• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative study on SO2 release and removal under air and oxy-fuel combustion in a fluidized bed combustor

    2015-05-08 03:34:44ZhengZhiminWangHuiYangLiWeiXingGuoYongjunGuoShuaiWuShaohua
    關(guān)鍵詞:富氧石灰石流化床

    Zheng Zhimin Wang Hui Yang Li Wei Xing Guo Yongjun Guo Shuai Wu Shaohua

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

    ?

    Comparative study on SO2release and removal under air and oxy-fuel combustion in a fluidized bed combustor

    Zheng Zhimin Wang Hui Yang Li Wei Xing Guo Yongjun Guo Shuai Wu Shaohua

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

    SO2release and removal were studied under both the air and oxy-fuel combustion conditions using an anthracite coal from the Jincheng mine in China on a bench-scale fluidized bed combustor (FBC). Special attention was paid to the effects of the combustion atmosphere, O2concentration, bed temperature, and limestone addition. The released amount of SO2was clearly higher under 30%O2/70%CO2than that of the air atmosphere. As the O2concentration in O2/CO2mixture increased from 21% to 40%, the released amount of SO2increased significantly, but then it decreased when the O2concentration increased up to 50%. The bed temperature from 860 to 920 ℃ has no obvious influence on the the SO2release but shows a strong influence on the desulfurization with limestone in both oxy-fuel and air conditions. The maximum SO2removal efficiency appears to be at 880 to 900 ℃ for both the air and oxy-fuel combustion conditions.

    oxy-fuel combustion; fluidized bed; SO2release; limestone desulfuration

    Oxy-fuel combustion is one of the most advanced technologies for carbon capture and storage(CCS).Oxy-fuel circulating fluidized bed (CFB) combustion as one type of oxy-fuel combustion has received special attention due to its wide adaptation in fuels, low NOxemissions, and, in particular, in furnace desulphurization. In recent years, a wide range of research involving oxy-fuel CFB has been carried out[1-5]. Despite that, research on the release and removal of SO2in oxy-fuel CFB is still controversial.

    There have been some studies on the difference in SO2release between air and oxy-fuel combustion without desulfurization. Tan et al.[6]found that even though the concentration of SO2in oxy-fuel combustion was higher, its mass emission was usually slightly lower than that in air combustion. Wang[7]drew a similar conclusion and he proposed that the lower SO2emission in oxy-fuel combustion was due to the higher capture of fly ash towards sulfur. Duan et al.[8]showed that the release of SO2in oxy-fuel combustion was significantly higher than that in air combustion when oxygen concentration was higher than 30% in oxy-fuel combustion. The main reason for the result was that the increase in oxygen concentration led to the increase in bed temperature, and subsequently increased the combustion efficiency and sulfur conversion rate. On the other hand, Zheng et al.[9]believed that the amount of SO2released under both conditions has no obvious difference based on theoretical calculation. Therefore, the difference between SO2release in air combustion and oxy-fuel combustion is still uncertain.

    In-furnace desulphurization has also been widely studied. The most popular reagent used for desulphurization is limestone. In terms of the mechanisms of limestone desulfurization in the furnace, two types of reaction mechanisms exist in the operational temperature range (i.e., 850 to 950 ℃) in oxy-fuel combustion. They are direct sulfation and indirect sulfation reaction. When the temperature is at 850 ℃, a high concentration of CO2can suppress CaCO3decomposition, which leads to a direct sulfation reaction. However, it should be mentioned that with the increase in CO2partial pressure, the calcium conversion rate decreases accordingly[10]. Jia at al.[4]found that desulfurization efficiency was only 40.1%, which was far less than 68.4% for air combustion under similar conditions (i.e. the bed temperature: 850 ℃; the Ca/S ratio: 2.5)[11].

    In this paper, experiments were conducted on a bench-scale fluidized bed combustor. The effects of combustion atmosphere, oxygen concentration, the bed temperature and limestone addition on the release and removal of SO2were investigated.

    1 Experimental Sections

    1.1 Fuel, limestone, and bed material

    An anthracite coal from the Jincheng mine in China, which is referred to JCA here, was used in the experiment. It was precrushed to granule with particle sizes less than 2.36 mm. The proximate and elemental analysis for the coal are presented in Tab.1.Prior to the experiments, coal samples were exposed to air and dried. Limestone from Shou County in China was used as the sorbent.The particle size for limestone was below 1.18 mm. The chemical compositions of limestone and the resulting ash of JCA are listed in Tab.2 and Tab.3, respectively. The particle size distributions (PSDs) of the coal and limestone are given in Fig.1. Quartz sand with a particle size range of 0.18 to 0.55 mm was used as the bed material.

    Tab.1 Proximate and ultimate analyses of JCA expressed on air-dry basis %

    Notes: M is the moisture; A is the ash content; V is the volatile; FC is the fixed carbon; LHV is the lower heating value.

    Tab.2 Chemical composition of the limestone as sorbent %

    Tab.3 Chemical composition of the resulting ash of JCA %

    Fig.1 The PSDs of JCA and limestone

    1.2 Experimental setup

    The schematic diagram of the fluidized bed combustor(FBC) experimental set-up is given in Fig.2. The total height of the combustor is 3 500 mm, including the preheating section of 385 mm, the dense section of 315 mm, and the dilute phase section of 2 800 mm. The inner diameters of the dense section and the dilute section are 51 and 83 mm, respectively, and between them there is a transition connection with a slope of 11°. A cyclone is connected to the outlet of the combustor to capture coarse ash followed by a convective section. The length and the inner diameter of the convective section are 850 and 56 mm, respectively. Three sampling ports are arranged to measure flue gas, fly ash, and ash deposits, respectively. Following the convective section, a high temperature filter bag is incorporated to collect the fly ash. The temperature of the combustor is controlled by an electric heater. Coal is fed with a screw feeder at a steady coal-feeding rate of 5 to 20 g/min. Either air or O2/CO2can be fed into the system separately. A two-gas system makes it easy and simple to switch between air and oxy-fuel combustion.

    Before the ignition, quartz sand with the weight of 150 to 200 g is introduced into the combustor. When the temperature of the reactor reaches 800 ℃, coal is introduced into the reactor. Air and oxy-fuel atmosphere can be swit-ched if necessary before ignition. During ignition, a few coal samples were introduced into the reactor. When the temperature reaches around 850 ℃, the amount of coal can be increased to the setting value.

    Fig.2 Schematic diagram of the bench-scale fluidized bed combustor(unit: mm)

    The difference in the streams of gas flow affected the residence time of the fluidized bed status and particles, concequently affecting the combustion and pollutant emissions. Therefore, it is more reliable to keep the same gas velocity during all the experiments. However, the fact has to be considered that when too much coal is introduced into the furnace, the furnace temperature will become out of control, particularly under the high oxygen concentration in oxy-fuel combustion. Therefore, during the test, the amount of coal and the flow of the gas should be reduced to ensure a stable bed temperature. The running time of each case is about 30 to 60 min.

    For comparison among different combustion cases, the concentration of oxygen in the flue gas at the outlet for all conditions is set to be 6%.The concentration of SO2is measured on-line by the Fourier transform infrared spectroscopy (FTIR).

    1.3 Data processing

    In order to compare the differences in the release of SO2under different combustion conditions, the volume concentration of SO2can be converted into the amount of its release by

    (1)

    The removal efficiency of SO2is calculated by

    (2)

    whereC0is the amount of SO2release without limestone, mg/MJ;CLis the amount of SO2release with limestone, mg/MJ.

    The utility of limestoneξas sorbent is calculated by

    (3)

    2 Results and Discussion

    2.1 SO2release

    2.1.1 Effect of O2concentration on SO2release

    SO2release is represented by both the volume concentration and mg/MJ as shown in Fig.3(a) and Fig.3(b), respectively. It can be noted that in Fig.3(a), SO2concentration increases linearly with the O2concentration of 21% to 40% and then increases slowly with the O2concentration of 40% to 50%, deviating from the previous linear curve. The SO2concentration under air combustion is slightly higher than that in oxy-fuel combustion at the same O2concentration of 21%. In Fig.3(b), when the SO2release is represented in mg/MJ, SO2emission increases with the increase in the O2concentration from 21% to 40% in oxy-fuel combustion and then SO2emission decreases with the O2concentration from 40% to 50%. The emission of SO2under air combustion is significantly higher than that in oxy-fuel combustion under the same O2concentration of 21%.

    (a)

    (b)

    Two reasons can be used to explain why SO2emission is so low in oxy-fuel combustion (21%O2). The high thermal capacity but low oxygen diffusivity in the CO2atmosphere reduces the surface temperature of coke particles and then leads to the decrease of SO2release. Meanwhile, the high concentration of CO2can inhibit coke combustion and lead to higher CO formation in the furnace to create a reductive atmosphere. Therefore, SO2can be reduced to COS by CO[12].The substantial increase of oxygen concentration will increase the surface temperature of the particles and enhance the oxidation rate of coke, which will increase the emission of SO2. Meanwhile, the effects of CO formation on the reduction of SO2will be weakened[13-14]. The combined impacts of the above two reasons lead to the increase in SO2emission at concentrations of O2from 20% to 40%.The SO2emission begins to decline when the O2concentration exceeds 40%. There may be two reasons for this. One is that the volume concentration of SO2increases significantly due to the reduction in the total volume flow of flue gas. SO2is easily oxidized to SO3and subsequently forms H2SO4by reacting with H2O at the low temperature of flue gas below 1 000 ℃[15-16]. The other reason is that SO2may react with alkaline earth metal in fly ash[8,15]. Therefore, SO2emission in the oxy-fuel combustion depends highly on O2concentration.

    2.1.2 Effect of bed temperature on SO2release

    The effect of the bed temperature on SO2release rate is shown in Fig.4 under air and 30%O2/70%CO2combustion. The bed temperature ranges from 840 to 920 ℃. It can be found that SO2does not show any obvious change except to rise slightly above 900 ℃. Generally, SO2release is not influenced by the bed temperature regardless whether in air combustion or oxy-fuel combustion below 900 ℃. As described in Refs.[17-18], there are three main forms of sulfur in coal, including pyrite, organic sulphur, and sulfates. Pyrite will decompose at around 600 ℃, sulfates will decompose over 1 000 ℃, and organic sulfur will decompose at different temperatures ranging from 400 to 1 000 ℃. Part of organic sulfur can be bonded to the coal matrix and retained in the ash due to the incomplete burnt condition. However, the increased temperature will weaken this retention of sulphur in ash as well as increasing the conversion of char[8].

    Fig.4 Effect of bed temperature on SO2 release under air and oxy-fuel combustion

    2.2 SO2removal

    2.2.1 The effect of bed temperature

    Fig.5 shows the SO2removal as a function of the bed temperature under both air and oxy-fuel combustion conditions during anthracite combustion with a Ca/S ratio of 2.5.Fig.5(a) shows the effect of bed temperature on SO2emissions using mass concentration, and Fig.5(b) shows the effect of bed temperature on desulfurization efficiency, which are calculated by Eq.(2). It can be seen from Fig.5(a) that the bed temperature has significant effects on SO2emissions under both air and oxy-fuel combustion. The SO2emissions are similar when the temperature varies from 860 to 900 ℃. The SO2emission in oxy-fuel combustion is high at 840 and 920 ℃. Fig.5(b) shows that the desulfurization efficiency increases with the increase in the temperature from 880 to 900 ℃ and then decreases under both air and oxy-fuel combustion. The desulfurization efficiency in air is higher than that in oxy-fuel combustion at 840 and 920 ℃, but a little lower within 870 to 920 ℃. According to the thermodynamic equilibrium curve of CaCO3calcination[9], for oxy-fuel combustion, the CO2concentration can be enriched up to a value as high as 90%. Therefore, the limestone can be surrounded by high CO2concentrations ranging from 40% to 90%. Under such high CO2concentrations, the sorbent can behave in two ways depending on the temperature. At 840 ℃, direct sulphation may be dominant and indirect sulphation may be dominant at temperatures higher than 840 ℃. The sulphation conversions achieved the under indirect sulphation are normally higher than those achieved under the direct sulphation optimum temperature for sulphur[19]. At 840 ℃, direct sulphation is dominant for oxy-fuel combustion, and indirect sulphation for air combustion. Therefore, the desulfurization efficiency for air combustion is higher than that for the oxy-fuel combustion. The reaction is gradually transformed into indirect sulphation as the temperature increases; as a consequence, the maximum desulfurization efficiency can be reached at about 890 ℃. The desulfurization efficiency under the oxy-fuel combustion at this temperature is higher than that under air combustion. The possible reason is that, for air combustion, the long-term heating at high temperatures causes the sintering of the calcined CaO.

    (a)

    (b)

    At 920 ℃, the desulfurization efficiency under the oxy-fuel combustion is lower than that under air combustion, and it may be caused by the intensive sintering of calcined CaO[20-21]. Above all, it is clear that temperature is one of the most important parameters that affect the SO2removal process under both air combustion and oxy-fuel combustion.The maximum desulfurization efficiency is shifted to a higher temperature from air combustion to oxy-fuel combustion.

    2.2.2 The effect of Ca/S ratio

    The calcium to sulfur ratio is an important parameter in the limestone desulfurization system of a fluidized bed because it has a significant impact on boiler safety and economy. As given in Fig.6, the SO2removal under the same calcium to sulfur ratio is different under air and oxy-fuel combustion, and the difference is most significant when the calcium to sulfur ratio is 1.5. The SO2emission under oxy-fuel is significantly lower than that under the air combustion atmosphere. As shown in Fig.7, the SO2removal efficiency is 51.5% and 77.2%, respectively when the Ca/S ratio is 1.5 under the air and oxy-fuel combustion at 900 ℃.When the calcium to sulfur ratios are 2.5 and 3.5, the removal efficiency are closer under both conditions. This agrees with previous findings[4,8]. According to Fig.8, with the increase in the Ca/S ratio, the utilization of calcium has a downward trend. When the Ca/S ratio is 2.5, limestone utilization is the maximum under the oxy-fuel combustion atmosphere. The low calcium to sulfur ratio is preferable under the air combustion atmosphere, while the Ca/S ratio of 2.5 is appropriate for JCA at 900 ℃ under an oxy-fuel combustion atmosphere.

    Fig.6 The effect of Ca/S ratio on SO2 emission at the bed temperature of 900 ℃ under air and oxy-fuel combustion atmosphere

    Fig.7 The effect of Ca/S ratio on SO2 removal efficiency at the bed temperature of 900 ℃ under air and oxy-fuel combustion atmosphere

    Fig.8 The effect of Ca/S ratio on limestone utilization at the bed temperature of 900 ℃ under air and oxy-fuel atmosphere

    3 Conclusion

    For JCA, when the oxygen concentration is between 21% and 40%, increasing the oxygen concentration can significantly increase SO2emission. When the oxygen concentration is increased to 50%, SO2has a downward trend. Under the air combustion, SO2emission is slightly higher than that in oxy-fuel combustion (Here, 21%O2/79%CO2), and far lower than these under higher O2concentrationsin oxy-fuel combustion. A bed temperature (860 to 920 ℃) has no significant effect on the emission of SO2. When the Ca/S ratio is 2.5, the effect of bed temperature on SO2removal is the same as that under the air and oxy-fuel combustion atmosphere, but at 840 ℃, the removal efficiency under oxy-fuel combustion is much lower than that under air combustion. Under the air combustion atmosphere, with the increase in the Ca/S ratio (1.5 to 3.5), the utilization ratio of limestone decreases.When the Ca/S ratio is 2.5, the limestone utilization ratio is quite high at the bed temperature of 900 ℃ under the oxy-fuel combustion.

    [1]Kuivalainen R, Pikkarainen T, Leino T, et al. Development of CFB technology to provide flexible air/oxy operation for a power plant with CCS[C]//The34thInternationalTechnicalConferenceonCoalUtilization&FuelSystems. Clearwater, FL, USA, 2009.

    [2]Nsakala N, Liljedahl G N, Turek D G, et al. Oxygen-fired circulating fluidized bed boilers for greenhouse gas emissions control and other applications [C]//TheSecondAnnualNationalConferenceonCarbonSequestration. Alexandria, VA, USA, 2004.

    [3]Jia L, Tan Y, Anthony E J, et al. Emissions of SO2and NOxduring oxy-fuel CFB combustion tests in a mini-circulating fluidized bed combustion reactor [J].Energy&Fuels, 2009, 24(2): 910-915.

    [4]Jia L, Tan Y, Wang C, et al. Experimental study of oxy-fuel combustion and sulfur capture in a mini-CFBC [J].Energy&Fuels, 2007, 21(6): 3160-3164.

    [5]Duan L, Zhao C, Zhou W, et al. O2/CO2coal combustion characteristics in a 50 kWth circulating fluidized bed [J].InternationalJournalofGreenhouseGasControl, 2011, 5(4): 770-776.

    [6]Tan Y, Croiset E, Douglas M A, et al. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas [J].Fuel, 2006, 85(4): 507-512.

    [7]Wang L. Experimental and modeling study of SO2behavior during oxy combustion in fluidized beds [D]. Salt Lake City, USA: Department of Chemical Engineering of the University of Utah, 2012.

    [8]Duan L, Zhou W, Li H, et al. Sulfur fate during bituminous coal combustion in an oxy-fired circulating fluidized bed combustor [J].KoreanJournalofChemicalEngineering, 2011, 28(9): 1952-1955.

    [9]Zheng L, Furimsky E. Assessment of coal combustion in O2+CO2by equilibrium calculations [J].FuelProcessingTechnology, 2003, 81(1): 23-34.

    [10]Mao Y, Fang M, Luo Z, et al. Calcination and desulfurization of limestone under O2/CO2atmosphere [J].JournalofFuelChemistryandTechnology, 2004, 32(3):323-328.

    [11]Liu H, Katagiri S, Kaneko U, et al. Sulfation behavior of limestone under high CO2concentration in O2/CO2coal combustion [J].Fuel, 2000, 79(8):945-953.

    [12]Dong X, Wang H, Liu H, et al. Study on SO2emission under various atmospheres during coal combustion [J].JournalofEnvironmentalSciences, 2003, 23(3):322-326.

    [13]Du Y, Wang J, Wang X, et al. Analysis of pollutant discharge of coal combustion in oxygen-enriched atmosphere [J].CoalConversion, 2011, 34(3):75-78.

    [14]Liu H, Qiu J, Xu Z, et al. Release of NO and SO2in high-concentration CO2atmosphere during coal combustion [J].JournalofEngineeringThermophysics, 2008, 29(2): 354-356.

    [15]Fleig D, Normann F, Andersson K, et al. The fate of sulphur during oxy-fuel combustion of lignite [J].EnergyProcedia, 2009, 1(1): 383-390.

    [16]Ahn J, Okerlund R, Fry A, et al. Sulfur trioxide formation during oxy-coal combustion[J].InternationalJournalofGreenhouseGasControl, 2011, 5(S1): 127-135.

    [17]Anthony E J, Granatstein D L. Sulfation phenomena in fluidized bed combustion systems [J].ProgressinEnergyandCombustionScience, 2001, 27(2): 215-236.

    [18]Miura K, Mae K, Shimada M, et al. Analysis of formation rates of sulfur-containing gases during the pyrolysis of various coals [J].Energy&Fuels, 2001, 15(3): 629-636.

    [19]de Diego L F, Rufas A, García-Labiano F, et al. Optimum temperature for sulphur retention in fluidized beds working under oxy-fuel combustion conditions [J].Fuel, 2013, 114:106-113.

    [20]Chen C, Zhao C, Liang C, et al. Calcination and sintering characteristics of limestone under O2/CO2combustion atmosphere [J].FuelProcessingTechnology, 2007, 88(2):171-178.

    [21]Borgwardt R. Calcium oxide sintering in atmospheres containing water and carbon dioxide [J].Industrial&EngineeringChemistryResearch, 1989, 28(4): 493-500.

    流化床空氣和富氧燃燒氣氛下SO2的釋放和脫除特性比較研究

    鄭志敏 王 輝 楊 利 魏 星 郭永軍 郭 帥 吳少華

    (哈爾濱工業(yè)大學(xué)能源科學(xué)與工程學(xué)院,哈爾濱150001)

    在一個小型流化床試驗臺上比較了晉城無煙煤在空氣和富氧燃燒下SO2的釋放和脫除特性,考察了燃燒氣氛、氧濃度、床溫和石灰石的添加等因素的影響.研究結(jié)果表明:在30% O2的富氧燃燒條件下SO2的釋放量明顯高于其在空氣燃燒條件下的釋放量;隨著富氧燃燒氣氛中O2濃度的增加(從21%增至40%),SO2的釋放量顯著增加,當(dāng)氧濃度達(dá)到50%時,SO2的釋放量有下降的趨勢.床溫860~920 ℃對SO2的釋放沒有明顯的影響,但對其脫除有顯著的影響.在空氣和30% O2富氧氣氛下,SO2的最佳脫硫溫度均為880~900 ℃.

    富氧燃燒;流化床;SO2釋放;石灰石脫硫

    TK224.1

    Foundation items:The National Natural Science Foundation for Young Scholars of China (No.51106038), the National Key Technology R&D Program of China during the 12th Five-Year Plan Period (No.2012BAA02B01-04).

    :Zheng Zhimin, Wang Hui, Yang Li, et al. Comparative study on SO2release and removal under air and oxy-fuel combustion in a fluidized bed combustor[J].Journal of Southeast University (English Edition),2015,31(2):232-237.

    10.3969/j.issn.1003-7985.2015.02.013

    10.3969/j.issn.1003-7985.2015.02.013

    Received 2015-01-10.

    Biographies:Zheng Zhimin(1983—), male, graduate; Wang Hui(corresponding author), male, associate professor, wanghui_hb@hit.edu.cn.

    猜你喜歡
    富氧石灰石流化床
    昆鋼120t轉(zhuǎn)爐石灰石造渣留渣操作工藝生產(chǎn)實踐
    昆鋼科技(2022年1期)2022-04-19 11:36:14
    萊鋼400m2燒結(jié)機提升石灰石配比實踐
    山東冶金(2019年3期)2019-07-10 00:54:04
    流化床丙烷脫氫反應(yīng)段的模擬及優(yōu)化
    石灰石燒結(jié)法從CFB灰中提取氧化鋁
    關(guān)于循環(huán)流化床鍋爐集控運行研究
    關(guān)于高海拔地區(qū)辦公富氧環(huán)境研究
    單沉浸管流化床內(nèi)離散顆粒數(shù)值模擬
    用富氧燃燒技術(shù)減少水泥生產(chǎn)過程NOx排放的可行性分析
    富氧條件下Co/ZSM-5催化劑對C3H8選擇還原NOx的性能
    小型石灰石礦地下開采采礦方法的改進(jìn)
    金屬礦山(2013年6期)2013-03-11 16:53:53
    蜜桃久久精品国产亚洲av| 日韩中字成人| 国产亚洲精品av在线| 啦啦啦韩国在线观看视频| 国产精品麻豆人妻色哟哟久久 | 尤物成人国产欧美一区二区三区| 国产伦在线观看视频一区| 欧美三级亚洲精品| 亚洲精品乱久久久久久| 性色avwww在线观看| 特大巨黑吊av在线直播| 十八禁网站网址无遮挡 | 欧美日韩亚洲高清精品| 亚洲,欧美,日韩| 22中文网久久字幕| 夫妻午夜视频| 欧美成人a在线观看| 麻豆av噜噜一区二区三区| 亚洲av在线观看美女高潮| 精品少妇黑人巨大在线播放| 久久国产乱子免费精品| 青春草亚洲视频在线观看| 水蜜桃什么品种好| 少妇的逼水好多| 国产免费一级a男人的天堂| 国产成人91sexporn| 女人十人毛片免费观看3o分钟| 国产精品国产三级国产专区5o| 波多野结衣巨乳人妻| 精品不卡国产一区二区三区| 亚洲av.av天堂| 69av精品久久久久久| 青春草国产在线视频| 成人一区二区视频在线观看| 国产永久视频网站| 日韩av免费高清视频| 18禁裸乳无遮挡免费网站照片| 午夜福利成人在线免费观看| 夫妻性生交免费视频一级片| 我的女老师完整版在线观看| 亚洲va在线va天堂va国产| 国产精品蜜桃在线观看| 国产精品一区二区在线观看99 | 国产美女午夜福利| 亚洲av成人精品一区久久| 你懂的网址亚洲精品在线观看| 日本wwww免费看| 亚洲国产精品成人综合色| 亚洲精品中文字幕在线视频 | 日韩三级伦理在线观看| 性色avwww在线观看| 亚洲av在线观看美女高潮| 亚洲色图av天堂| 日产精品乱码卡一卡2卡三| 成人特级av手机在线观看| 国产精品美女特级片免费视频播放器| 日日摸夜夜添夜夜添av毛片| 精华霜和精华液先用哪个| 一个人免费在线观看电影| 日本黄色片子视频| 亚洲成色77777| 菩萨蛮人人尽说江南好唐韦庄| 国产黄片视频在线免费观看| 久久草成人影院| 亚洲人成网站在线观看播放| 亚洲激情五月婷婷啪啪| 久久久精品欧美日韩精品| 国产成人aa在线观看| 欧美潮喷喷水| 亚洲精品久久久久久婷婷小说| 淫秽高清视频在线观看| 男人爽女人下面视频在线观看| 亚洲人成网站在线播| 成人高潮视频无遮挡免费网站| 黄片无遮挡物在线观看| 在线观看美女被高潮喷水网站| 国产亚洲一区二区精品| 中文资源天堂在线| av免费观看日本| 国产黄色小视频在线观看| 色视频www国产| 日韩在线高清观看一区二区三区| 国产精品无大码| 搡老乐熟女国产| 成人av在线播放网站| 啦啦啦韩国在线观看视频| 国内少妇人妻偷人精品xxx网站| 久久久精品94久久精品| 男人狂女人下面高潮的视频| 成人一区二区视频在线观看| 亚洲精品亚洲一区二区| 中国国产av一级| 99热这里只有是精品在线观看| 中文资源天堂在线| 日韩不卡一区二区三区视频在线| 一区二区三区乱码不卡18| 国产日韩欧美在线精品| 中文字幕av成人在线电影| 色哟哟·www| 成人性生交大片免费视频hd| 中文字幕av在线有码专区| 亚洲精品自拍成人| 99九九线精品视频在线观看视频| 麻豆乱淫一区二区| 亚洲,欧美,日韩| 欧美日韩精品成人综合77777| 欧美激情在线99| 人妻制服诱惑在线中文字幕| 免费看不卡的av| 特级一级黄色大片| av在线亚洲专区| 国产黄色小视频在线观看| 日韩伦理黄色片| 亚洲av.av天堂| 草草在线视频免费看| 在线免费观看的www视频| av在线播放精品| 最后的刺客免费高清国语| 如何舔出高潮| 成人综合一区亚洲| 亚洲精品一区蜜桃| 成年女人在线观看亚洲视频 | 97精品久久久久久久久久精品| 国产亚洲精品久久久com| 69av精品久久久久久| 午夜福利在线观看吧| 国内精品宾馆在线| 好男人在线观看高清免费视频| 亚洲精品国产av成人精品| 成人性生交大片免费视频hd| 欧美日韩亚洲高清精品| 国产免费又黄又爽又色| 大又大粗又爽又黄少妇毛片口| 亚洲性久久影院| 在线天堂最新版资源| 日韩一本色道免费dvd| 男女边摸边吃奶| 日韩中字成人| 日韩制服骚丝袜av| 国产 亚洲一区二区三区 | 亚洲自偷自拍三级| 国产成人a∨麻豆精品| 亚洲国产精品成人久久小说| 又黄又爽又刺激的免费视频.| 亚洲欧美日韩东京热| 欧美xxⅹ黑人| 欧美精品国产亚洲| 一级黄片播放器| 国产日韩欧美在线精品| 日韩人妻高清精品专区| 国产成人精品婷婷| 在线免费观看不下载黄p国产| 亚洲最大成人中文| av免费在线看不卡| 成人av在线播放网站| 国产精品99久久久久久久久| 黄片无遮挡物在线观看| 在线观看免费高清a一片| 色尼玛亚洲综合影院| 精品国产露脸久久av麻豆 | 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 欧美精品国产亚洲| 国产老妇伦熟女老妇高清| 午夜免费男女啪啪视频观看| av国产免费在线观看| 一区二区三区乱码不卡18| 秋霞伦理黄片| 亚洲精品亚洲一区二区| 91在线精品国自产拍蜜月| 成年av动漫网址| 全区人妻精品视频| 综合色av麻豆| 中文字幕亚洲精品专区| 欧美最新免费一区二区三区| 亚洲av成人av| 久久精品久久久久久久性| 国产精品一区二区三区四区免费观看| 日韩大片免费观看网站| 午夜爱爱视频在线播放| 亚洲最大成人中文| 国产 亚洲一区二区三区 | 大香蕉97超碰在线| 成年女人在线观看亚洲视频 | 日日干狠狠操夜夜爽| 尤物成人国产欧美一区二区三区| 边亲边吃奶的免费视频| 成人漫画全彩无遮挡| 亚洲av电影不卡..在线观看| 一级毛片黄色毛片免费观看视频| 噜噜噜噜噜久久久久久91| 18禁动态无遮挡网站| 国产有黄有色有爽视频| 噜噜噜噜噜久久久久久91| 亚洲av电影不卡..在线观看| 国产午夜福利久久久久久| 男女国产视频网站| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 成人特级av手机在线观看| 亚洲av电影不卡..在线观看| 午夜福利在线观看免费完整高清在| 中国国产av一级| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 国产精品三级大全| 久久久久性生活片| 成人亚洲精品一区在线观看 | 亚洲精品乱码久久久久久按摩| 天美传媒精品一区二区| av在线老鸭窝| 亚洲精品视频女| 欧美zozozo另类| 老女人水多毛片| 神马国产精品三级电影在线观看| 国产免费视频播放在线视频 | 国产黄色小视频在线观看| 在线观看人妻少妇| 国内精品美女久久久久久| 亚洲av一区综合| 成年av动漫网址| 久久精品人妻少妇| 美女xxoo啪啪120秒动态图| 日日啪夜夜爽| 国产黄片美女视频| 久久久亚洲精品成人影院| 日韩欧美三级三区| 狂野欧美激情性xxxx在线观看| 亚洲成人精品中文字幕电影| 在线观看一区二区三区| 色综合站精品国产| 午夜激情福利司机影院| 免费av观看视频| 亚洲av日韩在线播放| 欧美另类一区| 久99久视频精品免费| 人人妻人人看人人澡| 国产免费福利视频在线观看| 久久国产乱子免费精品| 我要看日韩黄色一级片| 免费观看的影片在线观看| 91精品国产九色| 日韩欧美一区视频在线观看 | 两个人的视频大全免费| 汤姆久久久久久久影院中文字幕 | 18禁裸乳无遮挡免费网站照片| 久久精品国产鲁丝片午夜精品| 少妇熟女aⅴ在线视频| 国产乱人视频| 国产精品三级大全| 男人和女人高潮做爰伦理| av在线老鸭窝| 欧美区成人在线视频| 国产 一区精品| 国产综合精华液| 欧美高清性xxxxhd video| 十八禁网站网址无遮挡 | 观看免费一级毛片| 大陆偷拍与自拍| 男女边摸边吃奶| 偷拍熟女少妇极品色| 三级国产精品片| 亚洲在久久综合| 久久久久久久久大av| 18禁裸乳无遮挡免费网站照片| 成人美女网站在线观看视频| 亚洲av国产av综合av卡| 日本免费a在线| 99热这里只有是精品在线观看| 久久鲁丝午夜福利片| 久久99热这里只有精品18| videossex国产| 国产色婷婷99| 国产永久视频网站| 久久精品久久精品一区二区三区| 久久久久性生活片| 99久久九九国产精品国产免费| 色综合亚洲欧美另类图片| 午夜免费激情av| 老师上课跳d突然被开到最大视频| 国产成人精品久久久久久| 午夜激情久久久久久久| 人妻系列 视频| 在线播放无遮挡| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美清纯卡通| 中文字幕人妻熟人妻熟丝袜美| 老司机影院毛片| 国产亚洲91精品色在线| 久久精品久久久久久久性| 欧美最新免费一区二区三区| 国产一区亚洲一区在线观看| 亚洲精品第二区| 99re6热这里在线精品视频| 91av网一区二区| 大片免费播放器 马上看| 丝袜喷水一区| 麻豆久久精品国产亚洲av| 视频中文字幕在线观看| 国产v大片淫在线免费观看| 成人亚洲欧美一区二区av| 亚洲欧洲日产国产| 久热久热在线精品观看| 亚洲国产高清在线一区二区三| or卡值多少钱| 尤物成人国产欧美一区二区三区| 亚洲精品久久久久久婷婷小说| 亚洲高清免费不卡视频| 欧美一级a爱片免费观看看| 国产黄频视频在线观看| 能在线免费看毛片的网站| 97超碰精品成人国产| 日韩欧美精品v在线| 精品久久久久久久末码| 欧美一级a爱片免费观看看| 免费观看a级毛片全部| 91精品伊人久久大香线蕉| 亚洲精品一区蜜桃| 男的添女的下面高潮视频| 一夜夜www| 亚洲丝袜综合中文字幕| 国产不卡一卡二| 最后的刺客免费高清国语| 国产精品不卡视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看成人毛片| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 久久精品国产自在天天线| 美女cb高潮喷水在线观看| 国产色婷婷99| 婷婷色麻豆天堂久久| 卡戴珊不雅视频在线播放| 日本一本二区三区精品| 2022亚洲国产成人精品| 一二三四中文在线观看免费高清| 日韩视频在线欧美| 久久99精品国语久久久| 日韩av在线大香蕉| 一级爰片在线观看| 国产精品国产三级专区第一集| av卡一久久| 精品一区二区三卡| 人人妻人人澡欧美一区二区| 国产免费视频播放在线视频 | 高清日韩中文字幕在线| 最近2019中文字幕mv第一页| 不卡视频在线观看欧美| 国产成人91sexporn| 欧美xxxx性猛交bbbb| 黄色配什么色好看| 亚洲国产av新网站| 国产精品一区www在线观看| 免费看光身美女| 亚洲av福利一区| 久99久视频精品免费| 网址你懂的国产日韩在线| 精品久久久久久久久av| 99久国产av精品| 国产老妇女一区| 成人综合一区亚洲| 国内精品一区二区在线观看| 在线免费观看的www视频| 三级国产精品片| 人体艺术视频欧美日本| 久久久精品94久久精品| 久久久久久久国产电影| 国内精品美女久久久久久| 午夜亚洲福利在线播放| 国产综合懂色| 亚洲精品自拍成人| 啦啦啦中文免费视频观看日本| 国产成人a区在线观看| 美女大奶头视频| 人妻少妇偷人精品九色| 在线播放无遮挡| 美女黄网站色视频| 免费看日本二区| 欧美三级亚洲精品| 亚洲精品久久午夜乱码| 精品一区二区三卡| av免费观看日本| 精品欧美国产一区二区三| 伊人久久精品亚洲午夜| 日韩av免费高清视频| 中文字幕亚洲精品专区| 纵有疾风起免费观看全集完整版 | 婷婷色av中文字幕| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 国产亚洲av片在线观看秒播厂 | 亚洲乱码一区二区免费版| 久久6这里有精品| 午夜精品一区二区三区免费看| 日日啪夜夜撸| 国产亚洲午夜精品一区二区久久 | 99热6这里只有精品| 麻豆成人av视频| 亚洲欧洲国产日韩| 99久国产av精品国产电影| 成人亚洲精品av一区二区| 高清午夜精品一区二区三区| 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 精品久久久久久久久亚洲| 精品一区二区三区视频在线| 高清视频免费观看一区二区 | 午夜精品一区二区三区免费看| 日本与韩国留学比较| 18禁裸乳无遮挡免费网站照片| 亚洲精华国产精华液的使用体验| 精品久久久久久电影网| 成人性生交大片免费视频hd| 黄色配什么色好看| 国产亚洲午夜精品一区二区久久 | 成人综合一区亚洲| 欧美日韩精品成人综合77777| 午夜爱爱视频在线播放| 在线a可以看的网站| 亚洲av电影在线观看一区二区三区 | 久久久久久久久久人人人人人人| 日本猛色少妇xxxxx猛交久久| 97精品久久久久久久久久精品| 99视频精品全部免费 在线| 免费观看性生交大片5| 亚洲在线自拍视频| 国产真实伦视频高清在线观看| 在线免费十八禁| 国产精品.久久久| 中国国产av一级| 久久久精品免费免费高清| 亚洲国产精品专区欧美| 天堂俺去俺来也www色官网 | 一级a做视频免费观看| 久久精品国产亚洲网站| 在线a可以看的网站| 日本爱情动作片www.在线观看| 欧美潮喷喷水| 草草在线视频免费看| 国产精品美女特级片免费视频播放器| 一个人看的www免费观看视频| 精品久久国产蜜桃| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| av国产久精品久网站免费入址| 国产成人一区二区在线| 精品午夜福利在线看| 亚洲精品国产av蜜桃| 2022亚洲国产成人精品| 久久久色成人| 亚洲经典国产精华液单| 久久久久久国产a免费观看| 视频中文字幕在线观看| 国产高清三级在线| eeuss影院久久| 能在线免费观看的黄片| 成人亚洲欧美一区二区av| 夫妻午夜视频| 天堂影院成人在线观看| 亚洲精品成人久久久久久| 狂野欧美白嫩少妇大欣赏| 免费观看av网站的网址| 亚洲婷婷狠狠爱综合网| 色5月婷婷丁香| 午夜激情久久久久久久| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 最后的刺客免费高清国语| 伊人久久精品亚洲午夜| 国产亚洲最大av| 国产综合懂色| 国产午夜精品久久久久久一区二区三区| 精品一区二区三区视频在线| .国产精品久久| 嫩草影院新地址| 赤兔流量卡办理| 777米奇影视久久| 直男gayav资源| 久久国产乱子免费精品| 精品一区二区三区视频在线| 国产精品一区二区在线观看99 | 亚洲成人久久爱视频| 永久免费av网站大全| 欧美日韩国产mv在线观看视频 | 午夜免费激情av| 亚洲熟女精品中文字幕| 一二三四中文在线观看免费高清| 国产成人午夜福利电影在线观看| 免费电影在线观看免费观看| 国产人妻一区二区三区在| 大香蕉久久网| 亚洲最大成人av| 99久久精品一区二区三区| 七月丁香在线播放| 精品久久久久久成人av| 黄片无遮挡物在线观看| 少妇人妻精品综合一区二区| 三级国产精品欧美在线观看| av卡一久久| 伊人久久精品亚洲午夜| 日韩强制内射视频| 国产高清三级在线| 国产精品久久久久久精品电影| 中文字幕亚洲精品专区| 日韩精品有码人妻一区| 日本黄色片子视频| 日韩精品青青久久久久久| 亚洲国产色片| av.在线天堂| 国产亚洲av嫩草精品影院| 插逼视频在线观看| 69av精品久久久久久| 看免费成人av毛片| 国产精品女同一区二区软件| 国产淫语在线视频| 亚洲18禁久久av| 高清在线视频一区二区三区| 亚洲精品视频女| 国产在视频线精品| 伦精品一区二区三区| 国产成人精品婷婷| 亚洲av成人精品一区久久| 中文精品一卡2卡3卡4更新| 亚洲在线观看片| 久久久久久久久久黄片| 在线观看人妻少妇| 久久久久久伊人网av| 尤物成人国产欧美一区二区三区| av免费在线看不卡| 成人美女网站在线观看视频| 九色成人免费人妻av| 久久久欧美国产精品| 免费大片18禁| 国产精品一区二区三区四区免费观看| 男女国产视频网站| 国产欧美日韩精品一区二区| 亚洲熟妇中文字幕五十中出| 成人欧美大片| 久久久久久国产a免费观看| 少妇的逼水好多| 偷拍熟女少妇极品色| 国产伦一二天堂av在线观看| 在线观看美女被高潮喷水网站| 特级一级黄色大片| 国产高清有码在线观看视频| 网址你懂的国产日韩在线| 一区二区三区免费毛片| 人体艺术视频欧美日本| 一本一本综合久久| 久久精品人妻少妇| 免费看av在线观看网站| 亚洲精品日韩av片在线观看| 久久久久久久国产电影| 亚洲av男天堂| 精品亚洲乱码少妇综合久久| 精品国产三级普通话版| av线在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 国产色婷婷99| 激情五月婷婷亚洲| 亚洲性久久影院| 91久久精品国产一区二区成人| 老司机影院毛片| 亚洲最大成人手机在线| av网站免费在线观看视频 | 中文字幕av在线有码专区| 国产亚洲最大av| 伦精品一区二区三区| 一二三四中文在线观看免费高清| 成人亚洲欧美一区二区av| 大香蕉97超碰在线| 你懂的网址亚洲精品在线观看| 精品一区二区三区视频在线| 亚洲精品视频女| 亚洲精品中文字幕在线视频 | 日本色播在线视频| 亚洲av电影不卡..在线观看| 免费电影在线观看免费观看| 久久这里有精品视频免费| 国产精品精品国产色婷婷| 看免费成人av毛片| 久久久久九九精品影院| 久久热精品热| 成人二区视频| 亚洲av.av天堂| 99久久精品一区二区三区| 欧美日韩视频高清一区二区三区二| 三级经典国产精品| 久久久色成人| 亚洲精品,欧美精品| 日本三级黄在线观看| 亚洲av福利一区| 日韩成人伦理影院| 国产高清有码在线观看视频| 熟女电影av网| 亚洲人与动物交配视频| av国产免费在线观看| 久久久a久久爽久久v久久| or卡值多少钱| 国内精品一区二区在线观看| 2021少妇久久久久久久久久久| 蜜臀久久99精品久久宅男| 亚洲av在线观看美女高潮| 精品午夜福利在线看| 91精品一卡2卡3卡4卡| 亚洲欧美日韩卡通动漫| 亚洲国产高清在线一区二区三| 国产麻豆成人av免费视频| 看非洲黑人一级黄片| 国产精品麻豆人妻色哟哟久久 | 18+在线观看网站| 欧美一区二区亚洲| 亚洲在久久综合|