張東平,朱茂東,楊 凱,劉 毅,黃仁桂,蔡興民,范 平
深圳大學(xué)物理科學(xué)與技術(shù)學(xué)院,薄膜物理與應(yīng)用研究所,深圳市傳感器技術(shù)重點(diǎn)實(shí)驗(yàn)室,深圳 518060
氧分壓對(duì)磁控濺射VO2薄膜相變性能的影響
張東平,朱茂東,楊 凱,劉 毅,黃仁桂,蔡興民,范 平
深圳大學(xué)物理科學(xué)與技術(shù)學(xué)院,薄膜物理與應(yīng)用研究所,深圳市傳感器技術(shù)重點(diǎn)實(shí)驗(yàn)室,深圳 518060
采用直流反應(yīng)磁控濺射工藝在不同氧分壓下制備VO2相變薄膜.分別用X射線衍射儀、掃描電子顯微鏡、四探針方阻測(cè)量系統(tǒng)和分光光度計(jì)對(duì)薄膜微結(jié)構(gòu)、表面形貌、電學(xué)及光學(xué)特性進(jìn)行表征.測(cè)量結(jié)果表明,薄膜樣品是由包含VO2相在內(nèi)的多相復(fù)雜體系構(gòu)成的,隨著氧分壓的增加,薄膜中高價(jià)態(tài)相的釩氧化物增多.所有薄膜均呈現(xiàn)出壓應(yīng)力,壓應(yīng)力大小隨著氧分壓的升高而逐漸減小.方塊電阻溫變結(jié)果表明,薄膜具有明顯半導(dǎo)體-金屬相變特性,相變性能隨著氧分壓的升高呈先增后減特征.高低溫透射譜表明,薄膜具有良好紅外開關(guān)特性.氧分壓改變導(dǎo)致膜中氧空位缺陷密度和微結(jié)構(gòu)變化是VO2薄膜半導(dǎo)體-金屬相變性能改變的主因.本實(shí)驗(yàn)條件下,具有良好熱致相變性能的VO2薄膜的最佳生長(zhǎng)氧分壓是0.04 Pa.
凝聚態(tài)物理;VO2薄膜;磁控濺射;氧分壓;相變;微結(jié)構(gòu);光學(xué)透過率
自1958年Morin首次報(bào)道具有電導(dǎo)率突變特性的相變金屬氧化物以來,相變材料一直倍受關(guān)注.特別是VO2[1-4],在68℃左右可發(fā)生超快可逆的一級(jí)相變,從低溫時(shí)的單斜相轉(zhuǎn)變?yōu)楦邷貢r(shí)的四方金紅石相[5].伴隨著相變的發(fā)生和晶體結(jié)構(gòu)的改變,VO2的光電特性也發(fā)生了急劇的變化.因?yàn)槠湎嘧儨囟确浅=咏覝?,VO2可廣泛用于下一代記憶材料[6],如非制冷紅外探測(cè)器[7]、超快光開光[8]、磁存儲(chǔ)材料[9]、紅外傳感器[10]、可調(diào)諧微波器件[11]和具有節(jié)能效果的智能窗[12]等領(lǐng)域.目前,VO2薄膜的制備方法有多種,如溶膠-凝膠[13]、離子束濺射[14]、磁控濺射[15]、熱蒸發(fā)[16]、水熱法[17]、分子 束 外 延 (molecular beam epitaxy,MBE)[18]、化學(xué)氣相沉積 (chemical vapor deposition,CVD)[19]和脈沖激光沉積 (pulsed laser deposition,PLD)[20]等.其中,磁控濺射技術(shù)不僅適合于產(chǎn)業(yè)化生產(chǎn),且其制備的薄膜具有性能穩(wěn)定、重復(fù)性好、均勻性佳、附著力強(qiáng)和堆積密度高等特點(diǎn)[21],是研究最廣泛的制備方法之一.實(shí)現(xiàn)VO2薄膜的實(shí)際應(yīng)用,獲得高質(zhì)量的VO2依然是關(guān)鍵.釩的氧化物是一個(gè)復(fù)雜的體系,在很窄的化學(xué)計(jì)量比范圍內(nèi) (1.5~2.5)就存在多種價(jià)態(tài)的氧化釩相,如 V2O3、V3O5、V4O7、V5O9、VO2和 V2O5等.VO2薄膜的生長(zhǎng)條件窗口非常窄,所以要想制備出化學(xué)計(jì)量比穩(wěn)定的VO2薄膜,需精確控制各個(gè)制備條件,其中氧分壓是最重要的一個(gè)參數(shù).目前,已有很多學(xué)者在不同方法和不同基底條件下研究了氧分壓對(duì)VO2薄膜性能的影響,但因制備方法和基底的不同,所得結(jié)果差異較大,所以氧分壓對(duì)VO2性能的影響仍有待研究,高質(zhì)量VO2薄膜的制備依然面臨很多挑戰(zhàn).本研究選擇BK7玻璃為基底,利用直流反應(yīng)磁控濺射制備VO2薄膜,通過X射線衍射儀 (X-ray diffraction,XRD)、掃描電子顯微鏡 (scanning electronic microscopy,SEM)、四探針方阻測(cè)量系統(tǒng)和分光光度計(jì)等手段,分析和研究氧分壓對(duì)VO2薄膜光電特性及微結(jié)構(gòu)的影響.
以直徑為60 mm,純度為99.99%金屬釩單質(zhì)為靶材,采用直流反應(yīng)磁控濺射技術(shù)制備VO2薄膜.沉積中,靶基間距為5 cm,基底溫度為400℃.薄膜沉積前,本底真空抽到8.0×10-4Pa,然后在氬氣氛圍下進(jìn)行5 min的預(yù)濺射以去除靶材表面的污染物.純度為99.99%的氬氣作為濺射氣體,純度為99.99%的氧氣作為反應(yīng)氣體,通過氣體質(zhì)量流量計(jì)精確控制氬氣和氧氣進(jìn)入混氣室充分混合后再引入真空室.不同樣品的氧分壓p從0.03 Pa增至0.06 Pa,分別對(duì)應(yīng)樣品 A、B、C和 D(表1).沉積中濺射氣壓保持在0.5 Pa,濺射功率為120 W,濺射時(shí)間為1 h.沉積完薄膜后,把所有樣品放在500℃,0.5 Pa的Ar環(huán)境下退火2 h.
表1 不同薄膜樣品的氧分壓Table 1 Oxygen partial pressures of samples
采用X射線衍射儀(型號(hào)為Rigaku Ultima IV)對(duì)薄膜樣品的晶體結(jié)構(gòu)進(jìn)行表征,測(cè)量采用θ-2θ耦合模式,入射X光選用波長(zhǎng)為0.154 18 nm的Cu的Kα線,測(cè)量角度間隔為0.02°,范圍為15°~60°.用Lambda 950分光光度計(jì)測(cè)量薄膜樣品在低溫(室溫為27℃)和高溫(80℃)下的透射光譜,測(cè)量波長(zhǎng)間隔為1 nm,測(cè)量范圍為400~2 000 nm.用帶溫度控制臺(tái)的四探針測(cè)試儀測(cè)量薄膜樣品的方塊電阻隨溫度變化情況,測(cè)試范圍從室溫到80℃,變化間隔為1℃.采用場(chǎng)發(fā)射掃描電鏡 (型號(hào)為Carl-Zeiss Auriga)測(cè)量薄膜樣品的表面形貌,其放大倍數(shù)是5萬倍.
圖1是不同氧分壓下沉積的氧化釩薄膜樣品的XRD圖譜.
圖1 不同氧分壓下沉積的VO2薄膜的XRD圖譜Fig.1 (Color online)X-ray diffraction spectra of VO2films prepared under different oxygen partial pressures
由圖 1 可見,在 17°、28°、34°、37°和 42°附近存在不同的釩氧化物衍射峰,參考國(guó)際衍射數(shù)據(jù)中心材料粉末衍射數(shù)據(jù)庫(kù)[22],這些衍射峰分別對(duì)應(yīng)于V6O11(103)、VO2(011)、V2O3(110)、V3O7(314)和V2O5(002)晶面.結(jié)果表明,薄膜由多種價(jià)態(tài)的釩氧化物組成.這是由于釩具有多個(gè)價(jià)態(tài),且作為中間價(jià)態(tài)的+4價(jià)釩為亞穩(wěn)態(tài),所以VO2的生長(zhǎng)條件窗口非常狹窄,生長(zhǎng)過程中沉積參數(shù)的微小波動(dòng)易導(dǎo)致其他價(jià)態(tài)釩氧化物的生長(zhǎng).在本實(shí)驗(yàn)中,由于采用的反應(yīng)濺射,靶表面氧化程度隨著沉積過程中存在波動(dòng),輕微的靶中毒均會(huì)導(dǎo)致沉積速率等工藝參數(shù)的改變,從而使薄膜呈現(xiàn)復(fù)相結(jié)構(gòu).對(duì)于p=0.03 Pa的樣品A來說,其衍射峰的強(qiáng)度非常微弱,說明此氧分壓下薄膜結(jié)晶度不高.另一方面,發(fā)現(xiàn)衍射峰VO2(011)的強(qiáng)度隨著氧分壓的增加呈先增后減趨勢(shì),當(dāng)p=0.05 Pa時(shí),衍射強(qiáng)度最強(qiáng).當(dāng)p增至0.06 Pa時(shí),VO2(011)衍射強(qiáng)度開始減弱,而V2O5(002)衍射強(qiáng)度增強(qiáng),表明薄膜開始向高價(jià)態(tài)的釩氧化物轉(zhuǎn)變.以上結(jié)果表明,
其中,d和d0分別是應(yīng)變晶面間距和無應(yīng)變晶面間距;E是楊氏模量;v是泊松比.晶格常數(shù)可以由布拉格公式來計(jì)算
其中,θ為X射線衍射角;k為衍射級(jí)次;λ為X射線的波長(zhǎng).結(jié)果表明,薄膜存在壓應(yīng)力,且隨著氧分壓的增大,VO2(011)衍射峰向小角度偏移,這暗示了壓應(yīng)力不斷減小,該結(jié)果與Kim等[24]和Fan等[25]的報(bào)道一致.VO2薄膜的晶體結(jié)構(gòu)對(duì)氧分壓很敏感.表2是不同氧分壓下制備的樣品VO2(011)衍射峰的位置.由表2可見,這些衍射角較 VO2粉末的衍射角(27.827°)明顯偏大.這是因?yàn)樵诓煌醴謮合?,薄膜?nèi)氧空位缺陷密度不同,導(dǎo)致薄膜內(nèi)存在的殘余應(yīng)力產(chǎn)生的晶格畸變不同而引起的.薄膜內(nèi)存在的應(yīng)力為[23]
表2 不同氧分壓下制備的VO2薄膜樣品的VO2(011)的衍射峰位置Table 2 VO2(011)diffraction peak positions for samples prepared under different oxygen partial pressures
圖2是不同氧分壓下制備的VO2薄膜在升溫與降溫過程中薄膜方塊電阻R□隨溫度t變化曲線圖.由圖3可見,所有樣品都表現(xiàn)出熱滯效應(yīng).在室溫下,樣品R□值為102~105Ω (在薄膜中常用Ω/□表示),顯示了半導(dǎo)體特性.隨著溫度上升,當(dāng)溫度t到達(dá)40℃附近,R□值發(fā)生突變.從室溫到80℃,薄膜的R□值驟降1.2~1.5個(gè)數(shù)量級(jí).薄膜的方塊電阻-溫度熱滯回線顯示了薄膜具有明顯的半導(dǎo)體-金屬相變特性.圖3是在室溫和80℃時(shí),不同樣品的方塊電阻隨氧分壓變化曲線圖.由圖3可見,隨著p值的增加,R□值增大,當(dāng)p增到0.06 Pa時(shí),R□值接近104~105Ω;另一方面,在變化過程中,不同氧分壓的樣品相變前后的方塊電阻變化幅度較為接近.電學(xué)性質(zhì)的這種變化與薄膜的微結(jié)構(gòu)變化相關(guān),氧分壓較低的薄膜,氧離子空位的濃度較大,薄膜中載流子濃度較高,R□值比較低;當(dāng)氧分壓增大時(shí),氧離子空位濃度逐漸降低,載流子濃度也隨之降低,釩與氧趨于形成高價(jià)的穩(wěn)定釩氧化物,這時(shí)釩與氧的原子比趨于穩(wěn)定的化學(xué)計(jì)量比,方塊電阻很大.
圖2 不同樣品方塊電阻對(duì)數(shù)隨溫度變化曲線Fig.2 (Color online)Logarithm of sheet resistances as a function of temperature for different samples
圖3 室溫和高溫下方塊電阻對(duì)數(shù)隨氧流量的變化Fig.3 (Color online)Logarithm of sheet resistance variation with oxygen partial pressure at room temperature and high temperatures.
圖4是樣品升溫過程的方塊電阻取對(duì)數(shù)再對(duì)溫度求導(dǎo)數(shù)的高斯擬合圖.相變溫度是對(duì)應(yīng)每個(gè)樣品-d(lgR□)/dt取極大值時(shí)的溫度.由圖4可見,所有樣品的相變溫度范圍為42~48℃,這比單晶VO2的相變溫度68℃低很多.隨著氧分壓的增加,相變溫度先增后降,如圖5.每個(gè)樣品微分曲線的半高寬和VO2薄膜的微結(jié)構(gòu)和空間缺陷緊密關(guān)聯(lián).在高氧分壓條件下生長(zhǎng)的薄膜含有較多高價(jià)的釩氧化物.這些高價(jià)釩氧化物的引入會(huì)使主相VO2的晶格結(jié)構(gòu)發(fā)生畸變,從而影響其半導(dǎo)體-金屬相轉(zhuǎn)變[26].半高寬較窄的VO2薄膜表現(xiàn)出較好的相變性能,隨著氧分壓的增加,半高寬呈先減后增趨勢(shì).樣品B的半高寬最小,這表明p=0.04 Pa是本研究制備VO2的最佳參數(shù).當(dāng)p增至0.06 Pa時(shí),樣品D的半高寬最大,其相變性能最弱.電學(xué)熱滯回線結(jié)果和XRD射線衍射結(jié)果未很好的對(duì)應(yīng),原因有待進(jìn)一步研究.
圖4 樣品升溫過程中-d(lgR□)/dt與t的標(biāo)準(zhǔn)高斯擬合曲線Fig.4 (Color online)Standard Gauss fitting derivative logarithmic plots of-d(lgR□)/dt as a function of t of the samples for the heating process
圖5 相變溫度隨氧分壓的變化關(guān)系Fig.5 (Color online)Phase transition temperature variation with different oxygen partial pressure
圖6 VO2薄膜的光學(xué)透射率圖譜Fig.6 (Color online)Optical transmittance spectra of VO2thin films
圖6是VO2薄膜在半導(dǎo)體態(tài)和金屬態(tài)下的光學(xué)透射譜,測(cè)試波長(zhǎng)范圍是400~2 000 nm.所有樣品在可見光范圍內(nèi)透射率都較低,紅外透射率隨波長(zhǎng)增大而增強(qiáng),低溫狀態(tài)下,在波長(zhǎng)2 000 nm處,紅外最大透射率達(dá)25%~40%.在高溫金屬相時(shí),不同氧分壓的樣品紅外透射率都接近0,可見光最大透射率范圍為5%~10%.由圖6可見,隨著樣品溫度升高,紅外透射率發(fā)生突變,且在波長(zhǎng)2 000 nm處高低溫透射率差值呈先升后降趨勢(shì),表明薄膜中存在VO2相,此結(jié)果和XRD譜及電學(xué)特性變化相吻合.紅外透射率發(fā)生突變的原因是在VO2薄膜從半導(dǎo)體態(tài)轉(zhuǎn)變?yōu)榻饘賾B(tài)過程中,由于等離子體振蕩效應(yīng),對(duì)紅外光大幅度反射,導(dǎo)致高溫下紅外透射率降低.
圖7是不同氧分壓下所制備VO2薄膜的SEM形貌.由圖可見,表面形貌隨著氧流量變化發(fā)生了明顯變化,當(dāng)氧分壓較低時(shí),如圖7(a)和(b),薄膜含有大量無規(guī)則孔隙,圖7中未發(fā)現(xiàn)明顯的晶粒;隨著氧分壓的進(jìn)一步增大,出現(xiàn)明顯顆粒,如圖7(c)和(d),且顆粒尺寸隨氧分壓的增加而減小,薄膜結(jié)構(gòu)趨于致密.當(dāng)氧分壓為0.06 Pa時(shí),顆粒大小約20 nm.基于SEM形貌變化及前面相變前后薄膜電學(xué)和光學(xué)相變特性分析可知,氧分壓變化將綜合通過改變薄膜中非化學(xué)計(jì)量比成分和薄膜織構(gòu)的改變,并通過調(diào)節(jié)薄膜中應(yīng)力,從而最終影響薄膜的相變特性.
圖7 VO2薄膜的掃描電子顯微鏡像Fig.7 SEM images of VO2thin films
采用直流反應(yīng)磁控濺射工藝制備VO2薄膜,所得薄膜均表現(xiàn)出明顯的相變特性.不同氧分壓下樣品相變溫度為42~48℃,明顯低于單晶VO2薄膜相變溫度.薄膜呈現(xiàn)出壓應(yīng)力,隨著氧分壓的增加,壓應(yīng)力漸減.薄膜結(jié)構(gòu)隨氧分壓的升高趨于向高價(jià)態(tài)的釩氧化物發(fā)展,薄膜相變特性和紅外調(diào)節(jié)能力呈先增后減的變化規(guī)律.結(jié)合XRD和SEM測(cè)量結(jié)果,這種變化主要是由于不同氧分壓下薄膜相成分和織構(gòu)的不同,使薄膜應(yīng)力和相變特性產(chǎn)生較大差異.本研究在p=0.04 Pa下可獲得相變特性良好的VO2薄膜.
/References:
[1] Cao Chuanxiang,Gao Yanfeng,Luo Hongjie,et al.Pure single-crystal rutile vanadium dioxide powders:synthesis,mechanism and phase-transformation property[J].Journal of Physical Chemistry C,2008,112(48):18810-18814.
[2]Yang Zheng,Ko C,Shriram R,et al.Oxide electronics utilizing ultrafast metal-insulator transitions[J].Annual Review of Materials Research,2011,41(4):337-367.
[3]Zhou Jiadong,Gao Yanfeng,Zhang Zongtao,et al.VO2thermochromic smart window for energy savings and generation [J].Scientific Reports,2013,3(1):3029.
[4] Zhao Lili,Miao Lei,Tanemur S,et al.A low cost preparation of VO2thin films with improved thermochromic properties from a solution-based process[J].Thin Solid Films,2013,543(3):157-161.
[5]Wang Kevin,Cheng Chun,Cardona E,et al.Performance limits of microactuation with vanadium dioxide as a solid engine [J].American Chemical Society Nanotechnology,2013,7(3):2266-2272.
[6]Lee M J,Seo S,Kim D,et al.Two series oxide resistors applicable to high speed and high density nonvolatile memory[J].Advanced Materials,2007,19(22):3919-3923.
[7] Chen Changhong, YiXinjian, ZhangJing, etal.Micromachined uncooled IR bolometer linear array using VO2thin films[J].International Journal of Infrared and Millimeter Waves,2001,22(1):53-58.
[8]Soltan M,Chaker M,Haddad E,et al.1×2 optical switch devices based on semiconductor-to-metallic phase transition characteristics of VO2smart coatings[J].Measurement Science and Technology,2006,17(5):1052-1056.
[9] Oleinik A S.Optical data recording with vanadium dioxide-based film reversible media[J].Technical Physics,2002,47(8):1014-1018.
[10]Ishizaki H,Nakajim T,Shinod K,et al.Improvement of temperature coefficient of resistance of a VO2film on an SiN/polyimide/Si substrate by excimer laser irradiation for IR sensors [J].Japanese Journal of Applied Physics,2014,53(5):05FB15-1-05FB15-4.
[11]Dragoman M,Cismaru A,Hartnage H,et al.Reversible metal-semiconductor transitions for microwave switching applications [J].Applied Physics Letter,2006,88(7):073503-1-073503-3.
[12] Chen Zhang,Gao Yanfeng,Kang Litao,et al.VO2-based double-layered films for smart windows:Optical design,all-solution preparation and improved properties[J].Solar Energy Materials& Solar Cells,2011,95(9):2677-2684.
[13]Lu Songwei,Hou Lisong,Gan Fuxi,et al.Structure and optical property changes of sol-gel derived VO2thin films[J].Advanced Materials,1997,9(3):244-246.
[14] Chen Sihai,Ma Hong,Yi Xinjian,et al.Smart VO2thin film for protection of sensitive infrared detectors from strong laser radiation[J].Sensors Actuators A:Physical,2004,115(1):28-31.
[15]Luo Zhenfei,Zhou Xun,Yan Dawei,et al.Effects of thickness on the nanocrystalline structure and semiconductor-metaltransition characteristics ofvanadium dioxide thin films [J].Thin Solid Films,2014,550(1):227-232.
[16] Cheng Chun,Liu Kai,Xiang Bin,et al.Ultra-long,free-standing,single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation[J].Applied Physics Letter,2012,100(10):103-111.
[17]Lyu Weizhong,Huang Dezhen,Luo zhongkuan,et al.Hydrothermal synthesis and characterization of tungsten and fluorine co-doped vanadium dioxide[J].Journal of Shenzhen University Science and Engineering,2015,32(4):385-389.(in Chinese)
呂維忠,黃德貞,羅仲寬,等.鎢-氟共摻雜二氧化釩的水熱法制備及表征[J].深圳大學(xué)學(xué)報(bào)理工版,2015,32(4):385-389.
[18]Chang Y J,Koo C H,Yang J S,et al.Phase coexistence in metal-insulator transition of VO2thin films [J].Thin Solid Films,2005,486(1/2):46-49.
[19]Manning T D,Parkin I P,Pemble M E,et al.Intelligent window coatings:atmospheric pressure chemical vapor deposition of tungsten-doped vanadium dioxide [J].Chemistry Materials,2004,16(4):744-749.
[20]Fu Deyi,Liu Kai,Tao Tao,et al.Comprehensive study of the metal-insulator transition in pulsed laser deposited epitaxial VO2thin films [J].Journal of Applied Physics,2013,113(4):043707-1-043707-7.
[21]Ohring M.Materials science of thin films[M].Singapore:Elsevier(Singapore)Pte Ltd,2006:222-223.
[22] Zhang Dongping,Huang Rengui,Zhang Ting,et al.Effect of substrate temperature on the microstructure,optical,and electrical properties of reactive DC magnetron sputtering vanadium oxide films[J].Physics Status Solidi A,2012,209(11):2229-2234.
[23]Hu Juguang,Tang Huabin,Li Qiwen,et al.Study on the structure of crystallized CIGS thin films by near infrared laser annealing[J].Journal of Shenzhen University Science and Engineering,2013,30(6):623-628.(in Chinese)
胡居廣,湯華斌,李啟文,等.近紅外激光退火晶化CIGS薄膜研究[J].深圳大學(xué)學(xué)報(bào)理工版,2013,30(6):623-628.
[24]Kim H,Charipar N,Osofsky M,et al.Optimization of the semiconductor-metal transition in VO2epitaxial thin films as a function of oxygen growth pressure[J].Applied Physics Letter,2014,104(8):081913-1-081913-5.
[25]Fan L L,Chen S,Wu YF,et al.Growth and phase transition characteristics of pure M-phase VO2epitaxial film prepared by oxide molecular beam epitaxy[J].AppliedPhysicsLetter, 2013, 103(13):131914-1-131914-5.
[26]Yang Z,Ko C,Ramana S,et al.Metal-insulator transition characteristics of VO2thin films grown on Ge(100)single crystals[J].Journal of Applied Physics,2010,108(7):073708-1-073708-6.
2015-06-17;
2015-10-20
Influence of oxygen partial pressure on phase transition characteristics of VO2thin films prepared by magnetron sputtering
Zhang Dongping,Zhu Maodong,Yang Kai,Liu Yi?,Huang Rengui,Cai Xingmin,and Fan Ping
College of Physics Science and Technology,Institute of Thin Film Physics and Applications,Shenzhen Key Laboratory of Sensor Technology,Shenzhen University,Shenzhen 518060,P.R.China
Vanadium dioxide(VO2)thin films were prepared by reactive magnetron sputtering under different oxygen partial pressures.Microstructure,surface morphology,electrical and optical properties of the samples were characterized by X-ray diffraction instrument,four-point probe system,spectrophotometer,and scanning electron microscopy,respectively.Experimental results indicate that the samples are composed of different complex vanadium oxide phases.With an increase of oxygen partial pressure,the films become higher-valence vanadium oxides.All the samples exhibit compressive intrinsic stresses,and the stress value decreases with the increase of the oxygen partial pressure.The relationship between sheet resistance and temperature reveals remarkable semiconductor-metal transition(SMT)characteristics,and the SMT performance exhibits an initial higher degree and then gets weakened.The transmittance spectra under high and low temperatures reveal that films have a high performance of optical switching in IR range.Variations in oxygen vacancy defect density and microstructure with oxygen partial pressure are the main reasons for SMT variation.In our study,the optimal oxygen partial pressure is 0.04 Pa for high SMT performance VO2films deposition.
condensed matter physics;VO2thin film;magnetron sputtering;oxygen partial pressure;phase transition;microstructure;optical transmittance
O 484.1
A
10.3724/SP.J.1249.2015.06645
Foundation:NationalNaturalScienceFoundation ofChina(11174208);Shenzhen Scienceand TechnologyProject(JCYJ20130326113026749)
?
Associate professor Liu Yi.E-mail:liuy@szu.edu.cn
:Zhang Dongping,Zhu Maodong,Yang Kai,et al.Influence of oxygen partial pressure on phase transition characteristics of VO2thin films prepared by magnetron sputtering [J].Journal of Shenzhen University Science and Engineering,2015,32(6):645-651.(in Chinese)
國(guó)家自然科學(xué)基金資助項(xiàng)目 (11174208);深圳市科技計(jì)劃資助項(xiàng)目 (JCYJ20130326113026749)
張東平 (1972—),男 (漢族),安徽省肥東縣人,深圳大學(xué)教授.E-mail:zdpsiom@mail.szu.edu.cn
引 文:張東平,朱茂東,楊 凱,等.氧分壓對(duì)磁控濺射VO2薄膜相變性能的影響[J].深圳大學(xué)學(xué)報(bào)理工版,2015,32(6):645-651.
【中文責(zé)編:英 子;英文責(zé)編:木 南】