• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CO2 capture by carbonated carbide slag seriflux after drying in calcium looping cycles

    2015-05-08 03:34:42HeZiruiLiYingjieLiuChangtian
    關(guān)鍵詞:石渣固定床碳酸

    He Zirui Li Yingjie Liu Changtian

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

    ?

    CO2capture by carbonated carbide slag seriflux after drying in calcium looping cycles

    He Zirui Li Yingjie Liu Changtian

    (School of Energy and Power Engineering, Shandong University, Jinan 250061, China)

    A new carbide slag (CS) seriflux utilization was proposed. The flue gas from a coal-fired plant was first bubbled into CS seriflux for CO2capture. The obtained carbonated carbide slag seriflux (CCSS) was dried and utilized as a CO2sorbent in the calcium looping cycles. The CO2capture behavior of the dried CCSS and the raw CS was investigated in a dual fixed-bed reactor and a thermo-gravimetric analyzer. The effects of carbonation time, calcination temperature and carbonation temperature on CO2capture performance of CCSS in the multiple carbonation/calcination cycles were studied. The results show that the CO2capture capacity of CCSS was higher than that of CS. Calcined at 950 ℃, CCSS shows better carbonation reactivity than CS, which benefits CO2capture under severe calcination conditions. In the range of 700 to 725 ℃ for the carbonation, CCSS shows the optimal CO2capture performance. The calcined CCSS shows better porous microstructure than the calcined CS. The calcined CCSS exhibits a larger surface area and pore volume in the cycles, which favors a higher CO2capture capacity in the multiple cycles.

    calcium looping; carbide slag; CO2capture

    It is widely accepted that the increasing CO2concentration in the atmosphere is a significant cause of climate change. In order to mitigate the risk of global warming, a number of technologies have been studied such as solvent scrubbing, oxy-fuel combustion, chemical looping and calcium looping[1-3]. Calcium looping is based on the reversible reaction between CaO and CO2to remove CO2from the flue gas of power plants. Ca-based sorbent reacts with CO2in a circulating fluidized bed carbonator operated at 600 to 700 ℃. The reacted sorbent is then regenerated in another fluidized bed (named calciner), operated at a temperature above 900 ℃[4]. The heat for the regeneration is supplied by oxy-fuel combustion in order to avoid the dilution of the CO2stream when fuel is burned under air atmosphere[5]. Calcium looping is regarded as a promising technology for CO2capture owing to its numerous advantages: the use of cheap and non-toxic sorbents; the relatively small energy penalty imposed on power plants; promising deployment in conjunction with other technologies such as large-scale circulating fluidized beds and cement manufacture[6-7]. Hence, the calcium looping technology has attracted a great deal of attention[8-11].

    Carbide slag (CS) is a calcium-rich industrial waste, which is the by-product of the hydrolysis reaction of calcium carbide for acetylene gas production. In acetylene gas factories, CS is discharged as seriflux which contains about 92% water. Generally, CS seriflux undergoes a solid-liquid separation process. Then the sediment, which is mostly calcium hydroxide, is utilized in construction and chemical production or buried[12]. The previous works of our group have proved that the CS can be utilized as a CO2sorbent in the calcium looping cycles and achieve a higher CO2capture capacity than the limestone[13]. However, the CO2capture capacity of the CS decreases with the number of calcination/carbonation cycles like the natural limestone. Many methods have been proposed to enhance the cyclic CO2capture capacity of the calcium-based sorbents. Kierzkowska et al.[14]synthesized a calcium-based sorbent using Na2CO3, (NH4)2CO3and aqueous solution of NH3as a precipitation agent added into the Ca(NO3)2(or Ca(CH3COO)2) and Al(NO3)3solution. They found that the CO2capture capacity of the synthetic sorbent was 1.8 times as high as that of the limestone after 30 cycles. Florin et al.[15]prepared a synthetic Ca-based sorbent by bubbling CO2through an aqueous solution containing Ca(OH)2and Al(NO3)3, and its CO2capture capacity achieved 2.5 times as high as that of limestone. Gupta et al.[16]found that a precipitated carbonate calcium prepared by bubbling CO2through a slurry of Ca(OH)2exhibited a relatively high CO2capture capacity in the calcium looping cycles.

    In this paper, we propose a precipitation method on the carbide slag seriflux by directly bubbling CO2into the seriflux. Then the CCSS was obtained. The CO2capture performance of CCSS in the calcination/carbonation cycles was investigated in a thermo-gravimetric analyzer (TGA) and a dual fixed-bed reactor (DFR).

    1 Experimental

    1.1 Sample preparation

    The CS was sampled from a chlor-alkali plant in Shandong Province, China. The chemical components of the CS were analyzed by X-ray fluorescence (XRF) as shown in Tab.1.A schematic diagram for the precipitation experiment of the CS seriflux is shown in Fig.1(a). The wet carbonator contains a porous frit at the bottom providing a good distribution of gas mixture through the seriflux. A

    pH probe was used to monitor the variation of pH of the CS seriflux during the carbonation process. In order to model the real CS seriflux, 10 g CS was mixed with 90 g distilled water in a precipitation reactor, and the particles of the CS with the size below 125 μm were chosen. Then, a gas mixture containing 15% CO2and 85% N2was bubbled into the reactor for the wet CO2capture at room temperature until the pH value decreased from 12.6 to 6, which indicated that all the Ca(OH)2was converted into CaCO3. The precipitated product was filtrated and dried in a drying oven at 105 ℃, and named CCSS.

    Tab.1 Chemical components of CS %

    (a)

    (b)

    1.2 CO2capture in calcination/carbonation cycles

    The cyclic calcination/carbonation experiment of the sample for CO2capture was performed in a dual fixed-bed reactor (DFR) and a thermo-gravimetric analyzer (TGA) and operated under atmospheric pressure. The DFR contains a carbonator and a calciner as shown in Fig.1(b). The sample boat loading the sorbent (about 500 mg) can be shifted between two reactors. The calciner was operated at 850 to 950 ℃ in pure N2, and the carbonator was operated at 650 to 750 ℃ in a 15%CO2/85%N2gas mixture. Based on the preliminary experiments, the carbonation time was specified to be 20 min, and the calcination time was 10 min. The calcined sample and its re-carbonated counterpart after each cycle were picked out, stored and cooled for 2 min in a dry container under N2. Then the sample was weighted by an electronic balance with a resolution of 0.1 mg. The cyclic carbonation conversion of the sorbent is calculated as

    (1)

    wheretis the carbonation time, s;XNstands for the carbonation conversion of sorbent attduring theN-th cycle;bis the content of CaO in the initial sorbent, %;mcarb,N(t) represents the mass of carbonated sorbent attduring theN-th cycle, mg;mcal,Nis the mass of sorbent after complete calcination during theN-th cycle, mg;WCaOandWCO2are the molar mass of CaO and CO2, respectively, g/mol.

    The carbonation kinetics of the CCSS and CS were investigated in a thermo-gravimetric analyzer (TGA). In order to study the cyclic carbonation behavior of the CCSS and CS, the original sorbents and carbonated sorbents (5±0.1) mg after 9 calcination/carbonation cycles in the DFR were chosen as the samples in the TGA. Therefore, the carbonation behaviors of sorbents were obtained as a function of reaction time during the 1st and the 10th cycles. The furnace temperature of the TGA was increased to a calcination temperature of 850 ℃ at a heating rate of 30 ℃/min, and the sample was held for 15 min under pure N2. Then, the temperature was dropped to 700 ℃ for carbonation under pure N2. At the same time, the reaction atmosphere was switched to 15% CO2/85% N2gas mixture, and the calcined sample was carbonated for 30 min. The carbonation conversions of the sample after theN-th cycle in TGA were calculated by Eq.(1).

    1.3 Analysis

    The crystalline structure of the sorbents was characterized by a X-ray diffraction (XRD). The calcined CCSS and the CS in the 1st cycle and the 10th cycle were analyzed by the nitrogen adsorption analyzer. The surface area was calculated by the BET method. The pore volume and pore area were computed by the BJH model.

    2 Results and Discussion

    2.1 Wet carbonation and crystallography of CS and CCSS

    Fig.2(a) shows the XRD spectrum of the CS. It is observed from Fig.2(a) that the main composition of the CS is Ca(OH)2, and a little amount of CaCO3is also detected. The mixture of 10 g CS and 90 g water is a supersaturated solution of Ca(OH)2with the pH value of above 12. When the gas mixture of 15% CO2/85% N2is bubbled into the slurry, CO2dissolves in the water and generates CO32-.Then Ca2+is precipitated according to the following reaction[16]:

    (2)

    (a)

    (b)

    The reaction proceeds until the pH value decreases to 6, which indicates that all Ca(OH)2in the CS has converted into CaCO3. The XRD spectrum of the CCSS is shown in Fig.2(b). The main composition of the CCSS is CaCO3. It should be noted that in this experiment, the precipitated product was not removed in time. As a consequence, CaCO3was aged in the high alkaline condition of the precipitating solution.

    2.2 Effect of reaction time on CO2capture performance of CCSS

    The carbonation conversions of the CCSS and CS with the carbonation time in the 1st and the 10th cycles in the TGA are depicted in Fig.3(a). It is found that the cyclic carbonation conversion of the CCSS is higher than that of the CS. In the 1st cycle, the carbonation conversions of CCSS at 1 and 30 min achieve 1.3 and 1.1 times as high as those of the CS under the same reaction conditions, respectively. In the 10th cycle, the conversions of the CCSS increase to 1.7 times in 1 min and 1.3 times in 30 min as high as those of the CS, respectively. Fig.3(b) presents the carbonation rates of the CCSS and CS in the 1st and the 10th cycles in the TGA. It can be seen that the carbonation rate of the CCSS reaches its peak value at 50 s, while the peak value of the CS appears after 100 s. The CCSS exhibits a higher carbonation rate compared with the CS in the initial 100 s in the 1st and the 10th cycles. Although the carbonation conversions and rates of the CCSS and CS decrease with the cycle number, the effect of the number of cycles on the CCSS is less than that on the CS.

    (a)

    (b)

    2.3 Effect of calcination temperature on CO2capture performance of CCSS

    Fig.4 shows the effect of calcination temperature on the cyclic carbonation conversions of the CCSS and CS. With the calcination temperature rising, the carbonation conversions of the CCSS and CS decay significantly with the number of cycles. The CCSS achieves a higher carbonation conversion than the CS at the same calcination temperature. In addition, the CCSS shows almost the same cyclic carbonation conversion at a calcination temperature of 950 ℃ with the raw CS calcined at 850 ℃. It indicates that CCSS shows better carbonation performance at a high calcination temperature, which favors CO2capture by the CCSS under the severe calcination conditions.

    Fig.4 Effect of calcination temperature on carbonation conversion of CCSS and CS in DFR (10 min calcination in N2, 20 min carbonation at 700 ℃ in 15% CO2/85% N2)

    2.4 Effect of carbonation temperature on CO2capture performance of CCSS

    Fig.5 illustrates the cyclic carbonation conversions of the CCSS in the carbonation temperature range of 650 to 750 ℃. The carbonation conversion of CCSS increases with the carbonation temperature increasing from 650 to 700 ℃. As the temperature increases from 700 to 725 ℃, the carbonation conversion of CCSS hardly increases. However, the carbonation conversion decreases as the carbonation temperature increases further. Therefore, the CCSS achieves high CO2capture capacity in the carbonation temperature range of 700 to 725 ℃.

    Fig.5 Effect of carbonation temperature on cyclic carbonation conversion of CCSS in DFR (10 min calcination at 850 ℃ in N2, 20 min carbonation in 15% CO2/85% N2)

    2.5 Microstructure analysis

    The surface areas and the pore volumes of the calcined CCSS and the calcined CS in the 1st and the 10th cycles are presented in Tab.2. After the wet carbonation process, the surface area and the pore volume of the calcined CCSS is higher than those of the calcined CS. The surface area and the pore volume of the calcined CCSS after 1 cycle are 9.92 m2/g and 0.045 cm3/g which are 1.3 and 1.2 times greater than those of the calcined CS for the same number of cycles, respectively. A larger surface area and pore volume favor a higher CO2capture capacity of the sorbent. Fig.6 shows the pore volume distributions of the calcined CCSS and CS in the 1st and the 10th cycles. Compared with the calcined CS, the calcined CCSS shows a higher volume and area of pores in the pore size range of 2 to 10 nm and 30 to 100 nm. The pores in the pore size ranges of 2 to 10 nm and 30 to 100 nm are generated during the calcium ion precipitation in the CS seriflux. In addition, the calcined CCSS maintains more pores in 30 to 100 nm after 10 cycles, compared with the calcined CS. The pores in the range of 30 to 100 nm are important for CO2adsorption by the calcium-based sorbent[2]. Thus, the CCSS exhibits a higher CO2capture capacity than the CS.

    Tab.2 BET surface areas and pore volumes of calcined sorbents in the 1st and 10th cycles

    Fig.6 Pore volume distributions of calcined CCSS and CS in the 1st and 10th cycles (10 min calcination at 850 ℃ in N2, 20 min carbonation at 700 ℃ in 15% CO2/85% N2)

    3 Conclusion

    A wet carbonation process was employed on the CS seriflux, an industrial waste which is discharged as slurry and contains 90% water, by bubbling the gas mixture into it. Then it was dried and utilized as a CO2sorbent in the calcium looping. The carbonation behavior of the CCSS in the calcination/carbonation cycles was investigated. Compared with the CS, the CCSS shows a higher carbonation conversion and rate. The favorable carbonation temperature range of the CCSS is 700 to 725 ℃. The CCSS possesses better sintering resistance performance than the CS at the high calcination temperature of 950 ℃. The wet carbonation process contributes to the better pore structure of the CCSS in the pore size range of 2 to 10 nm and 30 to 100 nm. The calcined CCSS maintains more pores in 30 to 100 nm than the calcined CS, which is the reason why CCSS exhibits a better CO2capture reactivity.

    [1]Boot-Handford M E, Abanades J C, Anthony E J, et al. Carbon capture and storage update [J].Energy&EnvironmentalScience, 2014, 7(1): 130-189.

    [2]Li Y J, Sun R Y, Liu C T, et al. CO2capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles [J].InternationalJournalofGreenhouseGasControl, 2012, 9: 117-123.

    [3]Dean C C, Blamey J, Florin N H, et al. The calcium looping cycle for CO2capture from power generation, cement manufacture and hydrogen production [J].ChemicalEngineeringResearchandDesign, 2011, 89(6): 836-855.

    [4]Shimizu T, Hirama T, Hosoda H, et al. A twin fluid-bed reactor for removal of CO2from combustion processes [J].ChemicalEngineeringResearchandDesign, 1999, 77(1): 62-68.

    [5]Donat F, Florin N H, Anthony E J, et al. Influence of high-temperature steam on the reactivity of CaO sorbent for CO2capture [J].EnvironmentalScience&Technology, 2012, 46(2): 1262-1269.

    [6]Charitos A, Hawthorne C, Bidwe A R, et al. Parametric investigation of the calcium looping process for CO2capture in a 10kWth dual fluidized bed [J].InternationalJournalofGreenhouseGasControl, 2010, 4(5): 776-784.

    [7]Manovic V, Anthony E J. Lime-based sorbents for high-temperature CO2capture—a review of sorbent modification methods [J].IntJEnvironResPublicHealth, 2010, 7(8): 3129-3140.

    [8]Abanades J C, Anthony E J, Wang J, et al. Fluidized Bed Combustion Systems Integrating CO2Capture with CaO [J].EnvironmentalScience&Technology, 2005, 39(8): 2861-2866.

    [9]Abanades J C, Grasa G, Alonso M, et al. Cost structure of a postcombustion CO2capture system using CaO [J].EnvironmentalScience&Technology, 2007, 41(15): 5523-5527.

    [10]Alonso M, Rodríguez N, Gonzlez B, et al. Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development [J].InternationalJournalofGreenhouseGasControl, 2010, 4(2): 167-173.

    [11]Romeo L M, Lara Y, Lisbona P, et al. Economical assessment of competitive enhanced limestones for CO2capture cycles in power plants [J].FuelProcessingTechnology, 2009, 90(6): 803-811.

    [12]Liu C T, Li Y J, Sun R Y, et al. Cyclic CO2capture of carbide slag modified by pyroligneous acid in calcium looping cycles [J].Asia-PacificJournalofChemicalEngineering, 2014, 9(5): 678-685.

    [13]Sun R Y, Li Y J, Zhao J L, et al. CO2capture using carbide slag modified by propionic acid in calcium looping process for hydrogen production [J].InternationalJournalofHydrogenEnergy, 2013, 38(31): 13655-13663.

    [14]Kierzkowska A M, Poulikakos L V, Broda M, et al. Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2capture using a co-precipitation technique [J].InternationalJournalofGreenhouseGasControl, 2013, 15: 48-54.

    [15]Florin N H, Blamey J, Fennell P S. Synthetic CaO-based sorbent for CO2capture from large-point sources [J].Energy&Fuels, 2010, 24(8): 4598-4604.

    [16]Gupta H, Fan L. Carbonationcalcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas [J].Industrial&EngineeringChemistryResearch, 2002, 41(16): 4035-4042.

    濕法碳酸化電石渣干燥后在鈣循環(huán)中的CO2捕集

    何梓睿 李英杰 劉長(zhǎng)天

    (山東大學(xué)能源與動(dòng)力工程學(xué)院,濟(jì)南250061)

    提出一種電石渣資源化利用的新方法.首先,將燃煤電站煙氣通入電石渣漿液捕集CO2.碳酸化后的電石渣漿液(CCSS)干燥后在鈣循環(huán)中作為吸收劑捕集CO2.在雙固定床反應(yīng)器和熱重儀上研究了CCSS和電石渣的CO2捕集特性,包括碳酸化時(shí)間、煅燒溫度和碳酸化溫度對(duì)CCSS循環(huán)碳酸化特性的影響.結(jié)果表明CCSS的CO2捕集性能和碳酸化速率均高于電石渣.煅燒溫度為950 ℃ 時(shí),CCSS比電石渣具有更好反應(yīng)活性,這有利于在惡劣煅燒條件下捕集CO2.在700~725 ℃,CCSS表現(xiàn)出了最佳的碳酸化性能.煅燒CCSS比電石渣孔隙結(jié)構(gòu)更好,具有更大比表面積和比孔容,這有利于循環(huán)捕集CO2.

    鈣循環(huán);電石渣;CO2捕集

    TK123

    Foundation item:The National Natural Science Foundation of China (No.51376003).

    :He Zirui, Li Yingjie, Liu Changtian. CO2capture by carbonated carbide slag seriflux after drying in calcium looping cycles[J].Journal of Southeast University (English Edition),2015,31(2):204-208.

    10.3969/j.issn.1003-7985.2015.02.008

    10.3969/j.issn.1003-7985.2015.02.008

    Received 2015-01-02.

    Biographies:He Zirui (1990—), male, graduate; Li Yingjie(corresponding author), male, doctor, associate professor, liyj@sdu.edu.cn.

    猜你喜歡
    石渣固定床碳酸
    什么!碳酸飲料要斷供了?
    電石渣穩(wěn)定土強(qiáng)度特性影響因素分析
    冒泡的可樂(lè)
    電石渣固化軟土的強(qiáng)度特性研究
    煤焦油固定床催化加氫工藝實(shí)驗(yàn)
    山東冶金(2018年6期)2019-01-28 08:14:50
    某碾壓石渣料堤防邊坡抗滑穩(wěn)定數(shù)值模擬研究
    “碳酸鈉與碳酸氫鈉”知識(shí)梳理
    油茶果殼固定床低氧烘焙及產(chǎn)物理化性質(zhì)研究
    固定床反應(yīng)器吊蓋設(shè)計(jì)及相關(guān)計(jì)算
    國(guó)內(nèi)首套固定床甲醇制丙烯裝置中試成功
    杭州化工(2014年1期)2014-08-15 00:42:48
    国产成人av激情在线播放| 中文乱码字字幕精品一区二区三区| 建设人人有责人人尽责人人享有的| 美女中出高潮动态图| 国产高清不卡午夜福利| 日本与韩国留学比较| 一级a做视频免费观看| 婷婷色综合www| 欧美 日韩 精品 国产| a级片在线免费高清观看视频| 亚洲欧美精品自产自拍| 色吧在线观看| 丰满少妇做爰视频| 18禁观看日本| 女性生殖器流出的白浆| 国产麻豆69| 久久99热这里只频精品6学生| 人妻系列 视频| 久热这里只有精品99| 在线看a的网站| 亚洲av成人精品一二三区| 人人妻人人添人人爽欧美一区卜| 99热这里只有是精品在线观看| 男女无遮挡免费网站观看| 全区人妻精品视频| 啦啦啦在线观看免费高清www| 成人无遮挡网站| 自线自在国产av| 捣出白浆h1v1| 亚洲美女黄色视频免费看| 亚洲欧洲精品一区二区精品久久久 | 看免费av毛片| 18禁动态无遮挡网站| 99re6热这里在线精品视频| freevideosex欧美| 在线观看国产h片| 少妇人妻精品综合一区二区| 亚洲性久久影院| 亚洲精品视频女| 国产精品免费大片| 少妇 在线观看| 午夜福利乱码中文字幕| av.在线天堂| 美女国产视频在线观看| 午夜老司机福利剧场| 十八禁高潮呻吟视频| 久久久久久久久久久免费av| 日韩大片免费观看网站| 欧美 亚洲 国产 日韩一| 97在线人人人人妻| 永久网站在线| 国产精品人妻久久久影院| 午夜福利影视在线免费观看| 男人添女人高潮全过程视频| 男女边摸边吃奶| 夫妻午夜视频| 97精品久久久久久久久久精品| 国产av一区二区精品久久| 精品福利永久在线观看| 一级a做视频免费观看| 国产 精品1| 日韩精品免费视频一区二区三区 | 国产成人免费无遮挡视频| 熟妇人妻不卡中文字幕| 成年美女黄网站色视频大全免费| 一边亲一边摸免费视频| 97人妻天天添夜夜摸| 久久精品熟女亚洲av麻豆精品| 国产成人精品无人区| 亚洲综合色网址| 男人爽女人下面视频在线观看| 巨乳人妻的诱惑在线观看| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 久久人人爽人人片av| 国产精品人妻久久久久久| 久久精品国产亚洲av涩爱| 欧美日韩成人在线一区二区| 一二三四中文在线观看免费高清| 丝袜喷水一区| 在线看a的网站| 日韩av免费高清视频| 国产精品一区www在线观看| 日韩一区二区视频免费看| 天天躁夜夜躁狠狠久久av| 日本猛色少妇xxxxx猛交久久| 熟女人妻精品中文字幕| 欧美激情国产日韩精品一区| 欧美bdsm另类| 午夜91福利影院| 精品亚洲成a人片在线观看| 插逼视频在线观看| 国产成人精品婷婷| 在线观看www视频免费| 亚洲,欧美精品.| 香蕉国产在线看| 久久精品久久精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 中国三级夫妇交换| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂| 在线天堂最新版资源| 18禁裸乳无遮挡动漫免费视频| 精品久久久精品久久久| 午夜影院在线不卡| 亚洲一区二区三区欧美精品| 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠躁躁| 你懂的网址亚洲精品在线观看| 午夜激情久久久久久久| 午夜激情av网站| 18+在线观看网站| 国产一区二区三区av在线| 日韩成人av中文字幕在线观看| 晚上一个人看的免费电影| 久久久国产精品麻豆| 国产成人91sexporn| 99久久精品国产国产毛片| 青春草视频在线免费观看| a级毛片在线看网站| 成人漫画全彩无遮挡| 丝袜在线中文字幕| 人人妻人人澡人人爽人人夜夜| 亚洲av.av天堂| 高清欧美精品videossex| 日韩一区二区视频免费看| 国产精品成人在线| 婷婷色综合www| 国产免费又黄又爽又色| 色网站视频免费| 国产极品天堂在线| 91aial.com中文字幕在线观看| 日本av免费视频播放| 一本—道久久a久久精品蜜桃钙片| 美女xxoo啪啪120秒动态图| 久久精品国产综合久久久 | 欧美激情 高清一区二区三区| 亚洲精品美女久久av网站| 婷婷色综合大香蕉| 日日摸夜夜添夜夜爱| 国产片特级美女逼逼视频| 国产乱来视频区| 精品国产一区二区三区四区第35| 久久久久久久久久久免费av| 中文欧美无线码| 国产亚洲欧美精品永久| 少妇猛男粗大的猛烈进出视频| 国内精品宾馆在线| 最近2019中文字幕mv第一页| 国产欧美日韩一区二区三区在线| 久久婷婷青草| 大话2 男鬼变身卡| 极品人妻少妇av视频| 久久午夜综合久久蜜桃| 99久国产av精品国产电影| 99久久人妻综合| 精品人妻熟女毛片av久久网站| 一级,二级,三级黄色视频| av又黄又爽大尺度在线免费看| 黄色怎么调成土黄色| 欧美 日韩 精品 国产| 国产成人一区二区在线| 日韩人妻精品一区2区三区| 日韩三级伦理在线观看| 国产成人av激情在线播放| 婷婷色av中文字幕| 久久婷婷青草| 美女脱内裤让男人舔精品视频| 久久精品国产自在天天线| 在线观看国产h片| 国产 精品1| 国产一区有黄有色的免费视频| 亚洲,欧美,日韩| 国产永久视频网站| 一本—道久久a久久精品蜜桃钙片| 国产成人a∨麻豆精品| 国产一级毛片在线| 18+在线观看网站| 日韩一本色道免费dvd| 亚洲精品色激情综合| 国产成人免费无遮挡视频| 啦啦啦啦在线视频资源| tube8黄色片| 夫妻性生交免费视频一级片| 欧美精品一区二区免费开放| 欧美性感艳星| 亚洲五月色婷婷综合| 男女无遮挡免费网站观看| 国产熟女欧美一区二区| 国产麻豆69| 看免费av毛片| 麻豆精品久久久久久蜜桃| 亚洲欧美色中文字幕在线| 免费大片黄手机在线观看| 国产精品偷伦视频观看了| 搡老乐熟女国产| 亚洲人与动物交配视频| 天天影视国产精品| 国产精品久久久久久久电影| 精品久久久久久电影网| 中文字幕av电影在线播放| 日韩在线高清观看一区二区三区| 免费女性裸体啪啪无遮挡网站| 亚洲美女视频黄频| 99久久综合免费| av黄色大香蕉| 亚洲av欧美aⅴ国产| 国产成人av激情在线播放| 老女人水多毛片| 91国产中文字幕| 午夜老司机福利剧场| a级片在线免费高清观看视频| 日韩不卡一区二区三区视频在线| 啦啦啦视频在线资源免费观看| 少妇 在线观看| 亚洲丝袜综合中文字幕| 永久免费av网站大全| 国产一区亚洲一区在线观看| 美国免费a级毛片| 午夜免费观看性视频| 1024视频免费在线观看| 狂野欧美激情性xxxx在线观看| 亚洲五月色婷婷综合| 国产欧美亚洲国产| 国产一区二区在线观看av| 国产免费视频播放在线视频| 久久人人97超碰香蕉20202| www.av在线官网国产| 亚洲精品自拍成人| 国产1区2区3区精品| 美女视频免费永久观看网站| 久久久久久久久久人人人人人人| 亚洲精品色激情综合| 免费日韩欧美在线观看| 精品亚洲成国产av| 婷婷色麻豆天堂久久| 中文字幕最新亚洲高清| 韩国av在线不卡| 国产探花极品一区二区| 久久久久久伊人网av| 丝袜美足系列| 女人被躁到高潮嗷嗷叫费观| 亚洲,欧美,日韩| 日本色播在线视频| 男男h啪啪无遮挡| 精品99又大又爽又粗少妇毛片| 90打野战视频偷拍视频| 亚洲综合色惰| 在现免费观看毛片| 日韩精品免费视频一区二区三区 | 亚洲精品一二三| 久久久久久久久久人人人人人人| 我的女老师完整版在线观看| av电影中文网址| 国产一区有黄有色的免费视频| 22中文网久久字幕| 男女国产视频网站| 久久久久久久亚洲中文字幕| 久久精品久久久久久噜噜老黄| 丰满少妇做爰视频| 免费人成在线观看视频色| 黄色配什么色好看| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 久久精品国产鲁丝片午夜精品| 大话2 男鬼变身卡| 精品一区在线观看国产| 黄色视频在线播放观看不卡| 国产一区二区三区综合在线观看 | 男人添女人高潮全过程视频| 91午夜精品亚洲一区二区三区| 日本爱情动作片www.在线观看| 久久精品国产鲁丝片午夜精品| 18在线观看网站| 国产日韩一区二区三区精品不卡| 新久久久久国产一级毛片| 狠狠婷婷综合久久久久久88av| 中国三级夫妇交换| 最近手机中文字幕大全| 97在线人人人人妻| 人成视频在线观看免费观看| 中国国产av一级| 婷婷成人精品国产| 久久精品人人爽人人爽视色| av福利片在线| 黄片播放在线免费| 韩国av在线不卡| 亚洲人成网站在线观看播放| 午夜福利网站1000一区二区三区| 中国三级夫妇交换| 午夜老司机福利剧场| av线在线观看网站| 五月开心婷婷网| 日本午夜av视频| 搡老乐熟女国产| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区 | 亚洲欧美成人综合另类久久久| 久久青草综合色| 妹子高潮喷水视频| 18禁国产床啪视频网站| 久久免费观看电影| 亚洲欧洲日产国产| 一二三四在线观看免费中文在 | 天堂中文最新版在线下载| 一本—道久久a久久精品蜜桃钙片| 在现免费观看毛片| 18禁国产床啪视频网站| 国产极品粉嫩免费观看在线| 午夜91福利影院| 精品国产一区二区三区四区第35| 91aial.com中文字幕在线观看| 美女内射精品一级片tv| 久久狼人影院| 两性夫妻黄色片 | 久久久a久久爽久久v久久| 国产黄色免费在线视频| 啦啦啦视频在线资源免费观看| 久久久国产欧美日韩av| 街头女战士在线观看网站| 欧美日韩国产mv在线观看视频| 一区二区日韩欧美中文字幕 | 亚洲欧美日韩卡通动漫| 深夜精品福利| 亚洲国产精品一区三区| 宅男免费午夜| 制服人妻中文乱码| 人妻一区二区av| 少妇的逼好多水| 国产一区有黄有色的免费视频| 美女国产视频在线观看| 内地一区二区视频在线| 亚洲美女视频黄频| 高清在线视频一区二区三区| www.色视频.com| 男人添女人高潮全过程视频| 我的女老师完整版在线观看| 精品亚洲成国产av| 国产一区亚洲一区在线观看| 成人综合一区亚洲| 久久久国产一区二区| 国产一区有黄有色的免费视频| 亚洲av.av天堂| 精品亚洲乱码少妇综合久久| 日日撸夜夜添| 丁香六月天网| 我的女老师完整版在线观看| 亚洲少妇的诱惑av| 精品一区二区免费观看| 高清在线视频一区二区三区| 十分钟在线观看高清视频www| 韩国精品一区二区三区 | av在线app专区| 亚洲欧洲国产日韩| 亚洲图色成人| av片东京热男人的天堂| 国产精品麻豆人妻色哟哟久久| 国产麻豆69| 久久精品国产亚洲av天美| 美女主播在线视频| 久久久久久人人人人人| 少妇人妻 视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品久久成人aⅴ小说| 久久久国产一区二区| 欧美97在线视频| 国产成人精品婷婷| 考比视频在线观看| 亚洲情色 制服丝袜| 欧美激情 高清一区二区三区| 青春草亚洲视频在线观看| av视频免费观看在线观看| 久久久精品94久久精品| 亚洲欧美成人精品一区二区| 久久综合国产亚洲精品| 九草在线视频观看| videossex国产| 美女脱内裤让男人舔精品视频| 一区二区三区乱码不卡18| 久久久久久久久久人人人人人人| 久久国内精品自在自线图片| 欧美精品一区二区大全| 国产日韩欧美视频二区| 男人操女人黄网站| 高清毛片免费看| 精品一区二区免费观看| 男女午夜视频在线观看 | 午夜福利乱码中文字幕| 极品人妻少妇av视频| 亚洲精品456在线播放app| 国产熟女午夜一区二区三区| 国产爽快片一区二区三区| 亚洲欧美成人综合另类久久久| 乱人伦中国视频| 99热网站在线观看| 巨乳人妻的诱惑在线观看| 高清av免费在线| 午夜福利乱码中文字幕| 成人18禁高潮啪啪吃奶动态图| 尾随美女入室| 高清不卡的av网站| 久久久久久久久久人人人人人人| 亚洲av免费高清在线观看| 亚洲精品aⅴ在线观看| 久久久久精品性色| 18在线观看网站| 国产无遮挡羞羞视频在线观看| av免费观看日本| 久久久久久人妻| 菩萨蛮人人尽说江南好唐韦庄| 老女人水多毛片| 欧美精品国产亚洲| 亚洲精华国产精华液的使用体验| 观看美女的网站| videossex国产| 欧美日韩综合久久久久久| 夜夜骑夜夜射夜夜干| 国产福利在线免费观看视频| 一二三四在线观看免费中文在 | 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 国产精品久久久久久精品电影小说| 男女边摸边吃奶| 韩国av在线不卡| 男人操女人黄网站| 十八禁高潮呻吟视频| 18禁裸乳无遮挡动漫免费视频| 国产淫语在线视频| 在线观看国产h片| 国产在线视频一区二区| av国产久精品久网站免费入址| 99视频精品全部免费 在线| 国语对白做爰xxxⅹ性视频网站| 最近最新中文字幕大全免费视频 | 免费在线观看黄色视频的| 亚洲精品,欧美精品| 一二三四在线观看免费中文在 | 两个人免费观看高清视频| 午夜av观看不卡| 我要看黄色一级片免费的| 色94色欧美一区二区| 一二三四中文在线观看免费高清| 国产精品不卡视频一区二区| 美女xxoo啪啪120秒动态图| 日韩成人伦理影院| 综合色丁香网| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区三区| 日韩在线高清观看一区二区三区| 国产精品三级大全| 性色av一级| 国产一区二区三区av在线| 激情视频va一区二区三区| 男人操女人黄网站| 丝袜在线中文字幕| av免费观看日本| 成人二区视频| av播播在线观看一区| 在线免费观看不下载黄p国产| 肉色欧美久久久久久久蜜桃| 日韩大片免费观看网站| 有码 亚洲区| av在线app专区| 国产麻豆69| 欧美日韩亚洲高清精品| 国产精品偷伦视频观看了| 韩国av在线不卡| 亚洲激情五月婷婷啪啪| 高清欧美精品videossex| 色网站视频免费| 久久精品国产综合久久久 | 在线观看美女被高潮喷水网站| 80岁老熟妇乱子伦牲交| 观看美女的网站| 亚洲成人av在线免费| av女优亚洲男人天堂| 久久久精品区二区三区| 精品国产乱码久久久久久小说| 老女人水多毛片| 丰满乱子伦码专区| www.av在线官网国产| 久久国内精品自在自线图片| 一区二区三区精品91| 亚洲图色成人| 一级毛片电影观看| 看十八女毛片水多多多| 人妻少妇偷人精品九色| 久久精品国产自在天天线| 亚洲第一av免费看| 在线观看美女被高潮喷水网站| 大陆偷拍与自拍| 国产 精品1| 五月伊人婷婷丁香| 国产色婷婷99| 国产综合精华液| 精品国产一区二区三区久久久樱花| 最近2019中文字幕mv第一页| 日韩精品有码人妻一区| 精品一区二区三卡| 久久精品久久精品一区二区三区| 欧美xxⅹ黑人| 婷婷成人精品国产| 大码成人一级视频| 精品少妇黑人巨大在线播放| 国产亚洲精品久久久com| 免费高清在线观看视频在线观看| 97在线人人人人妻| 久久ye,这里只有精品| 国产免费现黄频在线看| 国产黄色视频一区二区在线观看| 国产国语露脸激情在线看| 国产免费又黄又爽又色| 最近中文字幕高清免费大全6| 免费观看在线日韩| 成人二区视频| 国产男人的电影天堂91| 国产探花极品一区二区| www日本在线高清视频| 国产精品无大码| 一个人免费看片子| 视频中文字幕在线观看| 国产精品久久久久久久电影| 啦啦啦啦在线视频资源| 各种免费的搞黄视频| 欧美老熟妇乱子伦牲交| 亚洲综合精品二区| 国产一区二区三区av在线| 成人二区视频| 中文精品一卡2卡3卡4更新| 精品人妻熟女毛片av久久网站| 亚洲四区av| 亚洲色图 男人天堂 中文字幕 | 日韩伦理黄色片| 久久精品熟女亚洲av麻豆精品| 一区二区三区四区激情视频| 边亲边吃奶的免费视频| 久久久久久人妻| 国产亚洲午夜精品一区二区久久| videosex国产| 国产黄色视频一区二区在线观看| 精品一区二区三区四区五区乱码 | 少妇的丰满在线观看| 久久亚洲国产成人精品v| 亚洲精品国产av成人精品| 国产极品天堂在线| 国产在线一区二区三区精| 国产亚洲最大av| 大陆偷拍与自拍| 建设人人有责人人尽责人人享有的| 十分钟在线观看高清视频www| 国产毛片在线视频| 春色校园在线视频观看| 中文欧美无线码| 巨乳人妻的诱惑在线观看| av在线播放精品| 伊人亚洲综合成人网| 久久久久久久国产电影| 国国产精品蜜臀av免费| 欧美日韩综合久久久久久| 丰满饥渴人妻一区二区三| 色吧在线观看| 91精品三级在线观看| 国产片特级美女逼逼视频| 婷婷色综合大香蕉| 久久久精品免费免费高清| 9191精品国产免费久久| 国产极品天堂在线| 欧美精品高潮呻吟av久久| 最近中文字幕高清免费大全6| 永久免费av网站大全| 亚洲美女搞黄在线观看| 国产片内射在线| 大陆偷拍与自拍| 另类精品久久| 亚洲av福利一区| 日韩熟女老妇一区二区性免费视频| 侵犯人妻中文字幕一二三四区| 桃花免费在线播放| 欧美+日韩+精品| 在现免费观看毛片| 成人国产麻豆网| 午夜免费男女啪啪视频观看| 国语对白做爰xxxⅹ性视频网站| 国产一区二区三区av在线| 成年动漫av网址| 99九九在线精品视频| 91aial.com中文字幕在线观看| 男人添女人高潮全过程视频| 大片免费播放器 马上看| 国产精品偷伦视频观看了| 日韩视频在线欧美| 国产1区2区3区精品| 亚洲精品久久久久久婷婷小说| 久久久久久久亚洲中文字幕| 久久国产亚洲av麻豆专区| 亚洲av中文av极速乱| 久久久久久久亚洲中文字幕| 一二三四中文在线观看免费高清| 亚洲精品久久久久久婷婷小说| 国产成人精品一,二区| 午夜福利视频精品| 91国产中文字幕| 精品一品国产午夜福利视频| 丰满少妇做爰视频| 日本午夜av视频| 久久毛片免费看一区二区三区| 日韩免费高清中文字幕av| 日韩中字成人| 另类亚洲欧美激情| 欧美 亚洲 国产 日韩一| 人人妻人人澡人人看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 老司机影院成人| www.色视频.com| 日韩,欧美,国产一区二区三区|