

    Example 4.1The data are generated from model(1.1),where the explanatory variable x is generated from uniform distribution on the interval(3,5)and β0=2. ε ~ N(0,1),u ~N(0,1),g(t)=sin(2πt),T ~ U(0,1).The randomly weighting variables viare taken to be exponential distribution and Poisson distribution with means 1 respectively(Exp(1)and P(1)).We use the Nadaraya-Watson kernel K(u)=I(|u|≤1);and then

    is the weight function with the bandwidth h=Since the objective is to estimate β0,our limited experience indicates that the choice of the bandwidth h here is not as critical as it is in direct nonparametric function estimation.Sample size n is taken to be 50,100 and 200,respectively,and we do 500 repetitions for each sample size.The number of randomly weighting is N=500.

    We first study the performance of parameter estimators by using our proposed method(RWLADE for short).The mean values of parameter estimators and their standard errors are respectively reported in Table 1.Table 1 shows that the performance ofis very close to the true value in all terms.Moreover,is much more accurate when sample sizes increase.

    Table 1 Simulation results for β?

    We then investigate the length of confidence intervals and empirical coverage rates by the randomly weighted method at the nominal levels 90%and 95%.Simulation results are respectively reported in Tables 2–3.From Table 2,it can be seen that the empirical coverage rates are reasonably close to the true values in all cases,which indicates that the randomly weighted method is valid.As expected,the coverage levels based on the di ff erent cases are much closer to the nominal levels when sample sizes increase.Table 3 shows that the length of confidence intervals is small.Not unexpectedly,the length of confidence intervals decreases with sample sizes.Finally,Tables 1–3 show that the performances of Poisson weights are exactly similar to those of exponential weights.

    Table 2 Simulation results for coverage probability of confidence intervals

    Next,the approximation of the null distribution of the LAD-test statistics Mn,by its randomly weighted version,is evaluated under the null hypotheses.We also study the empirical signi ficance level and the powers of the M-test with the critical values given by the random weighting method.Throughout our simulation study,the convex function is taken as ρ(u)=|u|.The null hypothesis isH0:β0=0.Here,the randomly weighted variables are only taken to be the exponential distribution with means 1.

    Table 3 Simulation results for length of confidence intervals

    Table 4 lists the power functions at signi ficance levelsα=0.10 and 0.05 for various choices of error distributions(N(0,1),t(2)andt(3)),di ff erent sample sizesn=100 and 200,and di ff erentβvalues 0,0.1,0.2 and 0.5.Note that the empirical signi ficant levels when the trueβ=0 are close to the nominal levels,implying that the randomly weighted LAD-test is a valid test.As expected,the test has a bigger power for the larger sample sizes.

    Table 4 Empirical signi ficant levels and power values

    Figure 1 shows quantile-quantile plots ofMnwith respect tofor various choices of error distributions(N(0,1),t(2)andt(3)),and di ff erent sample sizesn=100 and 200,in which the straight lice indicates thatapproximates well to the distribution ofMn.It shows that,when the sample size is increased from 100 to 200,the distribution approximation for the larger size is much more accurate than that for the small one.

    Example 4.2In this section,we model the relationship between viral load and CD4+cell counts in HIV-infected individuals during potent antiviral treatments based on the data from ACTG 315 study.In general,it is believed that the virologic response RNA(measured by viral load)and immunologic response(measured by CD4+cell counts)are negatively correlated during antiviral treatment(see[12,21]).And also the discordance between virologic and immunologic responses has been observed from several recent clinical studies(see[14–15,17,20])which model the relationship between viral load and CD4+cell counts by the mixed-e ff ect varying-coefficient model based on these data.In their studies,exact tests and confidence intervals for parameters are not available.Instead,we present these analysis results by model(1.1).Here,we also focus on the data for the first 24 weeks of treatment,since virological or immunologic responses during this period are popular endpoints for many AIDS clinical trials.So both viral load and CD4+cell counts were scheduled to be measured on days t=0,2,7,10,14,28,56,84,168 after initiation of an antiviral therapy.We obtained 441 complete paries of viral load and CD4+cell count observations from 48 evaluable patients.Let Yibe the viral load and let xibe the CD4+cell count for subject i.To reduce the marked skewness of CD4+cell counts and to make treatment times equal space,we take log-transformations of both variables(this is commonly used in AIDS clinical trials(see[14])).The xiare measured with error.The model we used is

    Y= β0+xβ1+g(T)+ε,X=x+u,

    where X is the observed CD4 cell counts and T is time.

    Figure 1 Q-Q plot ofv.s.Mn

    The parameter estimators,by using our proposed methods,are(β0,β1)=(2.7234,?0.1301).The 95%confidence interval of β0is(2.6496,2.7924)and that of β1is(?0.1498,?0.1085).It can be seen that the length of confidence intervals is small.Furthermore,we test the linear hypothesis H0:β1=0.The resulting p-value is 0,suggesting that β1is signi ficant.

    5 Discussion

    The primary goal of this paper is to provide a convenient inference and a linear hypothesis testing for the partially linear EV model based on the LAD-estimate.The proposed inference procedure via resampling avoids the difficulty of density estimation and is convenient to implement with the availability of the standard linear programming and computing power.All simulation studies con firm that the performance of the random weighting method works well.We believe that the proposed statistical method is methodologically valuable.Some of the conditions assumed for the main results may be dropped or relaxed and,in particular,the samples usually may not be independent in many applications.In addition,it allows that the LAD can be extended to the M method,and the random weighting method can be used in other nonparametric regression models,such as the mixed-e ff ect varying-coefficient model for AIDS data;the censored model or longitudinal data,which are common in survival analysis,and they are valuable subjects for future research.

    6 Appendix

    To prove the theorem,we first introduce the following three lemmas.

    Lemma 6.1(1)Suppose that Assumption 3.6 and(2.2)–(2.3)hold,and then

    (2)Suppose that(2.2)–(2.3)hold,E(|ε1|l+‖x1‖l+‖u1‖l)< ∞,and g and g2jsatisfy the Lipschitz condition.Then

    for l=3 or 4.

    ProofThis result is due to Lemma 1 of[5].

    Lemma 6.2(1)Assume that Assumption 3.2 holds and that f is a continuous function on interval[0,1],andThen

    (2)Assume that Assumption 2.2 holds and that f satisfies the Lipschitz condition and(n→∞).Then

    ProofThis result is due to Lemma 2 of[5].

    Lemma 6.3Under the condition of Theorem 3.1,we have

    ProofObserve that xi=hi+g2(Ti),1≤i≤n,and we have

    By virtue of Lemmas 6.1–6.2 and the strong law of large numbers,we have

    and therefore,

    so

    Next we proceed to prove the theorems.

    Proof of Theorem 3.1In this section,for simplicity in notation,let θ = √n(β ? β0).

    Write

    By virtue of Lemmas 6.1–6.2 and the strong law of large numbers,we have

    By applying the identity in Knight[11],

    We have

    Qn(θ)=Qn1(θ)+Qn2(θ),

    where

    Since

    where=dstands for obeying the same distribution,we have

    EQn2(θ)=EQn(θ)? EQn1(θ)

    By the Schwarz’s inequality and the control limited theorem,it is easy to see that

    and Assumption 3.2 then implies that

    The convextiy of the limiting objective function Q0(θ)assures the uniqueness of the minimizer and consequently

    Furthermore,

    where

    particularly,when v1≡1,we have

    By the central limited theorem,we have

    Proof of Theorem 3.2By the result of Theorem 3.1,we have

    From Lemma 2.9.5 in[20],it follows that conditionally on

    for almost every sequenceThus,by(6.12)–(6.13),it is easy to show that(3.3)holds true,

    By using the similar argument as in[16],(3.4)can be shown to hold true.

    Proof of Theorem 3.3define K as a known p×(p?q)matrix of rank p?q(0

    and then

    and

    Without loss of generality,H0:HT(β ?b0)=0 can be written as

    β?β0=Kγ

    for some γ ∈Rp?q,so

    Let vi≡1.By Theorem 3.1,we have

    It thus follows that

    Replacing(6.14)into(6.15),we get

    Similarly

    whereWhen H0is true,

    Under the condition of Theorem 3.3.This means that the Lindeberg’s condition holds.Moreover,note that

    Proof of Theorem 3.4Similar to the proof of Theorem 3.3,define

    and replacing into Qn(θ?),we have

    Similarly,it is easy to show that

    So

    where

    Therefore

    From Lemma 2.9.5 in[18],it follows that conditionally on

    AcknowledgementThe authors are extremely grateful to the referees for their valuable comments and suggestions.

    [1]Buchinsky,M.,Recent advances in quantile regression models:A practical guideline for empirical research.Journal of Human Resources,33,1998,88–126.

    [2]Carroll,R.J.,Ruppert,D.and Stefanski,L.A.,Nonlinear Measurement Error Models,Chapman and Hall,New York,1995.

    [3]Chen,K.,Ying,Z.and Zhang,H.,Analysis of least absolute deviation,Biometrika,95,2008,107–122.

    [4]Cui,H.J.,Asymptotic properties of generalized minimum L1-norm estimates in EV model,Science in China,Series A,27,1997,119–131(in Chinese).

    [5]Cui,H.J.and Li,R.C.,On parameter estimation for semi-linear errors-in-variables models,Journal of Multivariate Analysis,64,1998,1–24.

    [6]Cui,W.Q.,Li,K.and Yang,Y.N.,Random weighting method for Cox’s proportional hazards model,Science in China,Series A,51,2008,1843–1854.

    [7]Fuller,W.A.,Measurement Error Models,John Wiley and Sons,New York,1987.

    [8]Hardle,W.,Liang,H.and Gao,J.T.,Partially Linear Models,Physica-Verlag,Beilin,2000.

    [9]Jiang,R.,Qian,W.M.and Zhou,Z.G.,Randomly weighted estimators for parametric component in semi-linear errors-in-variables models,Journal of Tongji University,Natural Science,39,2011,768–772(in Chinese).

    [10]Jin,Z.,Ying,Z.and Wei,L.J.,A simple resampling method by perturbing the minimand,Biometrika,88,2001,381–390.

    [11]Knight,K.,Limiting distributions for L1regression estimators under general conditions,Ann.Stat.,26,1998,755–770.

    [12]Lederman,M.M.,Connick,E.and Landay,A.,Immunologic responses associated with 12 weeks of combination antiretroviral therapy consisting of zidovudine and ritonavir:Results of AIDS clinical trials group protocol 315,The Journal of Infectious Diseases,178,1998,70–79.

    [13]Liang,H.,Hardle,W.and Carroll,R.J.,Estimation in a semiparametric partially linear errors-in-variables model,Annual Statistics,27,1999,1519–1535.

    [14]Liang,H.,Wu,H.L.and Carroll,R.J.,The relationship between virologic and immunologic responses in AIDS clinical research using mixed-e ff ect varying-coefficient semiparametric models with measurement error,Biostatistics,4,2003,297–312.

    [15]Mallolas,J.,Li,W.and Del,R.A.,Clinical Outcome,CD4+Cell Count,and HIV-1 Reverse Transcriptase and Protease Sequences in Patients Remaining Viremic during HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?334,Jan 30-Feb 2,San Francisco,CA,2000.

    [16]Rao,C.R.and Zhao,L.C.,Approximation to the distribution of M-estimates in linear models by randomly weighted bootstrap,SankhyA,54,1992,323–331.

    [17]Sabin,C.,Staszewski,S.and Phillips,A.,Discordant Immunological and Virological Responses to HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?333,Jan 30-Feb 2,San Francisco,CA,2000.

    [18]Van der Vaart,A.W.and Wellner,J.A.,Weak Convergence and Empirical Processes,Springer-Verlag,New York,1996.

    [19]Wang,Z.,Wu,Y.and Zhao,L.C.,Approximation by randomly weighting method in censored regression model,Science in China Series A,52,2009,561–576.

    [20]Wu,H.,Connick,E.and Kuritzkes,D.R.,Cell Kinetic Patterns and Their Relationships with Virologic Responses in HIV-1-Infected Patients Treated with HAART,7th Conference on Retroviruses and Opportunistic Infections,Abstract?340,Jan 30-Feb 2,San Francisco,CA,2000.

    [21]Wu,H.and Ding,A.,Population HIV-1 dynamics in vivo:Applicable models and inferential tools for virological data from AIDS clinical trials,Biometrics,55,1999,410–418.

    [22]Zhao,L.C.and Chen,X.R.,Asymptotic behavior of M-test statistics in linear models,Journal of Combine Information System Science,16,1991,234–248.

    [23]Zheng,Z.G.,Random weighting method,Acta Mathematicae Applilcate Sinica,10,1987,247–253(in Chinese).

    [24]Zhu,L.and Cui,H.J.,A semiparametric regression model with errors in variables,Scan.Journal Statistics,30,2003,429–442.

    一个人看视频在线观看www免费| 女性生殖器流出的白浆| 亚洲成人av在线免费| 看免费成人av毛片| 日本黄大片高清| 亚洲精品久久久久久婷婷小说| 最新中文字幕久久久久| 国产亚洲欧美精品永久| 精品少妇久久久久久888优播| 国产在视频线精品| 亚洲精品乱码久久久v下载方式| 久久国产精品男人的天堂亚洲 | 婷婷色综合www| 热99国产精品久久久久久7| 天堂俺去俺来也www色官网| 亚洲av不卡在线观看| 免费少妇av软件| 不卡视频在线观看欧美| 2022亚洲国产成人精品| 国产男女内射视频| 亚洲精品国产av成人精品| 嘟嘟电影网在线观看| 久久婷婷青草| 制服丝袜香蕉在线| 美女国产视频在线观看| 精品久久国产蜜桃| 夜夜骑夜夜射夜夜干| 妹子高潮喷水视频| 在线播放无遮挡| 欧美三级亚洲精品| 日本与韩国留学比较| 亚洲国产精品专区欧美| 欧美+日韩+精品| 日韩精品免费视频一区二区三区 | 乱码一卡2卡4卡精品| 久久亚洲国产成人精品v| 人人妻人人澡人人爽人人夜夜| av网站免费在线观看视频| 国产欧美日韩综合在线一区二区| 久久久久久久精品精品| 最近2019中文字幕mv第一页| 黄色欧美视频在线观看| 久久国产精品大桥未久av| 久久99精品国语久久久| 亚洲内射少妇av| 精品久久蜜臀av无| 丰满少妇做爰视频| 国产在线一区二区三区精| 国产伦理片在线播放av一区| 久久久午夜欧美精品| 99久久中文字幕三级久久日本| 人人澡人人妻人| 曰老女人黄片| 国产乱人偷精品视频| 91精品三级在线观看| 免费观看在线日韩| 成人国产av品久久久| 国产国语露脸激情在线看| 国产极品粉嫩免费观看在线 | av国产久精品久网站免费入址| 秋霞在线观看毛片| 久热这里只有精品99| 国产精品久久久久久久电影| 亚洲国产精品专区欧美| 中文字幕av电影在线播放| 午夜激情av网站| 少妇精品久久久久久久| 久久久久久久久久久免费av| 欧美日韩精品成人综合77777| 久久久久精品久久久久真实原创| 亚洲色图综合在线观看| 亚洲精品成人av观看孕妇| 天天影视国产精品| 欧美三级亚洲精品| 国产一区亚洲一区在线观看| 久久韩国三级中文字幕| 狠狠精品人妻久久久久久综合| 欧美老熟妇乱子伦牲交| av播播在线观看一区| av天堂久久9| 亚洲欧美日韩另类电影网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲图色成人| 欧美日韩综合久久久久久| 99热网站在线观看| 看非洲黑人一级黄片| 久久综合国产亚洲精品| 欧美成人精品欧美一级黄| 国产一区二区三区综合在线观看 | 欧美三级亚洲精品| 精品久久蜜臀av无| 成人无遮挡网站| 在线亚洲精品国产二区图片欧美 | 黄片无遮挡物在线观看| 9色porny在线观看| 欧美精品亚洲一区二区| 97精品久久久久久久久久精品| 午夜福利影视在线免费观看| 久久久久久久亚洲中文字幕| 男女免费视频国产| 看非洲黑人一级黄片| 免费观看性生交大片5| 国产乱来视频区| h视频一区二区三区| 美女脱内裤让男人舔精品视频| 久久精品久久久久久噜噜老黄| 久久久久久久精品精品| 亚洲精品乱码久久久v下载方式| 热99久久久久精品小说推荐| 色网站视频免费| 又大又黄又爽视频免费| 国产av国产精品国产| 国产乱来视频区| 乱人伦中国视频| 成年人免费黄色播放视频| 国产极品天堂在线| 国产成人av激情在线播放 | 蜜桃久久精品国产亚洲av| 亚洲精华国产精华液的使用体验| 精品国产一区二区三区久久久樱花| 视频区图区小说| 亚洲精品久久午夜乱码| 亚洲人成网站在线播| 一个人看视频在线观看www免费| 日本与韩国留学比较| 国产精品欧美亚洲77777| 国内精品宾馆在线| 男女无遮挡免费网站观看| 亚洲国产精品一区二区三区在线| 高清av免费在线| 人人妻人人添人人爽欧美一区卜| 欧美 日韩 精品 国产| 久久亚洲国产成人精品v| 亚洲一区二区三区欧美精品| 国产片内射在线| 久久精品夜色国产| 日韩欧美一区视频在线观看| 日韩av在线免费看完整版不卡| 精品久久久久久久久av| 韩国av在线不卡| 国产又色又爽无遮挡免| 欧美日韩在线观看h| 一级二级三级毛片免费看| 国产视频内射| 久久av网站| 久久久亚洲精品成人影院| 午夜激情久久久久久久| 国产 精品1| av专区在线播放| 91久久精品电影网| 日韩中文字幕视频在线看片| 在现免费观看毛片| 成年av动漫网址| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日摸夜夜添夜夜爱| 婷婷色av中文字幕| 久久精品人人爽人人爽视色| 国产精品人妻久久久影院| 最近手机中文字幕大全| 日韩视频在线欧美| 母亲3免费完整高清在线观看 | 国精品久久久久久国模美| 人妻系列 视频| 另类亚洲欧美激情| 亚洲熟女精品中文字幕| av国产久精品久网站免费入址| 极品少妇高潮喷水抽搐| 插逼视频在线观看| 人人妻人人澡人人看| 最近中文字幕高清免费大全6| 欧美3d第一页| .国产精品久久| 一区二区av电影网| 插阴视频在线观看视频| 日韩精品免费视频一区二区三区 | 亚洲国产精品999| 亚洲精品亚洲一区二区| 久久久久视频综合| 亚洲国产欧美日韩在线播放| 交换朋友夫妻互换小说| 91精品伊人久久大香线蕉| 久久国产精品男人的天堂亚洲 | 2018国产大陆天天弄谢| 亚洲人成网站在线播| 亚洲国产精品一区二区三区在线| 在线观看免费高清a一片| 久久国产精品男人的天堂亚洲 | av在线播放精品| 在线观看一区二区三区激情| 69精品国产乱码久久久| 熟女人妻精品中文字幕| .国产精品久久| 男女高潮啪啪啪动态图| 伊人久久国产一区二区| 欧美精品一区二区免费开放| 精品一区二区三区视频在线| 国产白丝娇喘喷水9色精品| 国产男人的电影天堂91| 国产爽快片一区二区三区| 国产成人精品无人区| 国产成人av激情在线播放 | 国产在线免费精品| 国产精品国产三级国产av玫瑰| 97精品久久久久久久久久精品| 久久久国产精品麻豆| 欧美另类一区| 一个人免费看片子| 成人手机av| 日韩欧美精品免费久久| 99国产精品免费福利视频| 色吧在线观看| 狠狠精品人妻久久久久久综合| 成人毛片a级毛片在线播放| 国精品久久久久久国模美| 精品视频人人做人人爽| 成人国产av品久久久| 久久久亚洲精品成人影院| 少妇猛男粗大的猛烈进出视频| 午夜免费观看性视频| 久久精品国产自在天天线| 在线 av 中文字幕| 黑丝袜美女国产一区| 丰满乱子伦码专区| 99久久人妻综合| 一级,二级,三级黄色视频| 好男人视频免费观看在线| 两个人免费观看高清视频| 少妇丰满av| 狂野欧美白嫩少妇大欣赏| 久久国产精品大桥未久av| 久久影院123| 乱码一卡2卡4卡精品| 亚洲美女黄色视频免费看| 老司机影院成人| 五月开心婷婷网| 伦理电影免费视频| 新久久久久国产一级毛片| 国产精品成人在线| 午夜激情av网站| 久久久久久久久久人人人人人人| 久久久久久久精品精品| 国产精品不卡视频一区二区| 多毛熟女@视频| 丝瓜视频免费看黄片| 一级,二级,三级黄色视频| 一级毛片我不卡| 在线精品无人区一区二区三| 又粗又硬又长又爽又黄的视频| 中文字幕亚洲精品专区| 国产一区二区三区av在线| 精品一区二区三区视频在线| 狠狠婷婷综合久久久久久88av| 在线观看美女被高潮喷水网站| 午夜影院在线不卡| 美女国产视频在线观看| 免费黄网站久久成人精品| 久久免费观看电影| 日本欧美国产在线视频| 大陆偷拍与自拍| 丰满迷人的少妇在线观看| 丝袜喷水一区| www.色视频.com| 免费观看的影片在线观看| 日韩,欧美,国产一区二区三区| 久久久精品94久久精品| 亚洲丝袜综合中文字幕| 日日撸夜夜添| 国产爽快片一区二区三区| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站| 久久热精品热| 下体分泌物呈黄色| 午夜福利在线观看免费完整高清在| 久久国产亚洲av麻豆专区| 国产成人午夜福利电影在线观看| 多毛熟女@视频| 一个人免费看片子| 少妇丰满av| 国产视频内射| 国产精品国产三级专区第一集| 老司机影院成人| 夫妻性生交免费视频一级片| 黄片播放在线免费| 97超碰精品成人国产| 爱豆传媒免费全集在线观看| 新久久久久国产一级毛片| 国产一区二区在线观看日韩| 99热6这里只有精品| 亚洲欧美精品自产自拍| 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区综合在线观看 | 久久精品久久久久久久性| 欧美精品人与动牲交sv欧美| 国产老妇伦熟女老妇高清| .国产精品久久| 国产高清有码在线观看视频| 99re6热这里在线精品视频| 午夜久久久在线观看| 免费黄频网站在线观看国产| 七月丁香在线播放| 久久久久久久久久久丰满| 国产精品一国产av| 在线观看www视频免费| 国产精品 国内视频| 亚洲欧美清纯卡通| 在线天堂最新版资源| 在线观看免费高清a一片| 人人妻人人爽人人添夜夜欢视频| 伦理电影免费视频| 少妇的逼水好多| 精品久久蜜臀av无| 乱人伦中国视频| 男人操女人黄网站| 国产69精品久久久久777片| 日本-黄色视频高清免费观看| 精品卡一卡二卡四卡免费| 十八禁网站网址无遮挡| 在线观看美女被高潮喷水网站| 国产精品人妻久久久久久| 又粗又硬又长又爽又黄的视频| videos熟女内射| 国产极品粉嫩免费观看在线 | 91午夜精品亚洲一区二区三区| 五月天丁香电影| av.在线天堂| 大片免费播放器 马上看| 黄色配什么色好看| 中文字幕av电影在线播放| 国产探花极品一区二区| 国产精品一区二区在线不卡| 久久毛片免费看一区二区三区| 国产男女内射视频| 青春草视频在线免费观看| 我的女老师完整版在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产欧美日韩综合在线一区二区| 自线自在国产av| 26uuu在线亚洲综合色| 欧美丝袜亚洲另类| 国产 一区精品| a级毛色黄片| 国产黄色免费在线视频| 人妻系列 视频| 18在线观看网站| 在线免费观看不下载黄p国产| 纵有疾风起免费观看全集完整版| 精品一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 五月天丁香电影| 国产免费福利视频在线观看| 下体分泌物呈黄色| 亚洲精品视频女| 少妇 在线观看| 永久免费av网站大全| 国产精品久久久久成人av| 你懂的网址亚洲精品在线观看| 人妻人人澡人人爽人人| 国产熟女欧美一区二区| 夜夜骑夜夜射夜夜干| 欧美日韩一区二区视频在线观看视频在线| 亚洲四区av| 永久网站在线| 男人爽女人下面视频在线观看| 免费观看在线日韩| 曰老女人黄片| 亚洲av国产av综合av卡| 久久精品国产亚洲网站| 日本与韩国留学比较| 久久精品久久久久久久性| 街头女战士在线观看网站| 国产精品国产三级国产专区5o| 18在线观看网站| 麻豆乱淫一区二区| 男人操女人黄网站| 免费黄网站久久成人精品| 成人国产麻豆网| av线在线观看网站| 亚州av有码| 青春草亚洲视频在线观看| 免费看不卡的av| 久久ye,这里只有精品| 日韩在线高清观看一区二区三区| 欧美日韩视频高清一区二区三区二| 日韩成人伦理影院| 黄色怎么调成土黄色| 亚洲精品美女久久av网站| 久久久久久久精品精品| 亚洲av二区三区四区| 99九九在线精品视频| 老司机影院毛片| 精品久久久精品久久久| 国产免费一级a男人的天堂| 老司机影院成人| 交换朋友夫妻互换小说| 国产乱来视频区| 91aial.com中文字幕在线观看| 蜜桃国产av成人99| 草草在线视频免费看| 精品人妻一区二区三区麻豆| 午夜激情久久久久久久| 日韩在线高清观看一区二区三区| 国产黄片视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 午夜91福利影院| 熟女电影av网| 人妻少妇偷人精品九色| 最新的欧美精品一区二区| 国产69精品久久久久777片| 哪个播放器可以免费观看大片| 婷婷成人精品国产| 欧美日韩在线观看h| 女的被弄到高潮叫床怎么办| 精品国产一区二区久久| 在线观看一区二区三区激情| 激情五月婷婷亚洲| 人妻一区二区av| 亚洲,一卡二卡三卡| 女人久久www免费人成看片| 少妇猛男粗大的猛烈进出视频| 色网站视频免费| 热99国产精品久久久久久7| 22中文网久久字幕| 秋霞在线观看毛片| 如日韩欧美国产精品一区二区三区 | 日韩 亚洲 欧美在线| 日产精品乱码卡一卡2卡三| 999精品在线视频| 日韩伦理黄色片| 新久久久久国产一级毛片| 欧美精品国产亚洲| 欧美激情 高清一区二区三区| 免费大片18禁| 欧美最新免费一区二区三区| 国内精品宾馆在线| 国产极品天堂在线| 18禁观看日本| 国产男人的电影天堂91| 日韩成人伦理影院| 国产精品久久久久久av不卡| 欧美日韩一区二区视频在线观看视频在线| 国产精品99久久99久久久不卡 | 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| 在线观看免费视频网站a站| 亚洲国产精品一区三区| 久久精品人人爽人人爽视色| 五月天丁香电影| 国产极品天堂在线| 免费黄网站久久成人精品| 亚洲精品乱久久久久久| 久久久欧美国产精品| 免费观看性生交大片5| 老司机影院毛片| 成年人午夜在线观看视频| 亚洲精品视频女| 久热久热在线精品观看| 日本vs欧美在线观看视频| 精品一区二区三卡| 国产综合精华液| 欧美最新免费一区二区三区| 丝袜脚勾引网站| 蜜臀久久99精品久久宅男| 欧美日韩亚洲高清精品| 色吧在线观看| 蜜桃在线观看..| 日本av手机在线免费观看| 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 欧美 日韩 精品 国产| 女人精品久久久久毛片| 久久久欧美国产精品| 久久97久久精品| 肉色欧美久久久久久久蜜桃| 97精品久久久久久久久久精品| 69精品国产乱码久久久| 亚洲国产毛片av蜜桃av| 高清av免费在线| 亚洲无线观看免费| 国产精品久久久久久av不卡| 91久久精品电影网| 欧美 日韩 精品 国产| 中国三级夫妇交换| a级片在线免费高清观看视频| 国精品久久久久久国模美| 精品熟女少妇av免费看| 国产亚洲一区二区精品| 亚洲av男天堂| 亚洲精华国产精华液的使用体验| 99久久综合免费| 欧美精品一区二区大全| 婷婷色av中文字幕| 一本—道久久a久久精品蜜桃钙片| av专区在线播放| av在线播放精品| 日本-黄色视频高清免费观看| 麻豆乱淫一区二区| 国产成人91sexporn| 国产av一区二区精品久久| 久久精品久久精品一区二区三区| 永久网站在线| 欧美亚洲日本最大视频资源| 日韩大片免费观看网站| 色5月婷婷丁香| 久久韩国三级中文字幕| 美女大奶头黄色视频| 亚洲国产欧美日韩在线播放| 大码成人一级视频| 亚洲性久久影院| 一区二区三区乱码不卡18| 亚洲av国产av综合av卡| 亚洲国产精品国产精品| 免费av中文字幕在线| 国产精品.久久久| 欧美日韩av久久| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 免费观看性生交大片5| 精品熟女少妇av免费看| 超碰97精品在线观看| 97超视频在线观看视频| 日韩成人伦理影院| 国产在视频线精品| 成人毛片a级毛片在线播放| 特大巨黑吊av在线直播| xxx大片免费视频| 久久av网站| 一本大道久久a久久精品| 日本与韩国留学比较| 在线观看人妻少妇| 青青草视频在线视频观看| 国产av码专区亚洲av| 久久人人爽人人片av| 美女国产视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲精品国产av成人精品| 91国产中文字幕| av在线老鸭窝| 在线观看美女被高潮喷水网站| 亚洲第一区二区三区不卡| 国产精品一二三区在线看| 菩萨蛮人人尽说江南好唐韦庄| 欧美变态另类bdsm刘玥| 久久午夜福利片| 一级,二级,三级黄色视频| 老熟女久久久| 久久影院123| 夜夜看夜夜爽夜夜摸| 亚洲成人一二三区av| 国产精品国产三级国产av玫瑰| 亚洲,欧美,日韩| 国内精品宾馆在线| 日韩中字成人| h视频一区二区三区| av卡一久久| 日韩av不卡免费在线播放| 久久精品国产鲁丝片午夜精品| 国产精品一区二区在线不卡| 日本免费在线观看一区| 久热久热在线精品观看| 午夜久久久在线观看| 久久女婷五月综合色啪小说| 免费黄色在线免费观看| 我的女老师完整版在线观看| 欧美激情国产日韩精品一区| 国产片特级美女逼逼视频| 精品久久久久久久久亚洲| 美女中出高潮动态图| 国产av国产精品国产| 国产永久视频网站| 十八禁高潮呻吟视频| 免费大片18禁| 纵有疾风起免费观看全集完整版| 亚洲精品乱码久久久v下载方式| 久久ye,这里只有精品| 欧美日韩一区二区视频在线观看视频在线| 99热这里只有是精品在线观看| 亚洲精品色激情综合| 国产在线视频一区二区| 欧美日韩av久久| 精品一区二区免费观看| 欧美+日韩+精品| 亚洲欧美中文字幕日韩二区| 日韩制服骚丝袜av| 高清视频免费观看一区二区| 久久久久精品性色| 亚洲美女视频黄频| 久久久欧美国产精品| 久久国内精品自在自线图片| 制服诱惑二区| 国产午夜精品久久久久久一区二区三区| 在线观看一区二区三区激情| 91精品国产国语对白视频| 汤姆久久久久久久影院中文字幕| 亚洲欧美色中文字幕在线| 91久久精品国产一区二区成人| 这个男人来自地球电影免费观看 | 欧美日韩视频高清一区二区三区二| 高清黄色对白视频在线免费看| 丝瓜视频免费看黄片| 久久人人爽av亚洲精品天堂| 91久久精品电影网| 十八禁高潮呻吟视频| 精品少妇久久久久久888优播| 国产精品 国内视频| 老女人水多毛片| 日本爱情动作片www.在线观看| 一级,二级,三级黄色视频| av在线老鸭窝| 卡戴珊不雅视频在线播放| 国产黄色免费在线视频| 精品久久久噜噜| 好男人视频免费观看在线| 国产 一区精品| 久久毛片免费看一区二区三区| 国产亚洲精品久久久com|