• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CO2 capture using dry TiO2-doped Na2CO3/Al2O3 sorbents in a fluidized-bed reactor

    2015-05-08 03:34:44DongWeiChenXiaopingYuFan
    關(guān)鍵詞:吸收劑脫碳碳酸

    Dong Wei Chen Xiaoping Yu Fan

    (Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, Southeast University, Nanjing 210096, China)

    ?

    CO2capture using dry TiO2-doped Na2CO3/Al2O3sorbents in a fluidized-bed reactor

    Dong Wei Chen Xiaoping Yu Fan

    (Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, Southeast University, Nanjing 210096, China)

    In order to improve the reactivity of Na2CO3/Al2O3sorbent with CO2, a new sorbent showing high reactivity was developed by doping Na2CO3/Al2O3with TiO2using impregnation. Fourteen multi-cycle carbonation/regeneration tests of the sorbent were carried out in a fluidized-bed reactor and the sorbent was characterized by X-ray diffraction and nitrogen adsorption. It is confirmed that TiO2shows a positive effect on the adsorption process of Na2CO3and the reaction rate is observed to increase significantly, especially in the first 10 min. Moreover, TiO2is stable within the temperature range of the process and no other Ti-compounds are detected. The carbonation products are NaHCO3and Na5H3(CO3)4. The surface area and the pore volume of the sorbent keep stable after 14 cycles. The Fourier transform infrared spectroscopy and the X-ray photoelectron spectroscopy are used to analyze the effect mechanism of TiO2on CO2adsorption process of Na2CO3/Al2O3.

    CO2capture; Na2CO3/Al2O3; TiO2; fluidized-bed test

    Applying alkali metal-based solid sorbents for CO2capture from flue gas has been investigated as an innovative concept in these years. K2CO3or Na2CO3can be used as the regenerable solid sorbent based on the chemical absorption process at the low temperature. Most studies around the world focus on the potassium-based sorbents because potassium carbonate is generally superior to sodium carbonate in terms of both CO2capacity and kinetics[1-5]. Nevertheless, the primary advantage of using sodium carbonate over potassium carbonate is due to its low price, easy accessibility, and low CO2capture cost. If the reaction characteristics of the sodium-based sorbents can be improved for high reactivity, a high conversion rate, and a short reaction time, this technology will have great market value and broad application prospects.

    Researchers have also tried to develop alkali metal-based sorbents supported on various supports, such as activated carbon, Al2O3, SiO2, MgO, ZrO2, CaO, and zeolites[2-3, 5]. Activated Al2O3is confirmed to be an outstanding support for CO2capture attributed to its well-developed microstructure and excellent abrasion resistance[3-4]. A previous study[6]also demonstrated that sorbent Na2CO3/Al2O3(Na2CO3impregnated on Al2O3) shows a significant performance for CO2capture at a low temperature in the presence of vapor. Whereas the CO2absorption rate of the sorbent still needs to be increased.

    Recently, increasing attention on the use of doped calcium-based CO2sorbents has been paid. Chen et al.[7]doped limestone with attapulgite and demonstrated that the doped sorbent shows better CO2capture performance than the natural limestone under the same condition. Sun et al.[8]investigated manganese salts, including Mn(NO3)2and MnCO3, doped calcium-based sorbents and reported that the cyclic CO2capture capacity of CaCO3was significantly improved. Al-Jeboori et al.[9]reported that MgCl2, CaCl2, and Grignard reagents as dopants can improve the carrying capacity of Havelock limestone in repeated cycles of carbonation and calcination in a fluidized bed reactor. Accordingly, doping is promising for developing advanced alkali metal-based solid sorbents to remove CO2more effectively. Whereas little related work has been reported so far.

    The principal goal of the present research is to investigate methods to improve the CO2uptake rate in such a process by doping TiO2in Na2CO3/Al2O3. The reaction mechanism of Na2CO3/Al2O3and TiO2doped Na2CO3/Al2O3are studied and analyzed. Their carbonation/regeneration characteristics, microstructure and physical properties are investigated in 14-cycle tests using a fluidized-bed reactor.

    1 Experimental Section

    1.1 Samples preparation

    Na2CO3and TiO2were provided as analytical reagents, andγ-Al2O3were supplied by the Research Institute of Nanjing Chemical Industry Group. Two sorbents were prepared in this study. Na2CO3/Al2O3was named Sorb 1 and TiO2doped Na2CO3/Al2O3was named Sorb 2. The sorbents were prepared by the impregnation method. Appropriate amounts of sorbent constituents were mixed and impregnated in deionized water, then dehydrated at 378 K, and calcined at 573 K. The sorbents were ground to appropriate particle sizes (0.18 to 0.315 mm) for fluidized-bed tests. Detailed information about the process can be found in previous work[10]. Loadings of Na2CO3were maintained around 25% (mass fraction) in the two sorbents. The designed loading of TiO2in Sorb 2 was 1% (mass fraction). The rest of the sorbents were Al2O3used as supports. X-ray fluorescence (XRF) was used to determine the actual loadings of Na2CO3and TiO2. The results are listed in Tab.1.

    Tab.1 Sorbent components content in mass fraction %

    1.2 Apparatus and procedure

    A bubbling fluidized-bed reactor was operated for multiple-cycle tests as shown in Fig.1. The inner diameter of the reactor is 0.05 m and height is 1.0 m. Detailed information was reported in Ref.[3]. The sorbents mounted was about 250 g. The simulated flue gas containing 10%CO2and 12%H2O with a balance of 78% N2(volume fraction) was used for carbonate reaction. The flow rate was 750 L/h. The carbonation temperature was maintained at 333 K. After the completion of carbonate reaction, the flue gas was switched to 100%N2at a flow rate of 750 L/h as a purge gas. After the purge of CO2, the temperature of the reactor was raised to 473 K for regeneration. After regeneration, another carbonate reaction was performed by cooling the temperature of the reactor to 333 K. In this way, 14-cycle tests were carried out.

    Fig.1 Schematic diagram of the experimental apparatus for fluidized-bed tests

    An APHI 5 000 Versa Probe X-ray photoelectron spectroscopy (XPS) was introduced to examine the type and relative content of the surface elements. The surface spectra of TiO2were observed by a NICOLET NEXUS870 Fourier transform infrared spectrometer (FTIR). The surface areas and pore size distributions of sorbents were determined by a micropore physisorption analyzer with nitrogen adsorption-desorption.

    2 Results and Discussion

    2.1 Fluidized-bed tests

    Fluidized-bed tests of Sorb 1 and Sorb 2 were processed successively. A typical carbonation-regeneration single cycle result of Sorb 1 is presented in Fig.2. The left part of the figure represents the carbonate reaction and the right part represents regeneration reaction.

    Fig.2 Fluidized-bed test result of Sorb 1 in carbonation-regeneration single cycle

    XRD results of Sorb 1 and Sorb 2 before/after carbonate reaction, as shown in Fig.3, were provided in a previous work[10]. It has revealed that the main constituents of Sorb 1 before the carbonate reaction are Na2CO3and Al2O3. After the carbonate reaction, the NaHCO3phase is observed. The main constituents of Sorb 2 before the carbonate reaction are Na2CO3and TiO2, besides Al2O3. After the carbonate reaction, the NaHCO3phase and a new product known as Wegscheiderite (Na5H3(CO3)4) are observed. The relevant reactions are

    (a)

    (b)☆—Na2CO3;■—Al2O3;○—NaHCO3;×—TiO2;▼—Na5H3(CO3)4

    Fig.3 XRD patterns of Sorb 1 and Sorb 2 before/after carbonate reaction[10]. (a) Sorb 1; (b) Sorb 2

    The two reactions are reversible. Furthermore, no Ti-containing compound is detected before/after carbonate reaction except for the TiO2phase which coincides with Lee’s study[1].

    CO2absorbed/desorbed amounts were exhibited by a numerical integration of the CO2concentration curve. The amounts of CO2absorbed in the whole carbonate reactionnct, amounts of CO2absorbed in the first 10 min of carbonate reactionnciand amounts of CO2desorbed in regenerationnrof the two sorbents are listed in Tab.2, respectively. Good material balance closure was obtained, which indicates that the absorption of CO2is practically reversible on Al2O3support.

    Tab.2 Amounts of CO2 absorbed and desorbed in each cycle of the two sorbents mol

    The carbonation capacity of CO2Ac(milligram of CO2absorbed by per gram of sorbent) and regeneration percent conversionηrare used for expressing the carbonation and regeneration characteristics of the two sorbents. They can be calculated by

    (1)

    (2)

    wherew(0)is the initial mass of sorbent;MCO2is the molecular mass of CO2.

    (a)

    (b)

    (c)

    (d)

    According to Eq.(1), the carbonation capacity of CO2in the whole carbonate reactionActand carbonation capacity of CO2in the first 10 min of carbonate reactionAciof the two sorbents are calculated and given in Figs.4(a) and (b). Lee et al.[2]reported their potassium-based sor-bents by impregnation K2CO3on Al2O3.Actof their sorbent with 30% loading of K2CO3is about 82 mg/g in the 1st cycle and decreases to about 50 mg/g after 5 cycles. Distinct from their claim, as can be noted from Fig.4(a), theActof Sorb 1 is between 77 and 90 mg/g in 14 cycles with a quite slow deactivation. As for Sorb 2,Actis slightly higher than that of Sorb 1 in the 14 cycles.

    As can be noted from Fig.4(b), theAciof Sorb 1 is around 40 mg/g in each cycle, less than half of the correspondingActof Sorb 1. The carbonate reaction rate of Sorb 1 is low. TheAciof Sorb 2 in each cycle is about 0.5 times higher than that of Sorb 1 in each cycle between 55 and 68 mg/g, occupying about 70% of the correspondingActof Sorb 2. It suggests that the use of TiO2as a dopant can increase the carbonate reaction rate, particularly in the first 10 min. Previous research[11]reported that theAciof K2CO3/Al2O3is around 50 mg/g in a 4 cycles test. TheAciof our Sorb 2 is higher than that of the potassium-based sorbent. Moreover, the total carbonate reaction time is also shortened in each cycle, as shown in Fig.4(c), owing to the optimization of the carbonate reaction in the first 10 min.

    Lee et al.[2]reported a novel potassium-based sorbent by impregnation K2CO3on zirconium oxide (ZrO2).Actof the sorbent with 30% loading of K2CO3is around 85 mg/g in 10 cycles, showing excellent carbonation/regeneration cycle performance. ItsActis somewhat lower than theActof our sorbents, which can be attributed to the different reactors and absorption atmospheres researched.

    With respect to the regeneration section, one can observe from Fig.4(d) that theηrof the two sorbents in each cycle are all above 95%, which indicates that the decompositions of NaHCO3and Na5H3(CO3)4are almost completed within regeneration temperature range and the doping of TiO2hardly has an impact on the regeneration part.

    2.2 Microstructure change of the two sorbents with cycle numbers

    In the fluidized-bed reactor, due to the intense movements of sorbents and chemistry reactions, the microstructure of the two sorbents can be changed after the 14-cycle test. In Fig. 5, the change in the surface area, pore volume and pore size distribution of Sorb 1 and Sorb 2 before/after multi-cycle tests are presented.

    As shown in Fig.5(a), after 14 carbonation/regeneration cycles, the surface area of the two sorbents decreases from 89.72 and 86.75 m2/g to 80.45 and 78.56 m2/g, respectively. The pore volume of the two sorbents decreases from 241.2 and 239.0 mm3/g to 234.5 and 231.1 mm3/g, respectively. The decrements are quite insignificant. In Fig.5(b), the pore size distributions are consistent during the 14 cycles and the change is small. The excellent microstructure performance is attributed to the usage of Al2O3as support which is consistent with Ref.[3].

    (a)

    (b)

    2.3 XPS test

    In order to reveal the promotion mechanism of TiO2on CO2absorption, the XPS test of TiO2was introduced. As shown in Fig.6, the O1sphotoelectron peak of the TiO2surface displayed a broad shoulder which was resolved into two peaks after a numerical fit (dotted lines in Fig.6). The main peak at 529.4 eV can be associated with the titanate oxygen. The second oxygen peak at 531.0 eV can be assigned to OH groups that likely are incorporated on TiO2surfaces when they are exposed to H2O. These results are in good agreement with the XPS measurements of Nagarkar et al[12].

    Fig.6 The XPS spectra of O1s of TiO2

    2.4 FTIR tests

    Fig.7 shows the changes in the FTIR spectra of TiO2progressive heated from an ambient temperature to 473 K in the oven. It can be noted that, a large, broad band centered around 3 300 cm-1is assigned to the vibration of isolated surface OH groups and absorbed water on TiO2. A shoulder around 1 620 cm-1assigned to the vibration of surface OH groups. As the temperature rises, the broad band around 3 300 cm-1reduces in intensity.

    Fig.7 The FTIR spectra of TiO2 before and after heat treatment

    3 Mechanism Analysis of the TiO2-doped Na2CO3/Al2O3 Sorbent

    The surface property of TiO2is decisive for its catalytic application. The reaction activity and selectivity of NaCO3itself depend directly on the type and concentration of the different active sites.

    Zhao et al.[4]verified that the H2O adsorption is regarded as the rate-controlling step of carbonation. As the H2O concentration increases, the diffusion and adsorption capacities of H2O in the sorbent are improved. Therefore, the total carbonation conversion increases when the H2O concentration increases.

    Takeuchi et al.[13]pointed out that, as shown in Fig.8, the H2O molecules, which directly interact with the solid surface of TiO2such as surface cations or surface hydroxyls, form a monolayer as chemisorbed H2O molecules and then the hydrogen-bonded H2O molecules form multilayers as physisorbed H2O molecules. Finally, H2O molecules without active hydrogen bonds cover the polymeric chained H2O molecules to form the outermost shell of the H2O cluster. These polymeric chained H2O molecules are called “hydrogen-bonded water”, while on the other hand, the hydrogen-bond-free H2O molecules in the outermost shell are called “free water”.

    Fig.8 Structural model of H2O cluster absorbed on solid surface of TiO2[13]

    By doping TiO2on Na2CO3/Al2O3, the multilayers of H2O can be adsorbed on the surface of sorbent. The mul-tilayers of H2O contain plenty of ions forming new active sites for CO2absorption. The reaction rate is improved, and hence the CO2uptake in the first 10 min of carbonation is increased. After that, the reaction rate is controlled by the diffusion of CO2in the sorbent. So the rate is close to that of Sorb 1.

    4 Conclusion

    CO2capture/desorption behaviors of Na2CO3/Al2O3doped with TiO2were researched in a bubbling fluidized-bed reactor. The effect of TiO2on carbonation is significant. Na2CO3/Al2O3with around 1% TiO2loading exhibits a high CO2capture rate, particularly in the first 10 min. It is also indicated that TiO2is stable within the temperature range of the process. The sorbent structures of Sorb 1 and Sorb 2, including the surface area, the pore volume, and the pore size distribution, keep stable in 14 cycles. Furthermore, the impacts of flue gas constituents on TiO2doped Na2CO3/Al2O3sorbents should be investigated in the future. We believe that this interesting research is promising for the use of dry sodium-based sorbents for CO2removal.

    [1]Lee S C, Choi B Y, Lee T J, et al. CO2absorption and regeneration of alkali metal-based solid sorbents [J].CatalysisToday, 2006, 111(3/4): 385-390.

    [2]Lee S C, Chae H J, Lee S J, et al. Novel regenerable potassium-based dry sorbents for CO2capture at low temperatures [J].JournalofMolecularCatalysisB:Enzymatic, 2009, 56(2/3): 179-184.

    [3]Zhao C, Chen X, Zhao C, et al. K2CO3/Al2O3for capturing CO2in flue gas from power plants. Part 3: CO2capture behaviors of K2CO3/Al2O3in a bubbling fluidized-bed reactor [J].Energy&Fuels, 2012, 26(5): 3062-3068.

    [4]Zhao C, Chen X, Zhao C. K2CO3/Al2O3for capturing CO2in flue gas from power plants. Part 1: Carbonation behaviors of K2CO3/Al2O3[J].Energy&Fuels, 2012, 26(2): 1401-1405.

    [5]Lee S C, Kim J C. Dry potassium-based sorbents for CO2capture [J].CatalysisSurveysfromAsia, 2007, 11(4): 171-185.

    [6]Dong W, Chen X, Wu Y, et al. Carbonation characteristics of dry sodium-based sorbents for CO2capture [J].Energy&Fuels, 2012, 26(9): 6040-6046.

    [7]Chen H, Zhao C, Yu W. Calcium-based sorbent doped with attapulgite for CO2capture [J].AppliedEnergy, 2013, 112: 67-74.

    [8]Sun R, Li Y, Liu H, et al. CO2capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle [J].AppliedEnergy, 2012, 89(1): 368-373.

    [9]Al-Jeboori M J, Fennell P S, Nguyen M, et al. Effects of different dopants and doping procedures on the reactivity of CaO-based sorbents for CO2capture [J].Energy&Fuels, 2012, 26(11): 6584-6594.

    [10]Dong W, Chen X, Wu Y. Effect of TiO2dopant on CO2capture performance of Na2CO3/Al2O3[J].CIESCJournal, 2014, 65(9): 3618-3625. (in Chinese)

    [11]Dong W, Chen X, Wu Y. TiO2-doped K2CO3/Al2O3sorbents for CO2capture [J].Energy&Fuels, 2014, 28(5): 3310-3316.

    [12]Nagarkar P V, Searson P C, Gealy F D. Effect of surface treatment on SrTiO3: an X-ray photoelectron spectroscopic study [J].JournalofAppliedPhysics, 1991, 69(1): 459-462.

    [13]Takeuchi M, Martra G, Coluccia S, et al. Investigations of the structure of H2O clusters adsorbed on TiO2surfaces by near-infrared absorption spectroscopy [J].TheJournalofPhysicalChemistryB, 2005, 109(15): 7387-7391.

    TiO2摻雜Na2CO3/Al2O3吸收劑在流化床中的CO2捕集特性

    董 偉 陳曉平 余 帆

    (東南大學(xué)能源熱轉(zhuǎn)換及其過(guò)程測(cè)控教育部重點(diǎn)實(shí)驗(yàn)室,南京 210096)

    由于Na2CO3/Al2O3吸收劑的活性成分Na2CO3與CO2反應(yīng)活性較低,選用TiO2作為摻雜劑,采用浸漬法將其添加到Na2CO3/Al2O3吸收劑中進(jìn)行改性,研制一種新型具有高反應(yīng)活性的鈉基固體吸收劑.利用小型流化床反應(yīng)器進(jìn)行了14次循環(huán)脫碳/再生試驗(yàn),并對(duì)吸收劑進(jìn)行了XRD和氮吸附表征.結(jié)果表明:摻雜TiO2后,吸收劑與CO2的反應(yīng)速率加快,特別是在碳酸化反應(yīng)的前10 min內(nèi);反應(yīng)前后除TiO2外無(wú)其他含Ti化合物生成;碳酸化反應(yīng)產(chǎn)物為NaHCO3和Na5H3(CO3)4;14次循環(huán)反應(yīng)后吸收劑仍保持穩(wěn)定的微觀結(jié)構(gòu).采用XPS和FTIR分析了TiO2對(duì)Na2CO3/Al2O3吸收劑脫碳特性的改性機(jī)理.

    CO2捕集; Na2CO3/Al2O3; TiO2; 流化床試驗(yàn)

    TK09

    Biographies:Dong Wei (1986—), male, graduate; Chen Xiaoping (corresponding author), male, doctor, professor, xpchen@seu.edu.cn.Foundation items:The National Natural Science Foundation of China (No.51476030), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20130092110006).

    :Dong Wei, Chen Xiaoping, Yu Fan. CO2capture using dry TiO2-doped Na2CO3/Al2O3sorbents in a fluidized-bed reactor[J].Journal of Southeast University (English Edition),2015,31(2):220-225.

    10.3969/j.issn.1003-7985.2015.02.011

    10.3969/j.issn.1003-7985.2015.02.011

    Received 2015-01-02.

    猜你喜歡
    吸收劑脫碳碳酸
    什么!碳酸飲料要斷供了?
    新型MEA-AMP混合胺吸收劑的抗降解劑研究
    能源工程(2021年5期)2021-11-20 05:50:42
    5種沸石分子篩的吸附脫碳對(duì)比實(shí)驗(yàn)
    煤氣與熱力(2021年9期)2021-11-06 05:22:56
    冒泡的可樂(lè)
    “碳酸鈉與碳酸氫鈉”知識(shí)梳理
    加熱和旋鍛過(guò)程對(duì)彈簧鋼表面脫碳層厚度的影響研究
    電廠煙氣膜法脫除CO2吸收劑的研究進(jìn)展
    Synthesis of highly reactive sorbent from industrial wastes and its CO2 capture capacity
    微波加熱內(nèi)配碳酸鈣高碳錳鐵粉固相脫碳試驗(yàn)研究
    鑭石型碳酸鐠釹向堿式碳酸鐠釹的相轉(zhuǎn)變反應(yīng)特征及其應(yīng)用
    午夜福利高清视频| 国产精品亚洲av一区麻豆| 床上黄色一级片| 欧美最新免费一区二区三区 | 国产一区在线观看成人免费| 国产av麻豆久久久久久久| 99久国产av精品| 一本一本综合久久| 午夜老司机福利剧场| 69av精品久久久久久| 日本免费a在线| 黄片小视频在线播放| 91麻豆精品激情在线观看国产| 一a级毛片在线观看| 91av网一区二区| 日本免费一区二区三区高清不卡| 亚洲专区中文字幕在线| 久久中文看片网| 精品免费久久久久久久清纯| 国产69精品久久久久777片| 99精品在免费线老司机午夜| 九九在线视频观看精品| 久久久成人免费电影| 一夜夜www| 久99久视频精品免费| 两个人看的免费小视频| 亚洲人成网站在线播放欧美日韩| 久久99热这里只有精品18| 一夜夜www| 欧美丝袜亚洲另类 | 一进一出抽搐动态| 国产精品野战在线观看| 成人av一区二区三区在线看| 老汉色av国产亚洲站长工具| 欧美乱妇无乱码| 国内久久婷婷六月综合欲色啪| 国产精品亚洲美女久久久| 中文字幕av成人在线电影| 天堂√8在线中文| 最后的刺客免费高清国语| 国产v大片淫在线免费观看| netflix在线观看网站| 国产高潮美女av| 久久亚洲精品不卡| 男女视频在线观看网站免费| 日韩欧美国产在线观看| 99视频精品全部免费 在线| 久久精品国产自在天天线| 国内毛片毛片毛片毛片毛片| 最新在线观看一区二区三区| 91在线观看av| 神马国产精品三级电影在线观看| 亚洲无线在线观看| 热99re8久久精品国产| 亚洲欧美日韩高清在线视频| 精品国产亚洲在线| 丰满人妻一区二区三区视频av | 亚洲中文日韩欧美视频| 精品人妻偷拍中文字幕| 19禁男女啪啪无遮挡网站| 给我免费播放毛片高清在线观看| 观看免费一级毛片| 熟女电影av网| 精品乱码久久久久久99久播| 国产亚洲精品久久久com| 国产精品 欧美亚洲| 免费看光身美女| 亚洲乱码一区二区免费版| 国产一区二区亚洲精品在线观看| 成人性生交大片免费视频hd| 日日摸夜夜添夜夜添小说| 亚洲电影在线观看av| 他把我摸到了高潮在线观看| 俺也久久电影网| 日本在线视频免费播放| 欧美区成人在线视频| 中出人妻视频一区二区| 搞女人的毛片| 在线视频色国产色| 一个人免费在线观看电影| 在线免费观看不下载黄p国产 | 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女| 欧美午夜高清在线| 禁无遮挡网站| 欧美一级a爱片免费观看看| 一级黄色大片毛片| 搡女人真爽免费视频火全软件 | 亚洲国产欧美网| 亚洲专区中文字幕在线| 最近视频中文字幕2019在线8| 一级黄片播放器| 精品国内亚洲2022精品成人| 精品电影一区二区在线| 午夜福利免费观看在线| 日本黄色片子视频| 欧美日韩精品网址| 色吧在线观看| 久久午夜亚洲精品久久| 国产伦精品一区二区三区四那| 久久久久久人人人人人| 欧美一区二区国产精品久久精品| 在线看三级毛片| 在线观看舔阴道视频| 久久久久亚洲av毛片大全| 国产亚洲欧美在线一区二区| 成年免费大片在线观看| 亚洲av五月六月丁香网| 国产私拍福利视频在线观看| 午夜精品在线福利| 丁香六月欧美| 国产三级中文精品| 免费看美女性在线毛片视频| 在线观看日韩欧美| 色综合婷婷激情| 国产精品影院久久| 国产亚洲欧美在线一区二区| 国产精品亚洲av一区麻豆| 夜夜躁狠狠躁天天躁| 国产午夜福利久久久久久| 天堂动漫精品| 三级毛片av免费| netflix在线观看网站| 亚洲乱码一区二区免费版| 亚洲av一区综合| 国产精品亚洲av一区麻豆| 搞女人的毛片| 久久婷婷人人爽人人干人人爱| 欧美黑人巨大hd| 黄色丝袜av网址大全| 国产老妇女一区| 亚洲av免费在线观看| 免费看十八禁软件| 国内精品久久久久精免费| 麻豆久久精品国产亚洲av| 国产国拍精品亚洲av在线观看 | 757午夜福利合集在线观看| 国产一区二区在线观看日韩 | 国产伦一二天堂av在线观看| 久久亚洲精品不卡| tocl精华| 亚洲成av人片在线播放无| 久久国产乱子伦精品免费另类| 听说在线观看完整版免费高清| 中文字幕精品亚洲无线码一区| 看黄色毛片网站| 人人妻,人人澡人人爽秒播| 舔av片在线| 99热6这里只有精品| 日日摸夜夜添夜夜添小说| av在线蜜桃| 黄片小视频在线播放| 18美女黄网站色大片免费观看| 日本三级黄在线观看| 国产精品国产高清国产av| 亚洲 国产 在线| 色综合站精品国产| 色视频www国产| 欧美日韩国产亚洲二区| 最新中文字幕久久久久| 午夜福利视频1000在线观看| 精品一区二区三区av网在线观看| 91字幕亚洲| 国产三级黄色录像| 免费在线观看成人毛片| 国产毛片a区久久久久| 国产一区在线观看成人免费| 黄片大片在线免费观看| 人妻丰满熟妇av一区二区三区| 91久久精品电影网| 舔av片在线| 性欧美人与动物交配| 欧美高清成人免费视频www| av中文乱码字幕在线| 综合色av麻豆| 成人亚洲精品av一区二区| 免费无遮挡裸体视频| 男人舔女人下体高潮全视频| 给我免费播放毛片高清在线观看| 18+在线观看网站| 最好的美女福利视频网| 欧美在线一区亚洲| 亚洲欧美精品综合久久99| 亚洲欧美日韩高清在线视频| 神马国产精品三级电影在线观看| 天堂动漫精品| 亚洲人与动物交配视频| 免费看光身美女| www.色视频.com| a在线观看视频网站| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| 国产高清有码在线观看视频| 淫妇啪啪啪对白视频| 国产乱人视频| 狠狠狠狠99中文字幕| 尤物成人国产欧美一区二区三区| 大型黄色视频在线免费观看| 91久久精品国产一区二区成人 | 亚洲精品日韩av片在线观看 | 国产精品亚洲美女久久久| 亚洲片人在线观看| tocl精华| 成人高潮视频无遮挡免费网站| 日本 av在线| 亚洲五月婷婷丁香| 在线播放无遮挡| 91久久精品国产一区二区成人 | 国产一级毛片七仙女欲春2| 淫秽高清视频在线观看| 国产精品永久免费网站| 日本五十路高清| 久久天躁狠狠躁夜夜2o2o| 国产欧美日韩精品一区二区| www日本黄色视频网| 久久久久九九精品影院| 国产成+人综合+亚洲专区| 久久婷婷人人爽人人干人人爱| 成人性生交大片免费视频hd| 在线观看66精品国产| 床上黄色一级片| 精品午夜福利视频在线观看一区| 日本免费一区二区三区高清不卡| 中亚洲国语对白在线视频| 国产激情偷乱视频一区二区| 久久99热这里只有精品18| 亚洲人成电影免费在线| 久久国产精品影院| 偷拍熟女少妇极品色| 色尼玛亚洲综合影院| 好男人电影高清在线观看| 日韩av在线大香蕉| 韩国av一区二区三区四区| 国产精品久久久人人做人人爽| 亚洲人成电影免费在线| 99视频精品全部免费 在线| 乱人视频在线观看| 精品久久久久久久久久免费视频| 无遮挡黄片免费观看| 日韩高清综合在线| 国产精品乱码一区二三区的特点| 久久久国产精品麻豆| svipshipincom国产片| 精品人妻偷拍中文字幕| 成年人黄色毛片网站| 国内精品一区二区在线观看| 久久久久久久久久黄片| 欧美日韩亚洲国产一区二区在线观看| 亚洲 国产 在线| 丝袜美腿在线中文| 日韩欧美在线乱码| 美女高潮喷水抽搐中文字幕| 亚洲欧美精品综合久久99| 免费av不卡在线播放| 亚洲国产精品sss在线观看| www.色视频.com| 在线播放国产精品三级| 午夜日韩欧美国产| 两个人的视频大全免费| 91av网一区二区| 丰满的人妻完整版| 嫁个100分男人电影在线观看| 高清在线国产一区| 久久久久免费精品人妻一区二区| 国产精品影院久久| 欧美日韩乱码在线| 尤物成人国产欧美一区二区三区| 日韩中文字幕欧美一区二区| 99热只有精品国产| 亚洲av免费高清在线观看| 国产 一区 欧美 日韩| 亚洲国产精品合色在线| 午夜福利18| 噜噜噜噜噜久久久久久91| 亚洲久久久久久中文字幕| 久久欧美精品欧美久久欧美| 精品欧美国产一区二区三| 少妇熟女aⅴ在线视频| 国产精品,欧美在线| 99久久精品国产亚洲精品| 日本黄色视频三级网站网址| 99久久无色码亚洲精品果冻| 国产精品野战在线观看| 国产精品免费一区二区三区在线| 国产精品亚洲av一区麻豆| 日本黄大片高清| а√天堂www在线а√下载| 国产精品野战在线观看| 美女高潮喷水抽搐中文字幕| 内地一区二区视频在线| 久久国产乱子伦精品免费另类| 久久久色成人| 成人国产综合亚洲| 黄色视频,在线免费观看| 久久伊人香网站| 亚洲精品一区av在线观看| 99riav亚洲国产免费| 国产伦一二天堂av在线观看| 亚洲av日韩精品久久久久久密| 国产高清videossex| 午夜福利18| 美女 人体艺术 gogo| 波野结衣二区三区在线 | 久久精品人妻少妇| 亚洲七黄色美女视频| 人人妻人人看人人澡| 中文字幕人妻丝袜一区二区| 最新美女视频免费是黄的| 国产男靠女视频免费网站| 亚洲五月婷婷丁香| 亚洲电影在线观看av| 夜夜爽天天搞| 老熟妇乱子伦视频在线观看| 欧美在线一区亚洲| 岛国在线观看网站| 国产成年人精品一区二区| 操出白浆在线播放| 熟妇人妻久久中文字幕3abv| 香蕉丝袜av| 色综合婷婷激情| 亚洲精品国产精品久久久不卡| 亚洲国产中文字幕在线视频| 老汉色∧v一级毛片| 一级a爱片免费观看的视频| 夜夜躁狠狠躁天天躁| 夜夜看夜夜爽夜夜摸| 88av欧美| 18禁在线播放成人免费| 国产精品久久久久久久久免 | 久久国产精品影院| 色综合亚洲欧美另类图片| 最后的刺客免费高清国语| 两个人看的免费小视频| 欧美日韩黄片免| 精品久久久久久久毛片微露脸| 久久久国产成人精品二区| 亚洲欧美精品综合久久99| 国产高清三级在线| 国产午夜福利久久久久久| 88av欧美| aaaaa片日本免费| 国产免费男女视频| 制服丝袜大香蕉在线| 免费在线观看成人毛片| 欧美精品啪啪一区二区三区| 99久久精品国产亚洲精品| 中文字幕人妻熟人妻熟丝袜美 | 男女午夜视频在线观看| 日本精品一区二区三区蜜桃| 51午夜福利影视在线观看| 欧洲精品卡2卡3卡4卡5卡区| 又黄又爽又免费观看的视频| 亚洲国产欧洲综合997久久,| 国产精品嫩草影院av在线观看 | av天堂中文字幕网| 国产精品香港三级国产av潘金莲| 欧美成狂野欧美在线观看| 夜夜躁狠狠躁天天躁| 国产午夜精品久久久久久一区二区三区 | 日本精品一区二区三区蜜桃| 成熟少妇高潮喷水视频| 午夜福利18| 久久九九热精品免费| 亚洲色图av天堂| 亚洲av熟女| 亚洲欧美日韩东京热| 嫩草影院精品99| 人人妻人人看人人澡| 免费av毛片视频| 黄色丝袜av网址大全| 国产精品久久久久久精品电影| 亚洲欧美激情综合另类| 国产真实伦视频高清在线观看 | 老汉色av国产亚洲站长工具| 亚洲精品乱码久久久v下载方式 | 午夜久久久久精精品| 最好的美女福利视频网| 久久精品国产99精品国产亚洲性色| 日本黄色视频三级网站网址| 久久久久九九精品影院| 99视频精品全部免费 在线| 综合色av麻豆| 国产免费男女视频| 欧美性感艳星| 精品久久久久久久久久免费视频| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 亚洲美女黄片视频| 欧美日韩亚洲国产一区二区在线观看| 村上凉子中文字幕在线| 非洲黑人性xxxx精品又粗又长| 久久久久久人人人人人| 亚洲精品粉嫩美女一区| 中文在线观看免费www的网站| 久久久久久人人人人人| 别揉我奶头~嗯~啊~动态视频| 12—13女人毛片做爰片一| av女优亚洲男人天堂| 老熟妇乱子伦视频在线观看| 一本久久中文字幕| 一进一出抽搐gif免费好疼| 日韩欧美精品免费久久 | 精品国产美女av久久久久小说| 两人在一起打扑克的视频| 色在线成人网| 99在线视频只有这里精品首页| 悠悠久久av| 少妇人妻精品综合一区二区 | 亚洲人成网站在线播| 久久久久亚洲av毛片大全| 99riav亚洲国产免费| 亚洲专区国产一区二区| 欧美日韩中文字幕国产精品一区二区三区| 99热这里只有是精品50| 深夜精品福利| 日日摸夜夜添夜夜添小说| 亚洲狠狠婷婷综合久久图片| 欧美绝顶高潮抽搐喷水| 一个人观看的视频www高清免费观看| 一本综合久久免费| 欧美成人a在线观看| 在线天堂最新版资源| 69人妻影院| 网址你懂的国产日韩在线| 俺也久久电影网| av福利片在线观看| 99在线视频只有这里精品首页| 久久精品人妻少妇| av女优亚洲男人天堂| 神马国产精品三级电影在线观看| 特大巨黑吊av在线直播| 少妇人妻一区二区三区视频| 精品99又大又爽又粗少妇毛片 | 午夜福利成人在线免费观看| 亚洲精品一区av在线观看| 国产成人aa在线观看| 国产精品综合久久久久久久免费| 日本一二三区视频观看| 中文亚洲av片在线观看爽| 一边摸一边抽搐一进一小说| 全区人妻精品视频| 十八禁人妻一区二区| 成人av一区二区三区在线看| xxxwww97欧美| 日本 av在线| 亚洲av成人精品一区久久| 亚洲精品粉嫩美女一区| 老司机深夜福利视频在线观看| 免费大片18禁| 免费在线观看日本一区| 亚洲av电影在线进入| 特级一级黄色大片| 国产精品 国内视频| 亚洲中文日韩欧美视频| 少妇的逼好多水| 国产v大片淫在线免费观看| 精品电影一区二区在线| 老鸭窝网址在线观看| 成人高潮视频无遮挡免费网站| 日本a在线网址| 亚洲欧美日韩东京热| 最后的刺客免费高清国语| 三级国产精品欧美在线观看| 1024手机看黄色片| 国产乱人伦免费视频| 18禁美女被吸乳视频| 在线观看66精品国产| 亚洲av第一区精品v没综合| 一级黄色大片毛片| 日本黄大片高清| 亚洲人成电影免费在线| 五月伊人婷婷丁香| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 国产欧美日韩精品一区二区| а√天堂www在线а√下载| 国产视频一区二区在线看| 欧美黑人巨大hd| 人妻夜夜爽99麻豆av| 成年免费大片在线观看| 日本五十路高清| 亚洲不卡免费看| 91av网一区二区| 亚洲男人的天堂狠狠| 美女高潮喷水抽搐中文字幕| 国产又黄又爽又无遮挡在线| 嫩草影院精品99| 国产乱人伦免费视频| 久久天躁狠狠躁夜夜2o2o| 国产精品综合久久久久久久免费| 夜夜夜夜夜久久久久| 欧美在线黄色| 人妻丰满熟妇av一区二区三区| 老汉色av国产亚洲站长工具| 99国产精品一区二区三区| 一边摸一边抽搐一进一小说| 熟女电影av网| 三级毛片av免费| 悠悠久久av| www国产在线视频色| 久久精品国产清高在天天线| 一本精品99久久精品77| 久久久久久大精品| 亚洲av二区三区四区| 母亲3免费完整高清在线观看| 国产一级毛片七仙女欲春2| aaaaa片日本免费| 最好的美女福利视频网| 亚洲第一电影网av| 男人舔女人下体高潮全视频| 窝窝影院91人妻| 国产一区二区三区在线臀色熟女| 久久久久免费精品人妻一区二区| 99riav亚洲国产免费| 亚洲精品亚洲一区二区| 一级黄片播放器| 国产伦精品一区二区三区视频9 | 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 内地一区二区视频在线| 久久精品国产亚洲av香蕉五月| 天堂av国产一区二区熟女人妻| 亚洲欧美一区二区三区黑人| 亚洲专区国产一区二区| 老司机午夜十八禁免费视频| 香蕉av资源在线| 高潮久久久久久久久久久不卡| 性色av乱码一区二区三区2| 国产亚洲精品久久久久久毛片| 真人一进一出gif抽搐免费| 美女大奶头视频| 成人鲁丝片一二三区免费| 久久精品夜夜夜夜夜久久蜜豆| 怎么达到女性高潮| 精品久久久久久久毛片微露脸| 欧美日韩瑟瑟在线播放| 亚洲aⅴ乱码一区二区在线播放| 99国产精品一区二区三区| 99国产综合亚洲精品| 搞女人的毛片| 久久亚洲真实| 午夜福利在线观看免费完整高清在 | 在线观看午夜福利视频| 亚洲精品在线美女| 亚洲欧美精品综合久久99| 哪里可以看免费的av片| 午夜视频国产福利| 母亲3免费完整高清在线观看| 又粗又爽又猛毛片免费看| 最新在线观看一区二区三区| 中文字幕人妻丝袜一区二区| 亚洲国产精品合色在线| 男人的好看免费观看在线视频| 亚洲真实伦在线观看| xxx96com| 国产黄a三级三级三级人| 精品福利观看| 在线免费观看不下载黄p国产 | 久久伊人香网站| 国产蜜桃级精品一区二区三区| 国产在线精品亚洲第一网站| 国产黄a三级三级三级人| 日韩国内少妇激情av| 久久久国产成人免费| 男人舔女人下体高潮全视频| 成人欧美大片| 香蕉丝袜av| 12—13女人毛片做爰片一| 国产成人啪精品午夜网站| 国产蜜桃级精品一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| xxxwww97欧美| 一a级毛片在线观看| 亚洲男人的天堂狠狠| 99在线人妻在线中文字幕| 看黄色毛片网站| 亚洲五月婷婷丁香| 3wmmmm亚洲av在线观看| 中文字幕av在线有码专区| 黄片大片在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 日本在线视频免费播放| 超碰av人人做人人爽久久 | avwww免费| 亚洲av中文字字幕乱码综合| 我要搜黄色片| 国产高潮美女av| 高清在线国产一区| 中文字幕人妻丝袜一区二区| 白带黄色成豆腐渣| 国产视频内射| 一a级毛片在线观看| netflix在线观看网站| 男人和女人高潮做爰伦理| 欧美+亚洲+日韩+国产| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日韩 欧美 亚洲 中文字幕| 蜜桃久久精品国产亚洲av| 叶爱在线成人免费视频播放| 99久久久亚洲精品蜜臀av| 国产日本99.免费观看| 国产欧美日韩精品亚洲av| 免费av不卡在线播放| 午夜精品在线福利| 久久这里只有精品中国| 欧美+日韩+精品| 亚洲黑人精品在线| 国产三级在线视频| 日韩大尺度精品在线看网址| 嫩草影院精品99| 又紧又爽又黄一区二区| 91麻豆av在线|