• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of highly reactive sorbent from industrial wastes and its CO2 capture capacity

    2015-05-08 03:34:42SunRongyueLiYingjie
    關(guān)鍵詞:高活性石渣吸收劑

    Sun Rongyue Li Yingjie

    (1School of Energy and Power Engineering, Shandong University, Jinan 250061, China)(2School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

    ?

    Synthesis of highly reactive sorbent from industrial wastes and its CO2capture capacity

    Sun Rongyue1,2Li Yingjie1

    (1School of Energy and Power Engineering, Shandong University, Jinan 250061, China)(2School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China)

    A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The results show that the synthetic sorbent exhibits a much higher CO2capture capacity compared with carbide slag. The CO2capture capacity and the carbonation conversion of the synthetic sorbent are 0.38 g/g and 0.70 after 50 cycles, which are 1.8 and 2.1 times those of carbide slag. The average carbonation conversion and the CO2capture efficiency of the synthetic sorbent are higher than those of carbide slag with the same sorbent flow ratios. The required sorbent flow ratios are lower for synthetic sorbent to achieve the same CO2capture efficiency compared with carbide slag. With the same sorbent flow ratio and CO2capture efficiency, the energy requirement in calciner for the synthetic sorbent is less than that for carbide slag.

    carbide slag; synthetic CO2sorbent; CO2capture

    A great amount of industrial wastes are generated in industrial production every year, most of which are difficult to recover and are usually landfilled. If handled improperly, industrial wastes will pose a threat to human health, ground water resources and the atmospheric environment. It is of interest to convert those harmful solid wastes to harmless and useful materials[1-3]. The research on the reuse of industrial wastes such as a substitute for limestone has been studied in different fields[1, 4-5]. Some industrial solid wastes have been used to capture CO2[4-5]. Calcium looping, i.e., repetitive carbonation/calcination cycles of CaO, is a feasible CO2capture technology for fossil fuel-fired power plants[6]and H2co-production[7]. Utilization of industrial wastes such as CO2sorbent in calcium looping technology is a promising possibility how to reuse the industrial wastes in the view of circular economy and sustainable development. Some industrial wastes such as carbide slag show favorable CO2capture capacity[1]. However, the carbonation conversion of the industrial wastes decreases with the number of cycles, just like limestone. In order to efficiently capture CO2in fossil fuel combustion and H2production, it is necessary to improve the CO2capture capacity of industrial wastes.

    Many methods to raise CO2capture capacity of calcium-based sorbent in the calcium looping cycles have been summarized[8]. The CO2capture performances of the synthetic calcium-based sorbents prepared by dispersing CaO precursors across calcium aluminates (Ca12Al14O33[9], Ca3Al2O6[10], Ca9Al6O18[11], Ca3Al10O18[12]) as support materials have been investigated. The supporters can effectively stabilize the pore structure and increase the sintering resistance of the synthetic sorbents. The synthetic CO2sorbents containing various calcium aluminates are determined by the synthesis routes (the wet mixing method, precipitation method, the sol-gel-combustion-synthesis (SGCS) method and the template method), raw materials such as CaO precursor, Al2O3precursor and dispersant[9, 13]. However, the raw materials used in the existing process such as nano CaCO3, calcium acetate, and calcium-naphthenate, Ca(C6H5O7)2are costly and some solvents and dispersants such as 2-propanol, citric acid and xylene are not cheap. In this paper, we use a type of industrial solid waste, i.e., carbide slag, as CaO precursor and glycerol water as solvent to synthesize a new type of CO2sorbent. The synthetic CO2sorbent is prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthetic method. Carbide slag and aluminum nitrate hydrate can be dissolved in the glycerol water solution. The glycerol is highly combustible. The synthetic sorbent is synthesized by Ca2+and Al3+in the glycerol water solution by the combustion of the glycerol, so the combustion process of the solution is also the synthesis process of the synthetic sorbent. The glycerol as a byproduct is obtained from the preparation of the biodiesel fuel[14]and carbide slag is also almost free. Thus, the prepared synthetic sorbent is low-cost. The CO2capture performance of the synthetic sorbent is investigated. The average carbonation conversion, CO2capture efficiency and energy requirement in calciner for the post-combustion CO2capture system using a synthetic sorbent are calculated.

    1 Experimental

    1.1 Sorbent preparation

    The carbide slag (sieved to size<0.125 mm) mainly composed of Ca(OH)2was sampled from a chlor-alkali plant located in Shandong Province, China. The chemical components of the carbide slag were analyzed by X-ray fluorescence (XRF) as shown in Tab.1. The aluminum nitrate hydrate (analytical grade Al(NO3)3·9H2O) and the glycerol (analytical grade C3H8O3) were also used as the materials in the preparation of the synthetic sorbent. First, 50 mL glycerol was dissolved in 50 mL deionized water which was stirred at 25 ℃ for 20 min, and then, the solution was heated from 25 to 80 ℃. Secondly, 10 g carbide slag and some Al(NO3)3·9H2O were added into the solution and stirred at 80 ℃. The mass ratios of CaO derived from the carbide slag to Al2O3derived from Al(NO3)3·9H2O were 90∶10 (defined as the best ratio by previous works[15]). After the carbide slag and Al(NO3)3·9H2O were completely dissolved in the glycerol water solution, it was sent to a muffle furnace for the combustion synthesis process. Subsequently, the solution was combusted in the muffle furnace (800 ℃) under air for 1 h. Synthetic sorbents were obtained after the combustion and sieved to size<0.125 mm. The XRD result shows that only CaO and Ca3Al2O6are found in the synthetic sorbent, as shown in Fig.1. It reveals that CaO reacts with all Al2O3to generate Ca3Al2O6.

    Tab.1 Chemical components in carbide slag %

    Fig.1 XRD spectra of synthetic sorbent

    1.2 Cyclic CO2capture tests

    A dual fixed-bed reactor operated under atmospheric pressure, the details of which were given somewhere else, was used to determine the CO2capture behavior of the synthetic sorbents in the carbonation/calcination cycles. The carbonation temperature was 700 ℃, and the carbonation time was 30 min. The calcinations temperature was 850 ℃, and the calcinations time was 10 min. Two parameters including CO2capture capacityCNand carbonation conversionXNwere used to characterize the CO2capture performance of the synthetic sorbent as follows:

    (1)

    (2)

    wheretdenotes the carbonation time, min;CNis the CO2capture capacity of samples attin theN-th cycle, which indicates CO2adsorption amount per unit mass of sample, g/g;XNis the carbonation conversion of samples attin theN-th cycle, which indicates the fractional conversion of CaO derived from sample to CaCO3, mol/mol;m0is the mass of initial sample, g;cis the mass percent of CaO in initial sample, %;mcal,Nis the sample mass after complete calcination in theN-th cycle, g;mcar,N(t) is the sample mass after carbonation attin theN-th cycle, g;MCaOandMCO2are the molar mass of CaO and CO2, respectively, g/mol.

    1.3 Average carbonation conversion, CO2capture efficiency and energy requirement in calciner

    An equation is employed to fit the carbonation conversion curve for the calcium-based sorbent as follows[16]:

    (3)

    whereb,fmandfware the fitting constants.

    The CO2capture efficiencyECO2is defined as[17]

    (4)

    whereF0is the makeup flow rate of fresh sorbent, kmol/s;FRis the flow rate of recycled sorbent excluding fresh makeup, kmol/s;FCO2is the flow rate of CO2produced by coal combustion entering the carbonator, kmol/s;Xaveis the average carbonation conversion.

    The average carbonation conversion is defined as

    (5)

    whererkis the mass fraction of CaO derived from the fresh calcium-based sorbent entering the carbonator inF0+FR(kmol/s) afterkcycle;Xkis the carbonation conversion afterkcycles.

    The average carbonation conversion of the calcium-based sorbent can be described by

    (6)

    and the CO2capture efficiency can be calculated by

    (7)

    The regeneration of CaO is an endothermic reaction, and the energy requirement in the calciner is an important parameter. The heat requirement for heating unreacted CaO, formed CaCO3, Ca3Al2O6and the inert mass from carbonation temperature to calcinations temperature are defined as

    H1=[cp,CaOFR(1-Xave)+cp,CaCO3FRXave+cp,inertFR,inert+cp,Ca3Al2O6FR,Ca3Al2O6]ΔTcalc-carb

    (8)

    wherecpis the heat capacity, J/kmol;ΔTcalc-carbis the temperature difference between the calciner and carbonator, K.

    The heat requirement for the calcination of CaCO3formed during carbonation is calculated as

    H2=FRXavehCaCO3

    (9)

    wherehCaCO3is the calcination reaction heat of CaCO3, kJ/mol.

    The fresh sorbent filled into the calciner is heated to the calcinations temperature from the ambient temperature and the heat requirement is calculated as

    H3=(cp,CaOF0+cp,Ca3Al2O6F0,Ca3Al2O6+cp,inertF0,inert)ΔTcalc-fresh

    (10)

    where ΔTcalc-freshis the temperature difference between the calciner and fresh sorbent, K.

    According to Tab.1, it is easily obtained that

    F0,Ca3Al2O6=0.077F0

    (11)

    FR,Ca3Al2O6=0.077FR

    (12)

    Incorporating Eqs.(8) to (10), the energy requirementHreqin the calciner is obtained as

    Hreq=H1+H2+H3

    (13)

    Then, the energy requirement per molar captured CO2is calculated as

    (14)

    2 Results and Discussion

    2.1 CO2capture performance of synthetic sorbent

    Fig.2 shows the CO2capture capacity and carbonation conversion of the synthetic sorbent and carbide slag having undergone 50 cycles. It can be seen that the synthetic sorbent shows much higher CO2capture capacity and carbonation conversion compared with carbide slag.C50andX50of the synthetic sorbent are 0.38 g/g and 0.70, which are 1.8 and 2.1 times those of carbide slag. Also, the synthetic sorbent demonstrates the slight decay in CO2capture capacity and carbonation conversion with the number of cycles. The glycerol is soluble in the water. At the same time, carbide slag and Al(NO3)3·9H2O can be dissolved in the glycerol water solution. Thus, the obtained solution is the homogeneous solution. Ca2+and Al3+are distributed uniformly in the synthetic sorbent, which is helpful for Ca3Al2O6to play a better role in the synthetic sorbent as support materials. On the other hand, CO2and water vapour are quickly released from the synthetic sorbent due to the rapid burning of the glycerol water solution at high temperatures, which can lead to the formation of the porous structure. This is a possible reason that glycerol addition enhances the cyclic CO2capture capacity of the synthetic sorbent.

    (a)

    (b)

    2.2 Average carbonation conversion of synthetic sorbent and carbide slag

    Eq.(3) is employed to fit the carbonation conversion data of the synthetic sorbent and carbide slag. The fitting curves are shown in Fig.2(b) and the fitting results are shown in Tab.2. Then, the average carbonation conversion can be calculated according to Eq.(6), as shown in Fig.3. The sorbent flow ratios, such asF0/FCO2andFR/FCO2, have a comparable effect on the average carbonation conversion. For both synthetic sorbent and carbide slag,Xaveincreases with the increase ofF0/FCO2. WhenF0/FCO2is a constant,Xavedecreases with the increase ofFR/FCO2. This is mainly because the carbonation conversion of recycled sorbent is lower than that of the fresh one. It can be seen that theXaveof the synthetic sorbent is higher than that of carbide slag with the sameF0/FCO2andFR/FCO2. For example, whenF0/FCO2=0.05 andFR/FCO2=1.5, theXaveof the synthetic sorbent is 0.80, which is 1.9 times that of carbide slag. ForFR/FCO2=1.5, theXaveof the synthetic sorbent is 0.67 whenF0/FCO2=0.01, while theXaveof carbide slag is only 0.54 whenF0/FCO2=0.2.

    Tab.2 Fitting results of the carbonation conversion data of synthetic sorbent and carbide slag by Eq.(3)

    Fig.3 Effect of flow ratios on average carbonation conversion of synthetic sorbent and carbide slag

    2.3 CO2capture efficiency of synthetic sorbent and carbide slag

    The effect of flow ratios, includingF0/FCO2andFR/FCO2on CO2capture efficiency can be obtained according to Eq.(7), as shown in Fig.4.ECO2increases clearly with the increase ofF0/FCO2andFR/FCO2. TheECO2of the synthetic sorbent is higher than that of carbide slag with the sameF0/FCO2andFR/FCO2. For example, whenF0/FCO2=0.05 andFR/FCO2=1.0, theECO2of the synthetic sorbent is 86.0%, and theECO2of carbide slag is only 46.4%. The synthetic sorbent can achieve a higher CO2capture efficiency with the sameF0/FCO2andFR/FCO2, compared with carbide slag. ForFR/FCO2=1.5, theECO2of the synthetic sorbent is close to 100% whenF0/FCO2is 0.01. For carbide slag, theECO2of 100% was achieved whenF0/FCO2is as high as 0.14 andFR/FCO2is 2.0. The requiredF0/FCO2andFR/FCO2are lower for the synthetic sorbent to achieve the sameECO2compared with carbide slag.

    Fig.4 Effect of flow ratios on CO2 capture efficiency of synthetic sorbent and carbide slag

    2.4 Energy requirement in calciner

    For synthetic sorbent and carbide slag, increasingF0/FCO2andFR/FCO2means a higher CO2capture efficiency. However, higherF0/FCO2andFR/FCO2lead to an increase of energy requirement in the calciner. As shown in Fig.5, for both synthetic sorbent and carbide slag,Hreq/FCO2increase with the increase ofF0/FCO2andFR/FCO2. Also, it has a linear relationship betweenHreq/FCO2andF0/FCO2in the range of the calculated data. With the sameF0/FCO2andFR/FCO2, the energy requirement for the synthetic sorbent is higher than that for carbide slag. That is mainly due to the higher concentration of CaCO3in the synthetic sorbent. Fig.6 shows the effect ofECO2on energy requirement in the calciner. It can be seen thatHreq/FCO2increases with the increase ofECO2, for both synthetic sorbent and carbide slag. With the same flow ratio andECO2,Hreq/FCO2for the synthetic sorbent is less than that for carbide slag. It reveals that less energy is required when using a synthetic sorbent as CO2sorbent in the calcium looping process.

    Fig.5 Effect of flow ratios on energy requirement in calciner

    Fig.6 Effect of ECO2 on energy requirement in calciner

    3 Conclusion

    A type of highly reactive synthetic CO2sorbent is prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The CO2capture performance of the synthetic sorbent is investigated. The average carbonation conversion, CO2capture efficiency and energy requirement in a calciner for the post-combustion CO2capture system using synthetic sorbent are calculated. The synthetic sorbent shows a much higher CO2capture capacity and carbonation conversion compared with carbide slag. The uniform distribution of Ca2+and Al3+in the synthetic sorbent and the formation of the porous structure due to the rapid burning of the glycerol water solution may be two possible reasons for the high cyclic CO2capture capacity of the synthetic sorbent. TheXaveandECO2of synthetic sorbent are higher than those of carbide slag with the sameF0/FCO2andFR/FCO2. The requiredF0/FCO2andFR/FCO2are lower for the synthetic sorbent to achieve the sameECO2compared with carbide slag. With the same sorbent flow ratio andECO2,Hreq/FCO2for the synthetic sorbent is less than that for carbide slag. The synthetic sorbent is more suitable as a CO2sorbent in the calcium looping process compared with carbide slag.

    [1]Li Y J, Sun R Y, Liu C T, et al. CO2capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles [J].IntJGreenhouseGasControl, 2012, 9:117-123.

    [2]Miró L, Navarro M E, Suresh P, et al. Experimental characterization of a solid industrial by-product as material for high temperature sensible thermal energy storage (TES) [J].ApplEnergy, 2014, 113:1261-1268.

    [3]Sharma V K, Fortuna F, Mincarini M, et al. Disposal of waste tyres for energy recovery and safe environment [J].ApplEnergy, 2000, 65(1/2/3/4):381-394.

    [4]Sanna A, Dri M, Hall M R, et al. Waste materials for carbon capture and storage by mineralisation (CCSM)—a UK perspective [J].ApplEnergy, 2012, 99:545-554.

    [5]Bobicki E R, Liu Q, Xu Z, et al. Carbon capture and storage using alkaline industrial wastes [J].ProgEnergyCombustSci, 2012, 38(2):302-320.

    [6]Valverde J M, Sanchez-Jimenez P E, Perez-Maqueda L A, et al. Role of crystal structure on capture by limestone derived CaO subjected to carbonation/recarbonation/calcination cycles at Ca-looping conditions [J].ApplEnergy, 2014, 125:264-275.

    [7]Lin S Y, Harada M, Suzuki Y, et al. Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING) [J].EnergyConversManage, 2005, 46(6):869-880.

    [8]Liu W, An H, Qin C, et al. Performance enhancement of calcium oxide sorbents for cyclic CO2capture—a review [J].EnergyFuels, 2012, 26(5):2751-2567.

    [9]Ridha F N, Manovic V, Macchi A, et al. The effect of SO2on CO2capture by CaO-based pellets prepared with a kaolin derived Al(OH)3binder [J].ApplEnergy, 2012, 92:415-420.

    [10]Zhang M, Peng Y, Sun Y, et al. Preparation of CaO-Al2O3sorbent and CO2capture performance at high temperature [J].Fuel, 2013, 111:636-642.

    [11]Zhou Z, Qi Y, Xie M, et al. Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2capture performance [J].ChemEngSci, 2012, 74:172-180.

    [12]Chen H, Zhao C, Yu W. Calcium-based sorbent doped with attapulgite for CO2capture [J].ApplEnergy, 2013, 112:67-74.

    [13]Chen H C, Zhao C S, Yang Y M, et al. CO2capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation [J].ApplEnergy, 2012, 91:334-340.

    [14]García E, Laca M, Pérez E, et al. New class of acetal derived from glycerin as a biodiesel fuel component [J].EnergyFuels, 2008, 22(6): 4274-4280.

    [15]Liu C T. Cyclic carbonation characteristics of modified carbide slag as a CO2sorbent in high temperature [D]. Jinan: School of Energy and Power Engineering, Shandong University, 2014. (in Chinese)

    [16]Li Y J, Zhao C S, Chen H C, et al. CO2capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle [J].Energy, 2011, 36(3):1590-1598.

    [17]Abanades J C. The maximum capture efficiency of CO2using a carbonation/calcination cycle of CaO/CaCO3[J].ChemEngJ, 2002, 90(3):303-306.

    基于鈣基廢棄物的高活性吸收劑合成及其循環(huán)捕集CO2性能

    孫榮岳1,2李英杰1

    (1山東大學(xué)能源與動(dòng)力工程學(xué)院, 濟(jì)南 250061)
    (2南京工程學(xué)院能源與動(dòng)力工程學(xué)院, 南京 211167)

    利用一種典型的鈣基廢棄物電石渣作為CaO源合成CO2吸收劑.該高活性吸收劑由電石渣、九水硝酸鋁和甘油水溶液經(jīng)燃燒合成法合成.結(jié)果表明,該合成吸收劑表現(xiàn)出明顯好于電石渣的CO2捕集性能.50次循環(huán)后,合成吸收劑的CO2吸收量和碳酸化轉(zhuǎn)化率為0.38 g/g和0.70,分別是電石渣相同循環(huán)次數(shù)時(shí)的1.8和2.1倍.當(dāng)吸收劑補(bǔ)充率相同時(shí),合成吸收劑的平均碳酸化轉(zhuǎn)化率和CO2捕集效率均高于電石渣.為取得相同的CO2捕集效率,合成吸收劑所需吸收劑的補(bǔ)充率小于電石渣.當(dāng)吸收劑補(bǔ)充率和CO2捕集效率相同時(shí),用合成吸收劑作為CO2吸收劑時(shí)煅燒爐內(nèi)所需的能量小于用電石渣作為CO2吸收劑時(shí)所需能量.

    電石渣;合成CO2吸收劑; CO2捕集

    TQ534

    Foundation item:The National Natural Science Foundation of China (No.51376003).

    :Sun Rongyue, Li Yingjie.Synthesis of highly reactive sorbent from industrial wastes and its CO2capture capacity[J].Journal of Southeast University (English Edition),2015,31(2):209-214.

    10.3969/j.issn.1003-7985.2015.02.009

    10.3969/j.issn.1003-7985.2015.02.009

    Received 2015-01-05.

    Biographies:Sun Rongyue (1986—), male, graduate; Li Yingjie (corresponding author), male, doctor, associate professor, liyj@sdu.edu.cn.

    猜你喜歡
    高活性石渣吸收劑
    電石渣穩(wěn)定土強(qiáng)度特性影響因素分析
    新型MEA-AMP混合胺吸收劑的抗降解劑研究
    能源工程(2021年5期)2021-11-20 05:50:42
    高效液相色譜法同時(shí)測(cè)定紡織品中11種二苯甲酮類紫外吸收劑
    電石渣固化軟土的強(qiáng)度特性研究
    不同方法提取杜仲中桃葉珊瑚苷等4種高活性成分的比較研究
    低VOC高活性聚醚多元醇JQN-330NG的合成研究
    某碾壓石渣料堤防邊坡抗滑穩(wěn)定數(shù)值模擬研究
    電廠煙氣膜法脫除CO2吸收劑的研究進(jìn)展
    高活性Al-LiBH4-Bi鋁基復(fù)合制氫材料
    高活性聚異丁烯生產(chǎn)、市場(chǎng)及發(fā)展趨勢(shì)*
    化工科技(2014年4期)2014-06-09 03:27:35
    亚洲精华国产精华精| 亚洲精品国产色婷婷电影| 高潮久久久久久久久久久不卡| 免费在线观看视频国产中文字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| 亚洲视频免费观看视频| 夜夜爽天天搞| 免费久久久久久久精品成人欧美视频| 欧美不卡视频在线免费观看 | 国产精品99久久99久久久不卡| 国产野战对白在线观看| 制服丝袜大香蕉在线| 三级毛片av免费| 国产激情欧美一区二区| 麻豆久久精品国产亚洲av| 亚洲成人国产一区在线观看| 成人手机av| 丰满人妻熟妇乱又伦精品不卡| 熟妇人妻久久中文字幕3abv| 午夜免费成人在线视频| 亚洲无线在线观看| 97超级碰碰碰精品色视频在线观看| 久久青草综合色| 国产午夜福利久久久久久| 在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成国产人片在线观看| 国产亚洲精品综合一区在线观看 | 精品一区二区三区四区五区乱码| av福利片在线| 成年人黄色毛片网站| 可以在线观看的亚洲视频| av福利片在线| 国产亚洲欧美98| 久久伊人香网站| 我的亚洲天堂| 在线观看舔阴道视频| 欧美精品亚洲一区二区| 亚洲五月色婷婷综合| 欧美一区二区精品小视频在线| 亚洲国产精品999在线| 日本五十路高清| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲视频免费观看视频| 国产伦人伦偷精品视频| 性欧美人与动物交配| 国产成人精品久久二区二区免费| 亚洲少妇的诱惑av| 亚洲七黄色美女视频| e午夜精品久久久久久久| 久久久久久久久中文| 亚洲 欧美 日韩 在线 免费| 免费av毛片视频| 老鸭窝网址在线观看| 99久久国产精品久久久| 人妻久久中文字幕网| 香蕉丝袜av| 十八禁人妻一区二区| 日本一区二区免费在线视频| 女人被狂操c到高潮| 午夜久久久在线观看| 中文字幕久久专区| 成年版毛片免费区| 12—13女人毛片做爰片一| 亚洲少妇的诱惑av| 欧美av亚洲av综合av国产av| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品aⅴ一区二区三区四区| 久久亚洲精品不卡| 久久精品aⅴ一区二区三区四区| 天堂√8在线中文| 搡老妇女老女人老熟妇| 久久九九热精品免费| 亚洲欧美激情综合另类| 一卡2卡三卡四卡精品乱码亚洲| 亚洲在线自拍视频| 国产亚洲精品av在线| 亚洲五月色婷婷综合| 18禁国产床啪视频网站| 国产成人av教育| 亚洲国产欧美网| 女人高潮潮喷娇喘18禁视频| 亚洲av熟女| 少妇的丰满在线观看| 女人爽到高潮嗷嗷叫在线视频| 女人高潮潮喷娇喘18禁视频| 亚洲五月天丁香| 高清在线国产一区| 女人被躁到高潮嗷嗷叫费观| 欧美激情高清一区二区三区| √禁漫天堂资源中文www| 一二三四在线观看免费中文在| 99国产极品粉嫩在线观看| 黄色视频,在线免费观看| e午夜精品久久久久久久| 欧美 亚洲 国产 日韩一| 97人妻精品一区二区三区麻豆 | 天堂√8在线中文| 久久午夜亚洲精品久久| 韩国av一区二区三区四区| 亚洲美女黄片视频| www.精华液| 亚洲中文日韩欧美视频| 午夜精品国产一区二区电影| 国产主播在线观看一区二区| 久久中文看片网| 黑人操中国人逼视频| 欧美国产日韩亚洲一区| 亚洲国产日韩欧美精品在线观看 | 亚洲中文av在线| av网站免费在线观看视频| 天堂√8在线中文| 91精品三级在线观看| 免费观看人在逋| 女警被强在线播放| 国产日韩一区二区三区精品不卡| 亚洲最大成人中文| 黑人巨大精品欧美一区二区蜜桃| 久久婷婷人人爽人人干人人爱 | 脱女人内裤的视频| 久久久久国产精品人妻aⅴ院| 黄色 视频免费看| 日韩欧美一区二区三区在线观看| 国产一区二区在线av高清观看| 日韩视频一区二区在线观看| av网站免费在线观看视频| 国产国语露脸激情在线看| 日本三级黄在线观看| 成人精品一区二区免费| 亚洲欧美日韩另类电影网站| 亚洲伊人色综图| 人人妻人人爽人人添夜夜欢视频| 69av精品久久久久久| 久久这里只有精品19| av天堂久久9| 欧美不卡视频在线免费观看 | 国产激情久久老熟女| 99久久99久久久精品蜜桃| 黄色 视频免费看| 国产99白浆流出| 久久草成人影院| 亚洲欧美日韩高清在线视频| 亚洲熟女毛片儿| 亚洲伊人色综图| 国产欧美日韩精品亚洲av| 好男人在线观看高清免费视频 | 啦啦啦观看免费观看视频高清 | 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费鲁丝| 欧美一区二区精品小视频在线| 欧美激情 高清一区二区三区| 欧美成人一区二区免费高清观看 | 搡老熟女国产l中国老女人| 成人精品一区二区免费| 欧美成人午夜精品| 午夜视频精品福利| 此物有八面人人有两片| 黄色女人牲交| 久久人妻熟女aⅴ| 天堂影院成人在线观看| 国产野战对白在线观看| tocl精华| 欧美日韩瑟瑟在线播放| 亚洲av成人av| 午夜成年电影在线免费观看| 嫩草影视91久久| av视频在线观看入口| 久久影院123| 亚洲全国av大片| 搡老妇女老女人老熟妇| 国产精品野战在线观看| 丰满的人妻完整版| av片东京热男人的天堂| 国产一级毛片七仙女欲春2 | 狂野欧美激情性xxxx| 亚洲欧美精品综合一区二区三区| 亚洲人成77777在线视频| 精品久久久久久成人av| 亚洲精品在线观看二区| 国产精华一区二区三区| 欧美激情久久久久久爽电影 | 日本在线视频免费播放| 久久人人精品亚洲av| 久久精品91无色码中文字幕| 国产伦一二天堂av在线观看| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 麻豆成人av在线观看| 老汉色av国产亚洲站长工具| 精品久久久久久成人av| 国产三级在线视频| 欧美色视频一区免费| 欧美乱色亚洲激情| 在线免费观看的www视频| 免费不卡黄色视频| 999久久久精品免费观看国产| 久久中文字幕人妻熟女| 国产在线精品亚洲第一网站| 精品久久久久久,| 在线观看免费日韩欧美大片| 757午夜福利合集在线观看| 国产精品,欧美在线| 国产麻豆69| 久久国产精品影院| 嫩草影院精品99| 国产片内射在线| 自线自在国产av| 老鸭窝网址在线观看| 真人做人爱边吃奶动态| 人人妻人人爽人人添夜夜欢视频| 午夜久久久在线观看| 好男人电影高清在线观看| 免费搜索国产男女视频| 搡老熟女国产l中国老女人| 国产精品,欧美在线| 国产97色在线日韩免费| 亚洲全国av大片| 国产精品久久视频播放| 在线十欧美十亚洲十日本专区| 人人妻人人爽人人添夜夜欢视频| 多毛熟女@视频| 乱人伦中国视频| 在线观看午夜福利视频| 一本综合久久免费| 国产一区二区激情短视频| 成人三级做爰电影| 自线自在国产av| 一个人观看的视频www高清免费观看 | 欧美激情极品国产一区二区三区| 久久久久久久久久久久大奶| 色尼玛亚洲综合影院| 老司机深夜福利视频在线观看| 免费在线观看影片大全网站| 天堂动漫精品| 后天国语完整版免费观看| 亚洲情色 制服丝袜| 亚洲中文字幕一区二区三区有码在线看 | 9191精品国产免费久久| 久久久久亚洲av毛片大全| 成在线人永久免费视频| 国产亚洲欧美98| 成人国产综合亚洲| 日韩欧美一区视频在线观看| 一进一出好大好爽视频| 亚洲精品在线观看二区| 婷婷六月久久综合丁香| 大陆偷拍与自拍| av片东京热男人的天堂| 在线观看舔阴道视频| 亚洲美女黄片视频| 亚洲熟妇中文字幕五十中出| 国产色视频综合| 丝袜美足系列| 国产av在哪里看| 性色av乱码一区二区三区2| 久久伊人香网站| 国产亚洲精品久久久久久毛片| 久久中文看片网| 中国美女看黄片| 天堂影院成人在线观看| 成人精品一区二区免费| 国产精品久久久久久亚洲av鲁大| 国产精品av久久久久免费| 欧美中文日本在线观看视频| 午夜激情av网站| 91麻豆精品激情在线观看国产| 国产精华一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 丁香欧美五月| 欧美在线一区亚洲| 国内久久婷婷六月综合欲色啪| 久久香蕉精品热| 中文字幕人妻丝袜一区二区| 99国产综合亚洲精品| 欧美黑人精品巨大| 搡老妇女老女人老熟妇| 亚洲人成伊人成综合网2020| 中文字幕高清在线视频| 在线视频色国产色| 午夜福利在线观看吧| 99国产精品99久久久久| 巨乳人妻的诱惑在线观看| 国产精品久久久久久人妻精品电影| 精品久久蜜臀av无| 欧美精品啪啪一区二区三区| 国产高清激情床上av| 欧美成人性av电影在线观看| 成人国语在线视频| 老熟妇乱子伦视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 18禁美女被吸乳视频| 亚洲精华国产精华精| 男女床上黄色一级片免费看| 国产欧美日韩一区二区精品| 真人做人爱边吃奶动态| 国产不卡一卡二| 久久性视频一级片| 精品国产乱子伦一区二区三区| 国产伦一二天堂av在线观看| 日韩欧美一区视频在线观看| 大香蕉久久成人网| 日日摸夜夜添夜夜添小说| 真人做人爱边吃奶动态| 91在线观看av| 日韩精品青青久久久久久| 亚洲熟妇中文字幕五十中出| 亚洲中文字幕日韩| 亚洲欧美日韩另类电影网站| av欧美777| 久久久久久人人人人人| 免费观看人在逋| 欧美国产日韩亚洲一区| 亚洲色图av天堂| 久热这里只有精品99| 非洲黑人性xxxx精品又粗又长| 精品国产国语对白av| 精品国产一区二区三区四区第35| 欧美激情高清一区二区三区| 午夜久久久久精精品| 中文亚洲av片在线观看爽| av有码第一页| 性少妇av在线| 亚洲av片天天在线观看| 午夜福利欧美成人| 久久久久九九精品影院| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品在线观看二区| 青草久久国产| 欧美国产精品va在线观看不卡| 一区二区日韩欧美中文字幕| 后天国语完整版免费观看| 看免费av毛片| 国产在线观看jvid| 波多野结衣一区麻豆| 咕卡用的链子| 国产av一区二区精品久久| 午夜精品在线福利| 久久国产亚洲av麻豆专区| 日韩精品免费视频一区二区三区| 久久久久九九精品影院| 国产亚洲精品综合一区在线观看 | 大香蕉久久成人网| 午夜免费鲁丝| av中文乱码字幕在线| 18美女黄网站色大片免费观看| 欧美乱码精品一区二区三区| 亚洲精品美女久久av网站| 操美女的视频在线观看| 一级毛片女人18水好多| 乱人伦中国视频| 淫秽高清视频在线观看| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 变态另类丝袜制服| 成人国语在线视频| 国产一区二区三区视频了| 日本 欧美在线| 欧美日本视频| 91麻豆精品激情在线观看国产| 欧美丝袜亚洲另类 | 午夜日韩欧美国产| 久久人人精品亚洲av| 久久久国产成人免费| 又紧又爽又黄一区二区| 丝袜美腿诱惑在线| 久久久久精品国产欧美久久久| 天天躁夜夜躁狠狠躁躁| 日韩高清综合在线| 亚洲va日本ⅴa欧美va伊人久久| 黄色女人牲交| 国产极品粉嫩免费观看在线| 岛国在线观看网站| or卡值多少钱| 91大片在线观看| 黄色女人牲交| 国产97色在线日韩免费| 亚洲一区二区三区色噜噜| 亚洲九九香蕉| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 午夜精品在线福利| 色婷婷久久久亚洲欧美| 国产精品日韩av在线免费观看 | 黄色女人牲交| 在线av久久热| 激情视频va一区二区三区| 国产av精品麻豆| 黑人欧美特级aaaaaa片| 成人三级黄色视频| 国产av又大| 亚洲一区中文字幕在线| 在线天堂中文资源库| 婷婷丁香在线五月| 999精品在线视频| 亚洲五月天丁香| 好看av亚洲va欧美ⅴa在| 国产精品久久久久久精品电影 | 操美女的视频在线观看| 麻豆久久精品国产亚洲av| 日韩av在线大香蕉| 精品久久久久久久人妻蜜臀av | 久久性视频一级片| 激情在线观看视频在线高清| 19禁男女啪啪无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品第一综合不卡| 一区在线观看完整版| 久久国产精品影院| 亚洲中文av在线| www.精华液| 亚洲精品在线观看二区| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看| 成人亚洲精品一区在线观看| 国产激情久久老熟女| 色在线成人网| 亚洲人成伊人成综合网2020| 亚洲午夜精品一区,二区,三区| 搡老岳熟女国产| 青草久久国产| 亚洲国产日韩欧美精品在线观看 | 亚洲va日本ⅴa欧美va伊人久久| 国产高清有码在线观看视频 | 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜一区二区| 色综合婷婷激情| 久久中文字幕人妻熟女| 精品福利观看| 久久九九热精品免费| 精品电影一区二区在线| www国产在线视频色| av欧美777| 成人18禁高潮啪啪吃奶动态图| 久久精品影院6| 在线国产一区二区在线| 亚洲一码二码三码区别大吗| 亚洲三区欧美一区| 免费在线观看黄色视频的| 国产精品影院久久| 亚洲av电影不卡..在线观看| 国产精品,欧美在线| 脱女人内裤的视频| 久久中文字幕一级| 亚洲精品一卡2卡三卡4卡5卡| 久久性视频一级片| 99国产极品粉嫩在线观看| 婷婷丁香在线五月| 免费在线观看完整版高清| 丁香六月欧美| 免费女性裸体啪啪无遮挡网站| 国语自产精品视频在线第100页| 大香蕉久久成人网| 久久久久亚洲av毛片大全| 99久久综合精品五月天人人| 宅男免费午夜| 亚洲中文日韩欧美视频| 50天的宝宝边吃奶边哭怎么回事| 黄片小视频在线播放| 可以在线观看毛片的网站| 欧美日韩亚洲综合一区二区三区_| 色老头精品视频在线观看| 又大又爽又粗| 日韩精品青青久久久久久| 欧美一级毛片孕妇| 亚洲男人天堂网一区| 久久久久久久久中文| 最近最新中文字幕大全免费视频| 亚洲国产高清在线一区二区三 | 熟女少妇亚洲综合色aaa.| 欧美午夜高清在线| 看黄色毛片网站| 性色av乱码一区二区三区2| 久热爱精品视频在线9| 午夜精品在线福利| 午夜福利18| www.熟女人妻精品国产| 久久久久久国产a免费观看| 欧美性长视频在线观看| 在线观看免费日韩欧美大片| 人人妻,人人澡人人爽秒播| 精品久久久久久成人av| 国产一区二区三区综合在线观看| 国产伦一二天堂av在线观看| 这个男人来自地球电影免费观看| 大型黄色视频在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 免费在线观看完整版高清| 丝袜美足系列| 亚洲五月天丁香| 少妇粗大呻吟视频| 亚洲欧美精品综合久久99| 日韩欧美三级三区| 欧美日本视频| 又大又爽又粗| 国产av在哪里看| 国产精品永久免费网站| 久久久久久久午夜电影| 亚洲av五月六月丁香网| 国产熟女午夜一区二区三区| 一级a爱片免费观看的视频| 大码成人一级视频| 欧美激情 高清一区二区三区| 成人精品一区二区免费| 久久亚洲真实| 纯流量卡能插随身wifi吗| 亚洲欧美精品综合久久99| 欧美黑人欧美精品刺激| 欧美乱色亚洲激情| 给我免费播放毛片高清在线观看| 午夜影院日韩av| 亚洲欧洲精品一区二区精品久久久| 国产一区二区激情短视频| 欧美日韩瑟瑟在线播放| 69精品国产乱码久久久| 美女大奶头视频| 国产aⅴ精品一区二区三区波| 女性生殖器流出的白浆| 手机成人av网站| 真人一进一出gif抽搐免费| 人人妻,人人澡人人爽秒播| svipshipincom国产片| 国产午夜精品久久久久久| 日韩精品中文字幕看吧| 精品熟女少妇八av免费久了| 日韩精品免费视频一区二区三区| 成人欧美大片| 色播亚洲综合网| 午夜精品国产一区二区电影| 欧美中文综合在线视频| videosex国产| 亚洲专区国产一区二区| 性少妇av在线| 精品乱码久久久久久99久播| 国产成+人综合+亚洲专区| 午夜福利视频1000在线观看 | 色av中文字幕| 男女床上黄色一级片免费看| 欧美乱色亚洲激情| 精品欧美国产一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费鲁丝| 亚洲av熟女| 国产精品综合久久久久久久免费 | 中文亚洲av片在线观看爽| x7x7x7水蜜桃| 少妇被粗大的猛进出69影院| 色综合婷婷激情| 在线观看午夜福利视频| 欧美日本亚洲视频在线播放| 91老司机精品| 一夜夜www| 亚洲精品中文字幕在线视频| 老司机午夜福利在线观看视频| 亚洲熟妇中文字幕五十中出| 亚洲一区中文字幕在线| 国产av又大| 搡老岳熟女国产| 日日夜夜操网爽| 亚洲aⅴ乱码一区二区在线播放 | 一区二区三区激情视频| 在线av久久热| 欧美日本中文国产一区发布| 午夜激情av网站| 很黄的视频免费| 精品乱码久久久久久99久播| 超碰成人久久| 操出白浆在线播放| 日韩欧美一区二区三区在线观看| 国产熟女xx| 如日韩欧美国产精品一区二区三区| 啦啦啦免费观看视频1| 日日摸夜夜添夜夜添小说| av超薄肉色丝袜交足视频| av天堂在线播放| 欧美大码av| 亚洲av第一区精品v没综合| 一进一出抽搐gif免费好疼| 国产精品 欧美亚洲| 极品教师在线免费播放| 国产一区二区三区视频了| 精品久久久久久成人av| or卡值多少钱| 国产一级毛片七仙女欲春2 | 一级a爱视频在线免费观看| av片东京热男人的天堂| 亚洲熟妇中文字幕五十中出| 欧美日韩精品网址| e午夜精品久久久久久久| 亚洲av成人av| av免费在线观看网站| 日本vs欧美在线观看视频| 亚洲,欧美精品.| 欧美国产精品va在线观看不卡| 18禁黄网站禁片午夜丰满| 宅男免费午夜| 久久久久国产精品人妻aⅴ院| 国产成人一区二区三区免费视频网站| 日韩欧美三级三区| 国产精品国产高清国产av| 老司机午夜十八禁免费视频| 99国产精品免费福利视频| 97人妻天天添夜夜摸| 久久久久久亚洲精品国产蜜桃av| 99在线人妻在线中文字幕| 又紧又爽又黄一区二区| 老司机午夜福利在线观看视频| av有码第一页| 又紧又爽又黄一区二区| 久久久久国产一级毛片高清牌| 国产三级黄色录像| 夜夜看夜夜爽夜夜摸| 午夜福利成人在线免费观看| 十八禁网站免费在线| 久久精品亚洲精品国产色婷小说| 欧美成人一区二区免费高清观看 |