• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of crash prediction model of freeway basic segment based on interactive influence of explanatory variables

    2015-05-08 03:34:48WangXiaofeiLiXinweiFuXinshaZhaoLixuanLiuXiaofeng
    關(guān)鍵詞:廣義路段廣東省

    Wang Xiaofei Li Xinwei,2 Fu Xinsha Zhao Lixuan Liu Xiaofeng

    (1School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China)(2Guangzhou Expressway Co., Ltd, Guangzhou 510288, China)(3Guangdong Police College, Guangzhou 510230, China)(4Guangdong Traffic Group Co., Ltd, Guangzhou 510623, China)

    ?

    Construction of crash prediction model of freeway basic segment based on interactive influence of explanatory variables

    Wang Xiaofei1Li Xinwei1,2Fu Xinsha1Zhao Lixuan3Liu Xiaofeng4

    (1School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China)(2Guangzhou Expressway Co., Ltd, Guangzhou 510288, China)(3Guangdong Police College, Guangzhou 510230, China)(4Guangdong Traffic Group Co., Ltd, Guangzhou 510623, China)

    In order to improve the prediction precision of the safety performance function (SPF) of freeway basic segments, design and crash data of 640 segments are collected from different institutions. Three negative binomial (NB) regression models and three generalized negative binomial (GNB) regression models are built to prove that the interactive influence of explanatory variables plays an important role in fitting goodness. The effective use of the GNB model in analyzing the interactive influence of explanatory variables and predicting freeway basic segments is demonstrated. Among six models, the two models (one is the NB model and the other is the GNB model.) which consider the interactive influence of the annual average daily traffic (AADT) and length are more reasonable for predicting results. Furthermore, a comprehensive study is carried out to prove that when considering the interactive influence, the NB and GNB models have almost the same fitting performance in estimating the crashes, among which the GNB model is slightly better for prediction performance.

    crash; freeway; safety performance function (SPF); interactive influence of explanatory variables; generalized negative binomial (GNB)

    Compared to other kinds of highways, the freeway is often designed with a relatively good driving environment, such as high alignment indices, a good pavement, being completely closed, no pedestrians, no interference from low speed, effective traffic safety devices, and so on. Thus, the accident rate and death toll on the freeway is within an average of 30% to 51% and 43% to 76% of ordinary highways in developed countries. However, the number of accidents, death tolls, injury tolls and the direct loss of property is 3.2, 8.4, 7.2 and 24.3 times the ordinary average for highways in China. Therefore, it is important to determine the actual circumstances of accidents occurring on freeways and how freeway environments influence the accident rates based on reliable databases.

    Over the past several decades, historical surveys covering the characteristics and frequency of accidents involving freeways has been a very active research area[1-2]. However, in terms of freeway accidents in China, no specialized accident databases and highway design databases have yet been made available. Also, there is very little investigation clarifying China’s current situation. Zhong et al.[3-4]developed the crash prediction model with a relatively small number of samples. Therefore, this paper attempts to establish models with large samples.

    Mathematical statistics and regression analysis have been common methods used in predicting highway crashes. Other methods, such as fuzzy mathematics, the grey theory, the nerve cell method and clustering analysis, have also been used to establish the prediction models. However, freeway accidents are the results of the combined influence of multiple factors, such as alignment, traffic volume, the presence of an interchange or other structures. The above-mentioned methods explain how a single factor influences the crashes but fail to explain the interactions between these factors and how these influence the crashes. For this reason, when studying the crash prediction models, the freeway is often divided into several segments (a basic segment, general segment and special segment). The prediction function of the basic segment is also called the safety performance function (SPF) and it is the basis of the others.

    The parameters of the SPF are the length of the segment and the traffic volume. The prediction result is the number of crashes. As for general segments or special segments, the crash number can be modified by crash modification factors (CMFs). Thus, the SPF is the basis of the freeway crash prediction model and the precision of the final result will be directly determined by the SPF. In order to determine the combined influence of multifactors, flexibility is introduced here to explain the influence. Flexibility is used in the manufacturing industry to explain the variational environment or the probabilistic ability from the variation[5]. The Cobb-Douglas production function, the linear production function, the Leontief production function, the variable elasticity of substitution(VES)production function and the transcendental logarithmic (Trans-log) production function are often used to analyze flexibility[6-8]. Among these methods, the Trans-log production function is the most popular function used to analyze traffic problems. Thus, the Trans-log function is adopted in this paper to study the difference between the situations with and without considering the combined influence of multifactors. The model with the best fitting degree is chosen as the SPF. Then the SPF is checked by the real traffic accident data.

    1 Model Format and Basic Segment Definition

    In this paper, the model format is as[9]

    Ne,x=NSPF,xCMFAADT,xCMFlane,x…CMFlight,x

    (1)

    whereNe,xis the predictive model estimate of the crash number for a specific year on site typex;NSPF,xis the predicted average crash number determined by the SPF on site typex; CMFAADT,x…CMFlight,xare the crash modification factors specific to site typex.

    The basic segment for SPF is defined as follows.

    Lane number: Two-way 4-lane;

    Lane width: 3.75 m;

    Hard shoulder: On both sides;

    Median separator: Yes;

    Crash barrier: On both sides;

    Lighting: None;

    AADT (two directions): No more than 5.76 (104pcu/d);

    Open to traffic duration: No less than two years and no reconstruction in two years.

    2 Data

    In order to acquire sufficient samples for a meaningful statistical analysis, six major sources are used: the National Statistics Annual Report of Road Traffic Accidents (NSARRTA,2013)[10], the Statistical Bulletin of Transportation Industry Development (SBTID, 2013), accident data from the Traffic Management Committee of Guangdong Province (MCGP), accident data from different Traffic Police Detachments (TPD, 7 freeways, 593.099 km in total), accident data from different Freeway Administrations and Maintenance Centers accordingly(FAMC, 7 freeways, 593.099 km in total), and additional results provided by other scholars. As for the sample size, see Tab.1.

    Tab.1 Sample source and size

    3 Method

    The basic function of the Trans-log NB production function is as follows[11-12]:

    lnY=α0+αklnK+αLlnL+αkk(lnK)2+αll(lnL)2+αkllnKlnL

    whereYis the dependent variable;K,Lare the explanatory variables; andα0,αk,αL,αkk,αll,αklare the estimated parameters.

    In this paper, the annual average daily traffic (AADT)Qiand the segment lengthLiare chosen as explanatory variables. If not taking the influence between these two variables into consideration, the NB function is as follows:

    lnμi+α0+α1ln(Qi)+α2ln(Li)

    (2)

    whereμiis the estimate of crash number for a specific year of segmenti;Qiis the AADT for a specific year of segmenti;αk(k=0,1,…,5) are the estimated parameters.

    If taking the influence between these two variables into account, the trans-log NB function is as follows:

    lnμi=α0+α1ln(Qi)+α2ln(L1)+α3[ln(Qi)]2+

    α4[ln(Li)]2+α5ln(Qi)ln(Li)

    (3)

    Thus, six models are used as shown in Tab.2. Models 1 to 4 do not take the influence between two variables into account and Models 5 and 6 consider the influence. Models 1, 2 and 5 are NB regression models and others are GNB regression ones.

    Tab.2 Models adopted and their estimated parameters

    Note:βis the excessive dispersion coefficient of the NB or the GNB model.

    Akaike information criterions (AIC)[13], Bayesian information criterions (BIC) and Pseudo R2 are adopted to test the accuracy of the prediction models. Cumulative residual and excessive dispersion coefficients are also used to evaluate the fit goodness of the models.

    4 Analysis Process and Results

    4.1 Models discussion

    Estimated parameters which have been demarcated by survey data and parameters which reflect fit goodness have also been calculated. The results are listed in Tab.3.

    The results shown in Tab.3 indicate that the interactive influence between two variables is clear. Thus, Model 5 and Model 6, which take the interactive influence into consideration, have better fitting, particularly compared to Model 2 and Model 4. However, the fitting goodness difference among Models 1, 3, 5 and 6 is not very obvious, so further analysis is carried out to determine which one is more accurate. In the scope of the definition condition, the crash number can be predicted and the estimated results are shown in Fig.1 and Fig.2.

    Tab.3 Estimated and statistical parameters

    (a) (b)

    (c) (d)

    Fig.1 Variation tendency of estimated results with AADT under differentL. (a)L=0.5 km; (b)L=3.0 km; (c)L=5.0 km;(d)L=8.0 km

    The results shown in Figs.1 and 2 show no difference between Models 1 and 3 or Models 5 and 6. As for Models 1&3 and Models 5&6, the results reveal a remarkable difference.

    When the segment length is certain, crashes increase with AADT, as shown in Fig.1. The increase tendency shows that Models 5 and 6 have a clear increase with AADT when the AADT is less than 3.5×104pcu/d, however, the increase tendency is relatively gradual when AADT is more than 3.5×104pcu/d. In comparison with Models 5 and 6, the increase tendency of Models 1 and 3 appears to have uniform variations. The survey data shows that there is one point after which the tendency changes. This may be due to the fact that with the increase in the traffic volume, speed and driving space decrease, resulting in fewer crashes. Thus, Models 5 and 6 reveal a more accurate picture.

    (a)

    (b)

    (c)

    (d)

    The results shown in Fig.2 with respect to segment length are not surprising. When AADT is certain, crashes increase with the segment length. The increase tendency also shows that Models 5 and 6 have a turning point at the length of 4.5 km. It reveals that the traffic flow tends to be steady in the same segment after several minutes’ driving. So, the crashes will not increase as much as before.

    In conclusion, Models 5 and 6 show a good corroboration with actual reality. Thus, the prediction models, Model 5 based on NB regression and Model 6 based on GNB regression have taken the interactive influence into consideration much better than others.

    4.2 Discussion of NB Model 5 and GNB Model 6

    To examine these two models in more detail and test their accuracy, the cumulative residual and excessive dispersion coefficients are introduced to evaluate these two models.

    1) Cumulative residual

    Cumulative residual can be calculated by

    (4)

    Cumulative residuals will be centered at zero if the model fit is correct and the maximum threshold is the square root of the sample quantity, that is (-25.298, 25.298). Cumulative residuals can be used to test the above NB and GNB models. The results in Fig.3 show no difference between the two models. Most of the points are within the threshold scope and near thex-axis. Few residuals are less than the minimum threshold (-25.298). Thus, the two models are proved to be a good fit and show no difference between each other.

    Fig.3 Cumulative residuals of Models 5 and 6

    2) Excessive dispersion coefficientβ

    The excessive dispersion coefficient of the NB model is constant and that of Model 5 is 0.337 3. As for the GNB, the excessive dispersion coefficient is the function of the explanatory variable lnL, which can be expressed as

    β=e(λ0+λ1lnL)

    (5)

    whereλ0,λ1are the estimated parameters. In the example,λ0=-1.17,λ1=0.08. The regression results are shown in Tab.4 and Fig.4.

    Further study discovers that the excessive dispersion coefficient of Models 5 and 6 are almost equal. It shows that the mean dispersion coefficient of Model 6 (0.332 0) is slightly better than that of Model 5 (0.337 3). In conclusion, testing by cumulative residual and excessive dispersion, the two models demonstrate a good fit and there is almost no difference. They can both be used as the SPF of basic segment. In this paper, Model 6 (GNB) is adopted as SPF for further study.

    Tab.4 Statistical index of the excessive dispersion coefficient of Model 6

    Fig.4 Excessive dispersion coefficients at different interval distributions of Model 6

    4.3 Results

    According to the above analysis, the following model is proposed as the freeway basic segment defined in Section 1:

    NSPF,x=e[-0.11+0.85lnAADTx+0.09lnLx-0.22(lnAADTx)2+0.20(lnLx)2+0.06lnAADTxlnLx]

    (6)

    where AADTxis the AADT of basic segmentx, 104pcu/d;Lxis the length of basic segmentx, km.

    In order to test the model, crashes estimated by Eq.(6) are compared with the actual data (see Tab.5). From Tab.5, it can be seen that the prediction crashes are very close to the actual values. It therefore proves that the SPF based on GNB can predict crashes correctly.

    Tab.5 Comparison of the crashes estimated by Eq.(6) with the actual data

    5 Conclusion

    The analysis sheds light on the safety performance function (SPF) of the freeway basic segment. With detailed analysis and study, some conclusions are drawn as follows:

    1) With enough samples and data, the effective use of the GNB model in analyzing the interactive influence of explanatory variables and predicting crashes on the freeway basic segment has been proved.

    2) The contribution of interactive influence between the NB model and the GNB model is compared. The results show that when interactive influence is taken into consideration, the prediction results of the crash increase tendency becomes more accurate by using AADT or the length.

    3) Furthermore, comprehensive study proves that when considering the interactive influence, the NB and GNB models have almost the same good fit when estimating the crashes, among which the GNB model is slightly better.

    [1]Durduran S S. A decision making system to automatic recognize of traffic accidents on the basis of a GIS platform[J].ExpertSystemswithApplications, 2010, 37(12): 7729-7736.

    [2]White J, Thompson C, Turner H. WreckWatch: automatic traffic accident and notification with smartphones[J].MobileNetworksandApplications, 2011, 16(3): 285-303.

    [3]Zhong Liande. Research on accident prediction model of freeway [D]. Beijing, China: Key Laboratory of Traffic Engineering, Beijing University of Technology, 2008. (in Chinese)

    [4]Ma Zhuanglin. Temporal-spatial analysis model of traffic accident and its prevention method on expressway [D]. Beijing, China: School of Traffic and Transportation, Beijing Jiaotong University, 2010. (in Chinese)

    [5]Mandalbaum M. Flexibility in decision making:an exploration and unification [D]. Toronto, Canada:Department of Engineering, University of Toronto,1978.

    [6]Wu Lurong, Liang Fangfang, Shi Zhikai. China’s trans-log production function model of losses of traffic accidents[J].MathematicsinPracticeandTheory, 2010, 40(22):56-61.

    [7]Fridstrom L, Ifver J, Ingebrigtsen S, et al. Measuring the contribution of randomness, exposure, weather and daylight to the variation in road accident counts[J].AccidentAnalysisandPrevention, 1995, 27(1): 1-20.

    [8]Zeng Juan. Research on influencing factors of socio-economic losses of road traffic accident based on generalized linear models[J].JournalofWuhanUniversityofTechnology, 2010, 32(6): 155-158.(in Chinese)

    [10]Ministry of Transport of the People’s Republic of China. Statistical bulletin of communication and transportation industry development in 2013[EB/OL]. (2014-05-13)[2014-06-20]. http://www.moc.gov.cn/zfxxgk/bnssj/zhghs/201405/t20140513_1618277.html.(in Chinese)

    [11]Christensen L R, Jorgenson D W, Lau L J. Transcendental logarithmic production frontiers[J].ReviewofEconomics&Statistics, 1973, 55(1):28-45.

    [12]Li Rong, Liu Xiang, Liu Jian. Research on traffic accident frequency prediction based on translog production function[J].JournalofHunanUniversity:NaturalSciences, 2013,40(4):49-54.(in Chinese)

    [13]Bozdogan H. Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions[J].Psychometrika, 1987, 52(3):345-370.

    基于變量相互影響的高速公路基本路段事故預(yù)測模型構(gòu)建方法

    王曉飛1李新偉1,2符鋅砂1趙立萱3劉小峰4

    (1華南理工大學(xué)土木與交通學(xué)院,廣州 510641)

    (2廣州市高速公路有限公司,廣州 510288)

    (3廣東省警官學(xué)院,廣州 510230)

    (4廣東省交通集團有限公司,廣州 510623)

    為了提高基本路段事故預(yù)測模型(SPF)的預(yù)測精度,收集了640個基本路段設(shè)計資料及事故資料,應(yīng)用3個負二項回歸模型(NB)和3個廣義負二項(GNB)回歸模型對收集的數(shù)據(jù)進行擬合,并分析了解釋變量的交互影響.研究表明在上述6個模型中,其中考慮了年平均日交通量和路段長度交互影響的2個模型(一個為NB,另一個為GNB),其預(yù)測結(jié)果更為合理.進一步綜合對比表明考慮交互影響時,NB模型和GNB模型的適用性幾乎相同,而GNB略佳.

    事故;高速公路;事故預(yù)測模型;解釋變量交互影響;廣義負二項模型

    U412.3

    Foundation items:The National Natural Science Foundation of China (No.51408229,51278202), the Program of the Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University (No.K201204), the Science and Technology Program of Guangdong Communication Department (No.2013-02-068).

    :Wang Xiaofei, Li Xinwei, Fu Xinsha, et al. Construction of crash prediction model of freeway basic segment based on interactive influence of explanatory variables[J].Journal of Southeast University (English Edition),2015,31(2):276-281.

    10.3969/j.issn.1003-7985.2015.02.021

    10.3969/j.issn.1003-7985.2015.02.021

    Received 2014-11-21.

    Biography:Wang Xiaofei(1980—),female,doctor, lecturer, xiaofeiw@scut.edu.cn.

    猜你喜歡
    廣義路段廣東省
    冬奧車道都有哪些相關(guān)路段如何正確通行
    工會博覽(2022年5期)2022-06-30 05:30:18
    Rn中的廣義逆Bonnesen型不等式
    部、省、路段監(jiān)測運維聯(lián)動協(xié)同探討
    A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts
    基于XGBOOST算法的擁堵路段短時交通流量預(yù)測
    從廣義心腎不交論治慢性心力衰竭
    廣東省海域使用統(tǒng)計分析
    有限群的廣義交換度
    1萬億美元——廣東省預(yù)計2013年GDP
    法人(2014年2期)2014-02-27 10:41:35
    廣東省10年將投1187億治水
    国产av麻豆久久久久久久| 午夜激情欧美在线| www.999成人在线观看| 午夜福利高清视频| 久久久久精品国产欧美久久久| 久久久久久久久久黄片| 国产极品精品免费视频能看的| 九色国产91popny在线| x7x7x7水蜜桃| 69人妻影院| 一级a爱片免费观看的视频| 久久香蕉精品热| 99久久精品一区二区三区| 97超级碰碰碰精品色视频在线观看| 成人午夜高清在线视频| 热99在线观看视频| 国产午夜福利久久久久久| 9191精品国产免费久久| 日本三级黄在线观看| 国产精品女同一区二区软件 | 午夜福利成人在线免费观看| 午夜福利在线观看吧| 一a级毛片在线观看| 成人国产一区最新在线观看| 婷婷亚洲欧美| 18+在线观看网站| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av天美| 成人av在线播放网站| 亚洲av熟女| 搡老妇女老女人老熟妇| 国产成人福利小说| 亚洲国产欧洲综合997久久,| 国产主播在线观看一区二区| 熟女电影av网| 国产精品1区2区在线观看.| 中文字幕av在线有码专区| 可以在线观看的亚洲视频| 色精品久久人妻99蜜桃| a级毛片免费高清观看在线播放| 久久久久久久久久黄片| 亚洲美女视频黄频| 老司机午夜十八禁免费视频| 色精品久久人妻99蜜桃| 啪啪无遮挡十八禁网站| 国产精品女同一区二区软件 | 久久热精品热| 看十八女毛片水多多多| 欧美日韩国产亚洲二区| 日韩欧美在线二视频| 两人在一起打扑克的视频| 久久久国产成人免费| 麻豆国产av国片精品| 国产亚洲精品久久久com| 九九久久精品国产亚洲av麻豆| 国产三级中文精品| 国产精品久久久久久久电影| 久久精品国产亚洲av涩爱 | 欧美高清性xxxxhd video| xxxwww97欧美| 亚洲人与动物交配视频| 性色avwww在线观看| 综合色av麻豆| www.999成人在线观看| 日本精品一区二区三区蜜桃| 国产精品av视频在线免费观看| 精品人妻1区二区| 亚洲精品在线美女| 三级男女做爰猛烈吃奶摸视频| 欧美日韩乱码在线| 国产高清视频在线观看网站| 国产私拍福利视频在线观看| 美女大奶头视频| 好男人电影高清在线观看| 亚洲 国产 在线| 好男人电影高清在线观看| 全区人妻精品视频| 国产老妇女一区| 在线a可以看的网站| 亚洲va日本ⅴa欧美va伊人久久| 窝窝影院91人妻| 亚洲av中文字字幕乱码综合| 免费观看精品视频网站| 夜夜躁狠狠躁天天躁| 蜜桃久久精品国产亚洲av| 99热这里只有是精品在线观看 | 亚洲av中文字字幕乱码综合| 可以在线观看毛片的网站| 男女那种视频在线观看| 成人美女网站在线观看视频| 淫妇啪啪啪对白视频| 日本一本二区三区精品| 级片在线观看| 亚洲avbb在线观看| 乱人视频在线观看| av在线天堂中文字幕| 国产精品三级大全| 国产精品一区二区三区四区久久| 日韩欧美三级三区| 日韩欧美一区二区三区在线观看| 午夜福利欧美成人| 18禁黄网站禁片免费观看直播| 国产三级在线视频| 无遮挡黄片免费观看| 美女免费视频网站| 亚洲精品一区av在线观看| 色在线成人网| 久久热精品热| 大型黄色视频在线免费观看| 91午夜精品亚洲一区二区三区 | av福利片在线观看| 999久久久精品免费观看国产| 国产精品综合久久久久久久免费| 好男人电影高清在线观看| 免费看a级黄色片| 人人妻,人人澡人人爽秒播| 午夜福利高清视频| 国产精品一区二区性色av| 亚洲成人久久性| 亚洲 国产 在线| av在线观看视频网站免费| 国产av在哪里看| av天堂中文字幕网| 波多野结衣巨乳人妻| 午夜视频国产福利| 99国产精品一区二区三区| 女同久久另类99精品国产91| 日韩欧美国产一区二区入口| 婷婷六月久久综合丁香| 欧美又色又爽又黄视频| 欧美日本亚洲视频在线播放| 美女免费视频网站| 3wmmmm亚洲av在线观看| 午夜a级毛片| avwww免费| 亚洲综合色惰| 我的女老师完整版在线观看| 国产一区二区在线av高清观看| 琪琪午夜伦伦电影理论片6080| 国产精品精品国产色婷婷| 搡老妇女老女人老熟妇| 久久久久九九精品影院| 99精品久久久久人妻精品| 极品教师在线视频| 亚洲av成人精品一区久久| 国产激情偷乱视频一区二区| 日日摸夜夜添夜夜添小说| 亚洲一区二区三区不卡视频| 欧美三级亚洲精品| av在线观看视频网站免费| 国产主播在线观看一区二区| 国产高清视频在线观看网站| av在线天堂中文字幕| 中文字幕熟女人妻在线| 免费搜索国产男女视频| 麻豆国产av国片精品| 国产成人欧美在线观看| 直男gayav资源| 国产伦精品一区二区三区四那| 中文字幕av在线有码专区| 免费看光身美女| 亚洲经典国产精华液单 | 午夜亚洲福利在线播放| 亚洲av第一区精品v没综合| 午夜老司机福利剧场| 最后的刺客免费高清国语| 精品欧美国产一区二区三| xxxwww97欧美| 九色国产91popny在线| 国产精品人妻久久久久久| 国内精品一区二区在线观看| 亚洲中文字幕日韩| ponron亚洲| 久久精品国产亚洲av香蕉五月| 有码 亚洲区| 日日干狠狠操夜夜爽| 男插女下体视频免费在线播放| 午夜精品久久久久久毛片777| 两人在一起打扑克的视频| 欧美高清性xxxxhd video| 免费在线观看日本一区| 国产免费男女视频| 熟女电影av网| 日本五十路高清| 男人舔女人下体高潮全视频| 国产精品av视频在线免费观看| 免费高清视频大片| 舔av片在线| 久久久久久久精品吃奶| 性色avwww在线观看| 亚洲欧美激情综合另类| 99热这里只有精品一区| 久久久精品大字幕| 久久精品国产亚洲av涩爱 | 在线观看舔阴道视频| 欧美最新免费一区二区三区 | 亚洲av成人av| 狠狠狠狠99中文字幕| 1024手机看黄色片| 亚洲精品456在线播放app | 欧美一级a爱片免费观看看| 亚洲一区二区三区不卡视频| av在线蜜桃| 国产高清激情床上av| 中文字幕熟女人妻在线| 十八禁人妻一区二区| 99久久精品国产亚洲精品| 黄色丝袜av网址大全| 亚洲,欧美,日韩| 在线观看av片永久免费下载| 久久精品国产亚洲av香蕉五月| 久久精品综合一区二区三区| 欧美成人a在线观看| 性欧美人与动物交配| 欧美一级a爱片免费观看看| 免费av不卡在线播放| 99国产极品粉嫩在线观看| 国产蜜桃级精品一区二区三区| 亚洲专区中文字幕在线| 亚洲国产色片| 国产极品精品免费视频能看的| 国产真实伦视频高清在线观看 | www.熟女人妻精品国产| 在线看三级毛片| 日韩大尺度精品在线看网址| 久久精品国产亚洲av涩爱 | 琪琪午夜伦伦电影理论片6080| 亚洲内射少妇av| 波多野结衣高清作品| 久久久久久国产a免费观看| 国产高清视频在线观看网站| 亚洲av美国av| 亚州av有码| avwww免费| 婷婷六月久久综合丁香| 亚洲内射少妇av| 亚洲无线在线观看| 男女床上黄色一级片免费看| 日本 av在线| eeuss影院久久| 男女做爰动态图高潮gif福利片| 少妇被粗大猛烈的视频| 久久99热这里只有精品18| 午夜福利欧美成人| 亚洲精品色激情综合| 国产三级黄色录像| 美女xxoo啪啪120秒动态图 | 免费看美女性在线毛片视频| 一夜夜www| 国产高清有码在线观看视频| 一夜夜www| 久久国产乱子伦精品免费另类| 欧美区成人在线视频| 动漫黄色视频在线观看| 亚洲国产高清在线一区二区三| ponron亚洲| 亚洲乱码一区二区免费版| 欧美bdsm另类| 国产高清视频在线观看网站| 深爱激情五月婷婷| 18美女黄网站色大片免费观看| 天天躁日日操中文字幕| 午夜激情福利司机影院| 欧美极品一区二区三区四区| 99久久99久久久精品蜜桃| 亚洲av五月六月丁香网| 免费在线观看影片大全网站| 最好的美女福利视频网| 99久久精品热视频| 国产一区二区在线观看日韩| 久久中文看片网| 90打野战视频偷拍视频| 99久久无色码亚洲精品果冻| 精品一区二区三区视频在线| 久久久国产成人精品二区| 无人区码免费观看不卡| 精品午夜福利视频在线观看一区| 欧美日韩亚洲国产一区二区在线观看| 最近最新中文字幕大全电影3| 成人美女网站在线观看视频| a级一级毛片免费在线观看| 午夜免费男女啪啪视频观看 | 欧美精品国产亚洲| 性色av乱码一区二区三区2| 久久久久九九精品影院| 欧美丝袜亚洲另类 | 午夜影院日韩av| 在线观看一区二区三区| 床上黄色一级片| 国产男靠女视频免费网站| 成人国产综合亚洲| 免费无遮挡裸体视频| 国产极品精品免费视频能看的| 一进一出抽搐gif免费好疼| 国内精品美女久久久久久| 嫩草影视91久久| www.色视频.com| 男女床上黄色一级片免费看| 中文字幕熟女人妻在线| 国产黄色小视频在线观看| 国产黄色小视频在线观看| 久久久久国内视频| 能在线免费观看的黄片| 国产精品伦人一区二区| 国产久久久一区二区三区| 成人美女网站在线观看视频| 91九色精品人成在线观看| 欧美不卡视频在线免费观看| 国产老妇女一区| 99久久久亚洲精品蜜臀av| 亚洲成人精品中文字幕电影| 少妇的逼好多水| 色播亚洲综合网| 成年人黄色毛片网站| 三级毛片av免费| 天堂影院成人在线观看| 波多野结衣巨乳人妻| 欧美日韩瑟瑟在线播放| 亚洲最大成人中文| 日本黄色视频三级网站网址| 国产av在哪里看| 国产免费av片在线观看野外av| 舔av片在线| 欧美黑人巨大hd| 麻豆国产av国片精品| 男人狂女人下面高潮的视频| 中文在线观看免费www的网站| 在线播放无遮挡| 亚洲成人免费电影在线观看| 国产乱人视频| 日本 av在线| 有码 亚洲区| 久久天躁狠狠躁夜夜2o2o| 欧美色欧美亚洲另类二区| 国产精品一区二区免费欧美| 国产成+人综合+亚洲专区| 日日夜夜操网爽| 757午夜福利合集在线观看| 久久热精品热| 国产免费av片在线观看野外av| 黄色视频,在线免费观看| 亚洲欧美日韩高清专用| 国产精品久久久久久久久免 | 一级a爱片免费观看的视频| 久久精品国产自在天天线| 一二三四社区在线视频社区8| 99国产精品一区二区蜜桃av| 午夜激情福利司机影院| 丰满人妻熟妇乱又伦精品不卡| 色5月婷婷丁香| 精品不卡国产一区二区三区| 99国产极品粉嫩在线观看| 长腿黑丝高跟| 久久天躁狠狠躁夜夜2o2o| 无人区码免费观看不卡| 国产又黄又爽又无遮挡在线| 免费av观看视频| 永久网站在线| 九九久久精品国产亚洲av麻豆| 国产精品爽爽va在线观看网站| 久久午夜亚洲精品久久| 免费黄网站久久成人精品 | 免费看a级黄色片| 国产高清视频在线观看网站| 亚洲精品久久国产高清桃花| 男人狂女人下面高潮的视频| 日日夜夜操网爽| 久久人人精品亚洲av| 波多野结衣高清作品| 亚洲五月天丁香| 成人亚洲精品av一区二区| 真人做人爱边吃奶动态| av天堂在线播放| 久久婷婷人人爽人人干人人爱| 偷拍熟女少妇极品色| 99热6这里只有精品| 免费黄网站久久成人精品 | 亚洲自拍偷在线| 天堂√8在线中文| 美女cb高潮喷水在线观看| 久久草成人影院| 怎么达到女性高潮| 亚洲av成人不卡在线观看播放网| 在线免费观看的www视频| 午夜亚洲福利在线播放| 午夜久久久久精精品| 亚洲精品一卡2卡三卡4卡5卡| 免费看a级黄色片| 午夜福利免费观看在线| 国产麻豆成人av免费视频| 天堂影院成人在线观看| 中文资源天堂在线| 国产三级中文精品| 国产亚洲欧美在线一区二区| 欧美xxxx黑人xx丫x性爽| 美女高潮的动态| 亚洲专区国产一区二区| 久久精品国产自在天天线| 日韩av在线大香蕉| 色综合欧美亚洲国产小说| 日韩欧美在线乱码| www日本黄色视频网| 欧美一区二区亚洲| 三级毛片av免费| 国内久久婷婷六月综合欲色啪| 国产探花极品一区二区| 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 三级毛片av免费| 国内精品久久久久精免费| 亚洲中文字幕日韩| 国产高清视频在线观看网站| 国产精品精品国产色婷婷| 日韩 亚洲 欧美在线| 18+在线观看网站| 免费av毛片视频| bbb黄色大片| 网址你懂的国产日韩在线| 久久久久久国产a免费观看| 成人av在线播放网站| 窝窝影院91人妻| 一进一出抽搐gif免费好疼| 久久中文看片网| www.www免费av| 亚洲美女搞黄在线观看 | av天堂中文字幕网| 97人妻精品一区二区三区麻豆| 99国产综合亚洲精品| 国产淫片久久久久久久久 | 久久99热6这里只有精品| 免费人成在线观看视频色| 成人永久免费在线观看视频| 在线观看av片永久免费下载| 在线免费观看的www视频| 国产精华一区二区三区| 亚洲av成人精品一区久久| 动漫黄色视频在线观看| 亚洲av美国av| 俺也久久电影网| 亚洲在线观看片| 小说图片视频综合网站| 亚洲片人在线观看| a级毛片a级免费在线| 在线观看午夜福利视频| 国产成人啪精品午夜网站| 国产视频一区二区在线看| 少妇被粗大猛烈的视频| 嫩草影院新地址| 亚洲第一欧美日韩一区二区三区| 伦理电影大哥的女人| 黄色女人牲交| 久久久久国内视频| 亚洲av成人精品一区久久| 日韩欧美 国产精品| 免费看美女性在线毛片视频| 国产精品伦人一区二区| 欧美日韩国产亚洲二区| 1000部很黄的大片| 哪里可以看免费的av片| 国产精品嫩草影院av在线观看 | x7x7x7水蜜桃| 99热精品在线国产| 欧美日韩黄片免| 一二三四社区在线视频社区8| 精品欧美国产一区二区三| 日日夜夜操网爽| 91午夜精品亚洲一区二区三区 | 桃红色精品国产亚洲av| 欧美高清性xxxxhd video| 757午夜福利合集在线观看| 精品一区二区三区av网在线观看| 日本撒尿小便嘘嘘汇集6| 色综合婷婷激情| 搡老岳熟女国产| 欧美成人性av电影在线观看| 蜜桃亚洲精品一区二区三区| 人人妻人人看人人澡| 午夜福利18| 午夜精品在线福利| 日日夜夜操网爽| 久久久久亚洲av毛片大全| 欧美性猛交╳xxx乱大交人| 亚洲人与动物交配视频| 欧美潮喷喷水| 一进一出抽搐gif免费好疼| or卡值多少钱| 美女高潮的动态| 激情在线观看视频在线高清| 一级a爱片免费观看的视频| 色精品久久人妻99蜜桃| 国产在视频线在精品| 搡老熟女国产l中国老女人| 3wmmmm亚洲av在线观看| 欧美色视频一区免费| 欧美潮喷喷水| 国产精品影院久久| 一区二区三区免费毛片| 国产综合懂色| 悠悠久久av| 极品教师在线免费播放| 日韩 亚洲 欧美在线| 色尼玛亚洲综合影院| 久久精品91蜜桃| 午夜福利免费观看在线| 色av中文字幕| 老司机深夜福利视频在线观看| 色哟哟·www| 欧美丝袜亚洲另类 | 精品欧美国产一区二区三| 91在线观看av| av欧美777| 欧美成狂野欧美在线观看| 乱码一卡2卡4卡精品| 国产三级中文精品| 亚洲国产精品成人综合色| 欧美一级a爱片免费观看看| 村上凉子中文字幕在线| 免费搜索国产男女视频| 99热精品在线国产| 少妇被粗大猛烈的视频| 91精品国产九色| av播播在线观看一区| 国产精品国产三级国产专区5o| 天天躁夜夜躁狠狠久久av| 久久6这里有精品| 一个人看视频在线观看www免费| 欧美亚洲 丝袜 人妻 在线| 久久99热这里只频精品6学生| 伊人久久国产一区二区| 免费大片黄手机在线观看| 五月玫瑰六月丁香| 久热久热在线精品观看| 夫妻性生交免费视频一级片| 97在线视频观看| 久久精品国产a三级三级三级| 亚洲一区二区三区欧美精品 | 国产亚洲av片在线观看秒播厂| 91午夜精品亚洲一区二区三区| 一二三四中文在线观看免费高清| 国产综合懂色| 亚洲精品日韩av片在线观看| 99久久精品国产国产毛片| 天天一区二区日本电影三级| 在线观看三级黄色| 国产精品伦人一区二区| 在线看a的网站| 日韩成人av中文字幕在线观看| 老女人水多毛片| 国产精品成人在线| 欧美成人a在线观看| 久热这里只有精品99| 久久久久精品久久久久真实原创| 简卡轻食公司| 白带黄色成豆腐渣| 国产亚洲91精品色在线| 如何舔出高潮| 亚洲精品aⅴ在线观看| av在线播放精品| 精品久久久噜噜| 日本与韩国留学比较| 毛片女人毛片| 内射极品少妇av片p| 中文精品一卡2卡3卡4更新| 亚洲精品中文字幕在线视频 | 中文乱码字字幕精品一区二区三区| 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 国产精品一区www在线观看| 国产白丝娇喘喷水9色精品| 色吧在线观看| 干丝袜人妻中文字幕| 亚洲精品一二三| 亚洲综合色惰| 国产精品久久久久久久久免| 两个人的视频大全免费| 97热精品久久久久久| 少妇的逼水好多| 日韩制服骚丝袜av| 超碰97精品在线观看| 日本黄大片高清| 午夜免费鲁丝| 成人欧美大片| 深夜a级毛片| 亚洲自偷自拍三级| 水蜜桃什么品种好| 国产爱豆传媒在线观看| 夫妻午夜视频| 成年免费大片在线观看| 五月开心婷婷网| 亚洲一级一片aⅴ在线观看| 欧美xxxx性猛交bbbb| 九九爱精品视频在线观看| 国产成人精品久久久久久| 丝袜美腿在线中文| 少妇的逼水好多| 日韩不卡一区二区三区视频在线| 最后的刺客免费高清国语| 丝袜喷水一区| 日韩一本色道免费dvd| 嫩草影院入口| 欧美变态另类bdsm刘玥| 亚洲怡红院男人天堂| 亚洲欧美日韩另类电影网站 | 尤物成人国产欧美一区二区三区| 亚洲精品视频女| 大片免费播放器 马上看| 亚洲精品一二三| 中文精品一卡2卡3卡4更新| 成年av动漫网址| 国产精品国产三级专区第一集| 禁无遮挡网站| 久久久久国产网址| 亚洲精品国产色婷婷电影| 真实男女啪啪啪动态图| 看非洲黑人一级黄片|