• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking

    2015-04-22 02:33:16GONGJianwei龔建偉XUWei徐威JIANGYan姜巖LIUKai劉凱GUOHongfen郭紅芬SUNYinjian孫銀健
    關(guān)鍵詞:劉凱

    GONG Jian-wei(龔建偉), XU Wei(徐威), JIANG Yan(姜巖), LIU Kai(劉凱), GUO Hong-fen(郭紅芬), SUN Yin-jian(孫銀健)

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    ?

    Multi-constrained model predictive control for autonomous ground vehicle trajectory tracking

    GONG Jian-wei(龔建偉), XU Wei(徐威), JIANG Yan(姜巖), LIU Kai(劉凱), GUO Hong-fen(郭紅芬), SUN Yin-jian(孫銀健)

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

    A multi-constrained model predictive control (MPC) algorithm for trajectory tracking of an autonomous ground vehicle is proposed and tested in this paper. First, to simplify the computation, an active steering linear error model is applied in the MPC controller. Then, a control increment constraint and a relaxing factor are taken into account in the objective function to ensure the smoothness of the trajectory, using a softening constraints technique. In addition, the controller can obtain optimal control sequences which satisfy both the actual kinematic constraints and the actuator constraints. The circular trajectory tracking performance of the proposed method is compared with that of another MPC controller. To verify the trajectory tracking capabilities of the designed controller at different desired speed, the simulation experiments are carried out at the speed of 3m/s, 5m/s and 10m/s. The results demonstrate the MPC controller has a good speed adaptability.

    autonomous ground vehicle; active steering control; model predictive control; trajectory tracking

    Active steering techniques play a very important role in a fully autonomous ground vehicle (AGV) control system[1]. Trajectory tracking control is one of the basic control problems in active steering. It requires the AGV to reach a given or planned point at a specified time. Since a ground vehicle is a strongly nonlinear and highly coupled system, the trajectory tracking control of the AGV has always been a difficulty. Many methods and techniques have been proposed for trajectory tracking of the AGV, including backstepping[2-3], dynamic feedback linearization[4], sliding mode control[5], etc. Some intelligent control methods, such as fuzzy control[6], neural network control[7], and rolling optimization control[8], have also been gradually applied in this research and engineering practice. However, most of these methods regard a vehicle as a mobile robot, not further considering various constraints of the vehicle in the process of trajectory tracking. With limited constraints of the steering control quantity and smoothness constraints of the control increment, the vehicle cannot follow the control quantity in every control cycle. This will lead to the jitter phenomenon in trajectory tracking.

    Model predictive control (MPC) method, which combines predictive models, a receding horizon optimization and a feedback correction, has a very good ability to solve the control problem with multiple constraints. The constraints are used to build the objective function of an MPC controller to obtain an optimal control output. According to the difference of prediction models, the MPC can be divided into nonlinear MPC and linear MPC[9]. Although the nonlinear MPC has been well developed, its computation consumption is much higher than that of the linear MPC controller[10]. As the constraint proposed in Ref. [10] has no experimental verification, it cannot ensure the control output is carried out before the next control cycle. A trajectory tracking method based on the linear MPC is proposed in Ref.[11], in which the vehicle steering constraints are taken into consideration. However, it does not consider constraints of the control increment in the objective function. As a result, an abrupt change of the control quantity is inevitable.

    In this paper,we try to take as many constraints as possible into consideration when constructing the MPC objective function. Compared with the previous work, the following improvements can be achieved. First, to ensure the smoothness of the control quantity and the vehicle’s maneuver, a control increment constraint and a relaxing factor are added into the objective function. Second, we obtain the optimal control sequences to the actual kinematic constraints and actuator constraints of the vehicle, which result from the longitudinal and lateral tracking simulation and real vehicle tests. Also, to some extent, dynamic characteristics of the AGV in actual movement are considered. Finally, the comparative experiments of the circular trajectory tracking capability of two different controllers are implemented in the CarSim/Simulink platform.

    1 Vehicle kinematic modeling

    The simplified front-wheel steering vehicle kinematic model is shown in Fig. 1. In the global coordinate systemXOY, the vehicle kinematic equation can be expressed as

    (1)

    where (x,y) is the coordinate of the rear axle center,θis the heading angle of the vehicle body,δis the front wheel angle,vis the speed of the rear axle, andlis the wheel base.

    Fig.1 Vehicle kinematic model

    In Eq.(1), the system can be viewed as a control system with an input u(v,δ) and a state variableχ(x,y,θ). The general form is

    (2)

    Assuming that each point on the given reference trajectory satisfies the kinematic equation above, the general form can be expressed as

    (3)

    whereχr=[xryrθr]T, ur=[vrδr]T.

    Using the Taylor series expansion at the reference trajectory point in Eq.(2) and ignoring higher order terms, we can obtain

    (4)

    Subtracting Eq.(3) from Eq.(4) results in

    (5)

    Eq.(5) is the linear error model of the AGV. In order to apply the model to the design of the MPC controller, Eq.(5) can be discretized as

    (6)

    2 Model predictive controller

    The design concept of the MPC controller is to convert an actual control problem into an objective function with constraints. Optimizing the objective function, we can obtain the control sequences in a future horizon section. Then the first of them is applied to the control system. The MPC controller is designed based on the linear error model. The objective function is linearized and converted into a quadratic program (QP), which can be easier to calculate.

    The algorithm diagram of the trajectory tracking controller is shown in Fig.2, where the dashed box represents the MPC controller mainly composed of the linear error model, system constraints, and the objective function. Since the linear error model of the AGV has been identified, the main content of the controller design is to construct an appropriate objective function, which can combine the constraints of AGV’s active steering system.

    Fig.2 Trajectory tracking MPC controller

    2.1 Objective function

    The ability of the objective function is to make the AGV track the desired trajectory rapidly and smoothly. Therefore, the system status deviation and the optimization of the control output should be combined into the controller. The objective function of the trajectory tracking controller in Ref.[11] is

    (7)

    where Q and R represent weight matrices. The first term in Eq.(7) reflects the capability of the system to track the reference trajectory, while the second reflects the constraint on the change of the control output. The advantage of the above objective function is that it can be easily converted into the standard form of quadratic programming, but there are obvious flaws:the control increment in each sampling period cannot be limited. In other words, the phenomenon of the control output mutation cannot be avoided, and thus the continuity of the control output cannot be ensured. Referencing to the soft constraints concept in Ref. [12], we can get the following objective function:

    (8)

    whereNpis the predictive horizon,Ncis the control horizon,ρis the weight coefficient, andεis the relaxing factor.

    Compared with Eq.(7), Eq.(8) adds a relaxing factor and has the control increment instead of the control output. This will not only allow for a direct limiting of the control increment, but will also prevent emerging infeasible solutions during execution.

    In the objective function, the control output of the system in a section of the future horizon can be predicted using the linear error model of the AGV. And Eq. (6) can be converted to

    (9)

    A new expression of the state space is obtained as

    (10)

    Also, the following hypothesis is made to simplify the calculation as

    Ak,t=At,t,k=1,…,t+N-1 Bk,t=Bt,t,k=1,…,t+N-1

    (11)

    As a result, the following predicted output expression of the system can be obtained after deduction:

    Y(t)=Ψtξ(t|t)+ΘtΔU(t)

    (12)

    where

    Substituting Eq. (12) into Eq. (8) can result in the complete form of the objective function.

    2.2 Constraints description

    The limiting constraints of the control output quantity and the control increment constraints in the trajectory tracking control will be considered as the main factors in our work. The control output quantity can be expressed as

    umin(t+k)≤u(t+k)≤umax(t+k),k=0,1,…,Nc-1

    (13)

    And the expression of the control increment constraint is

    Δumin(t+k)≤Δu(t+k)≤

    Δumax(t+k),k=0,1,…,Nc-1

    (14)

    In the objective function,the variables to be solved are control increments in the control horizon. The constraint conditions can only be expressed as a form of the control increment or a form of the control increment multiplied by the transformation matrix. Thus, Eq.(14) needs to be converted for obtaining the corresponding transformation matrix. The relationship is defined as

    u(t+k)=u(t+k-1)+Δu(t+k)

    (15)

    We assume that

    Ut=1Nc?u(k-1)

    (16)

    (17)

    where 1Ncis the column vector ofNcones, Imis the identity matrix with a dimension ofm, ? is Kronecker product, and u(k-1) is the previous control input.

    Combining Eqs.(15)(16)(17), Eq.(13) can be converted into

    Umin≤AΔUt+Ut≤Umax

    (18)

    where Uminand Umaxare the lower and upper bounds of the control input, respectively.

    To solve the following optimization problem,the objective function is converted into a standard quadratic form with one constraint condition.

    J(ξ(t),u(t-1),ΔU(t))=[ΔU(t)T,ε]THt[ΔU(t)T,ε]+Gt[ΔU(t)T,ε]

    (19)

    s.t.ΔUmin≤ΔUt≤ΔUmaxUmin≤AΔUt+Ut≤Umax

    After obtaining the solution to Eq.(19) in each control cycle, a series of control input increments in the control horizon can be calculated as

    (20)

    The first element of the control sequences is taken as the actual control input increment of the controller.

    (21)

    The above process is repeated continuously in every control cycle, and the AGV can track the desired trajectory.

    3 Simulation experiment

    Fig.3 Co-simulation platform of CarSim/Simulink

    In order to verify the performance of the MPC based trajectory tracking controller, a co-simulation CarSim/Simulink platform, which is composed of the CarSim module and the trajectory tracking controller module, is built in this work (Fig.3). In the simulation platform, the trajectory tracking controller module is structured by a Simulink S-function. The sampling frequencies of CarSim and the trajectory tracking controller are set to 1 000 Hz and 20 Hz, respectively.

    Vehicle motion parameters in the actual system are determined by a road input and vehicle suspension characteristics. However, the vehicle motion parameters on the simulation platform are calculated by the built-in road model and the multi-rigid-body dynamics model of CarSim[13-14]. The CarSim module receives the control output quantity of the trajectory tracking controller and outputs the real-time vehicle motion parameters, including the global coordinates of the vehicle location, the heading angle and the longitudinal and lateral speed. The trajectory tracking controller receives a reference trajectory input and a measuring input, then outputs the control quantity, including the front-wheel steering angle and the longitudinal speed. The control output quantity of the actuator is implemented by the built-in controller of CarSim.

    3.1 Tracking capability tests

    In order to make the controller constraints reflect the actual constraints of the AGV, the longitudinal and lateral tracking capability of a real AGV testbed is tested. We take the AGV testbed in Refs.[1] [15] as a prototype of this work.

    In the longitudinal tracking experiment, three expected vehicle step speeds, 5 m/s, 7.5 m/s and 10 m/s, are set to test step speed response characteristics. After the vehicle running at each speed for several minutes, the maximum brake force is applied to the vehicle to test the deceleration performance. The corresponding acceleration and deceleration times are listed in Tab.1. The vehicle is relatively smooth when accelerating and decelerating within the middle-low speed range (7.5 m/s or less) and its acceleration remains at about 1 m/s2. To make the tracking process more stable, the vehicle speed deviationveconstraint and the speed increment in every control cycle Δvconstraint can be set to

    -0.2 m/s≤ve≤0.2 m/s-0.05 m/s≤Δv≤0.05 m/s

    (22)

    Tab.1 Test of the longitudinal tracking capability of the AGV testbed

    speed/(m·s-1)accelerationtimetj/sbrakingtimetz/s0-5560-7 5880-101512

    In the lateral tracking test, the front wheels are steered continuously from the left limiting position to the right limiting position. The corresponding position and elapsed time are listed in Tab. 2. It takes about 1.8 s to turn the steering wheel for a circle, corresponding to the front-wheel steering angle of about 17 °.

    Fig.4 Comparison of the trajectory tracking capability of two controllers

    Tab.2 Test of the lateral steering actuator’s performance

    DirectionSteeringwheelanglelimitsα/(°)Correspondingfront?wheelsteeringangleδ/(°)Elapsedtimet/scounterclockwise-511254 9clockwise492254 9

    Therefore, the limitation and the increment of the front-wheel steering angle can be set to

    -25°≤δ≤25°-0.47°≤Δδ≤0.47°

    (23)

    Combining Eq.(22) and Eq.(23), we can obtain the control output quantityuconstraint and the control increment Δu constraint.

    (24)

    (25)

    3.2 Results of trajectory tracking simulation tests

    We design a set of tests to compare the trajectory tracking performance between our proposed method (controller A, in Eq. (8)) and the method illustrated in Ref.[11] (controller B, in Eq. (7)). The objective functions in controller A and B are designed with methods of soft constraints and hard constraints, respectively.

    The results in Fig. 4a show that the circular reference trajectory can be tracked quickly by both the controller A and B when there is an initial deviation between the AGV and the circular reference trajectory. In Fig. 4b and Fig. 4c, we can see that there is the “jitter” phenomenon for a long time in the control output quantity curve of controller B, however, the control output quantity of controller A is always smooth. Furthermore, Fig.4d demonstrates that as there is no constraint on the control increment of controller B, the control increment changes sharply, and it cannot be executed by the actuator. However, the control increment of controller A is always limited by the constraint. In Fig. 4e, the solver output flag is reported. In our tests, the value 0 indicates that the limit on the iteration number has been reached, but the optimal solution hasn’t been found. The value 1 is returned when an optimal feasible solution is found. We can see that controller B does not find the optimal solution occasionally. Thus, by adding the control increment constraint and the relaxing factor in the objective function, it is possible to significantly reduce the “jitter” phenomenon and ensure the smoothness of the control output quantity.

    Speed adaptability is a very important characteristic of a trajectory tracking controller. Fig. 5 shows the tracking results of the controller A when the AGV runs at the speed of 3 m/s, 5 m/s, and 10 m/s, respectively. Fig. 5a shows that the AGV can follow the desired trajectory, and the position error goes to zero quickly, as shown in Fig. 5b. The time used to follow the circular trajectory is 52.10 s, 31.75 s, and 15.75 s, respectively. We can see that the control algorithm has a good convergence. Fig. 5c and Fig.5d show that the control output quantity and the control increment of the MPC controller are all limited in the constraint horizon and have no abrupt changes. So, we can conclude that the MPC controller has a good speed adaptability.

    Fig.5 Tracking capability at different desired speed of controller A

    4 Conclusions

    In this paper,a trajectory tracking controller based on the linear error model MPC is proposed. We apply a softening constraints technique to combine multiple constraints in the MPC objective function. All constraints are generated from the longitudinal and lateral tracking capabilities tests on our real AGV testbed.

    The control increment constraint and the relaxing factor in the objective function can ensure the smoothness of control output quantity. The optimal control output sequences of the controller can satisfy the longitudinal and lateral kinematic constraints and actuator constraints. The results of the CarSim/Simulink co-simulation tests show that the controller can track the desired trajectory rapidly and steadily, while satisfying the control limiting constraint and the control increment constraint.

    However, as the simplified vehicle kinematic model is taken as the AGV model in this paper and the tire slip and cornering at high speed are not taken into account, the capability of the trajectory tracking controller in the case of high speed is limited. Our future work is to establish a more accurate vehicle model and to test it on our AGV Ray (the champion autonomous vehicle in the China Future Challenge 2013[16]) to further verify the effectiveness of the proposed method, and an initial result of high speed AGV trajectory tracking is illustrated in a video[17].

    [1] Jiang Yan, Zhao Xijun, Gong Jianwei, et al. System design of self-driving in simplified urban environments [J]. Journal of Mechanical Engineering, 2012, 48(20): 103-112. (in Chinese)

    [2] Wu Weiguo, Chen Huitang, Wang Yuejuan. Global trajectory tracking control of mobile robots [J]. Acta Automatica Sinica, 2001, 27(3): 326-331. (in Chinese)

    [3] Jiao Deyu. Robust trajectory tracking control of four-wheel mobile carb [J]. Journal of Jilin University (Engineering and Technology Edition), 2011, (S2):301-305. (in Chinese)

    [4] Oriolo G, De Luca A, Vendittelli M. WMR control via dynamic feedback linearization: design, implementation, and experimental validation [J]. IEEE Trans-actions on Control Systems Technology, 2002, 10(6): 835-852.

    [5] Cao Zhengcai, Zhao Yingtao, Fu Yili. Trajectory tracking control approach of a car-like mo-bile robot [J]. Acta Electronica Sinica, 2012, 40(4): 632-635. (in Chinese)

    [6] Ouadah N, Ourak L, Boudjema F. Car-like mobile robot oriented positioning by fuzzy con-trollers [J]. International Journal of Advanced Robotic Systems, 2008, 5(3): 249-256.

    [7] Yang Jun, Ma Rong, Liu Ting, et al. Path tracking of intelligent vehicle based on fuzzy neural network [J]. Computer Simulation, 2012, 29(7): 368-371. (in Chinese)

    [8] Cong Yanfeng, An Xiangdong, Chen Hong, et al. Path following control of car-like robot based on rolling windows [J]. Journal of Jilin University (Engineering and Technology Edition),2012,42(1):182-187. (in Chinese)

    [9] Xie Feng. Model Predictive Control of Non-holonomic Mobile Robots [D]. Stillwater, USA: Oklahoma State University, 2007.

    [10] Falcone P, Borrelli F, Asgari J, et al. Predictive active steering control for autonomous vehi-cle systems [J]. IEEE Transactions on Control Systems Technology, 2007, 15(3):566-580.

    [11] Kuhne F, Lages W F, da Silva Jr J M G. Model predictive control of a mobile robot using linearization [C]∥the 2002 IEEE International Conference on Robotics and Automation, Washington, D C: USA, 2002.

    [12] Li Shengbo, Wang Jianqiang, Li Keqiang. Stabilization of linear predictive control systems with softening constraints [J]. Journal of Tsinghua University(Science and Technology),2010(11):1848-1852.

    [13] Jiang Yanhua, Xiong Guangming, Jiang Yan, et al. Design of simulation platform of intelligent vehicular visual odometry based on CarSim and Matlab [J]. Journal of Mechanical Engineering, 2012(22):113-120. (in Chinese)

    [14] Li Peng, Wei Minxiang, Hou Xiaoli. Modeling and co-simulation of adaptive cruise control system [J]. Automotive Engineering,2012(7): 622-626. (in Chinese)

    [15] Hu Yuwen, Gong Jianwei, Jiang Yan, et al. Hybrid map-based navigation method for un-manned ground vehicle in urban Scenario [J]. Remote Sensing, 2013, 5(8):3662-3680.

    [16] Zhu Liwen. The champion autonomous vehicle in the China Future Challenge [EB/OL]. [2013- 05- 01]. http:∥www.bit.edu.cn/xww/mtlg/94665.htm.

    [17] Xu Wei. MPC based double shift line trajectory tracking control for a high speed autonomous ground vehicle [EB/OL]. [2013- 09- 03]. http:∥v.youku.com/v_show/id_XNjU3MjQ3ODgw.html.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0403

    TP 242 Document code: A Article ID: 1004- 0579(2015)04- 0441- 08

    Received 2014- 01- 04

    Supported by the National Natural Science Foundation of China (51275041, 61304194); the Doctoral Fund of Ministry of Education of China (20121101120015); the Fundamental Research Funds from Beijing Institute of Technology (20120342011)

    E-mail: jiangyan@bit.edu.cn

    猜你喜歡
    劉凱
    QUASIPERIODICITY OF TRANSCENDENTAL MEROMORPHIC FUNCTIONS*
    航空航天模型實踐活動手冊
    多入路內(nèi)固定聯(lián)合VAC治療SchatzkerⅥ型骨折的療效觀察
    Speedup of self-propelled helical swimmers in a long cylindrical pipe
    High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4?
    婚姻失控,市場真有情感『挽回藥』?
    中外文摘(2019年24期)2019-12-26 16:53:16
    “賣官書記”的骯臟交易
    黨建(2018年4期)2018-05-04 07:03:38
    一個賣“前程”的受賄貪官
    左手“反腐”,右手貪腐
    清風(fēng)(2017年11期)2017-11-24 08:03:21
    紀(jì)委書記的斂財經(jīng)
    在线观看免费视频网站a站| 欧美日韩亚洲国产一区二区在线观看 | 日韩中文字幕欧美一区二区 | 观看av在线不卡| 人成视频在线观看免费观看| 日日啪夜夜爽| a 毛片基地| netflix在线观看网站| 中文字幕精品免费在线观看视频| 一区二区av电影网| 免费人妻精品一区二区三区视频| 精品福利永久在线观看| 欧美精品一区二区大全| 人成视频在线观看免费观看| 亚洲精品美女久久久久99蜜臀 | 天天躁夜夜躁狠狠躁躁| 欧美精品亚洲一区二区| 成人漫画全彩无遮挡| 国产欧美日韩综合在线一区二区| av.在线天堂| 亚洲精品美女久久av网站| 高清在线视频一区二区三区| 亚洲国产精品成人久久小说| 久久久久久久久免费视频了| 精品少妇久久久久久888优播| 亚洲国产中文字幕在线视频| 日韩不卡一区二区三区视频在线| 大香蕉久久成人网| 又大又爽又粗| 欧美亚洲 丝袜 人妻 在线| 99香蕉大伊视频| 在线观看免费日韩欧美大片| 国产精品av久久久久免费| 久久国产精品大桥未久av| 久久鲁丝午夜福利片| 午夜福利视频在线观看免费| 婷婷成人精品国产| 国产爽快片一区二区三区| 久久久久久人人人人人| 久久久久国产精品人妻一区二区| 午夜久久久在线观看| 大码成人一级视频| 久久久国产一区二区| 久久久国产一区二区| 国产男人的电影天堂91| 亚洲国产欧美在线一区| 黄片无遮挡物在线观看| 免费高清在线观看视频在线观看| 亚洲色图 男人天堂 中文字幕| 成年av动漫网址| 中文字幕高清在线视频| 亚洲国产精品一区三区| 亚洲欧美成人综合另类久久久| 捣出白浆h1v1| 成人午夜精彩视频在线观看| 亚洲专区中文字幕在线 | 自线自在国产av| 亚洲国产精品一区三区| 91aial.com中文字幕在线观看| 欧美黑人精品巨大| 9热在线视频观看99| 性少妇av在线| 久久99一区二区三区| 天天躁夜夜躁狠狠躁躁| 老司机深夜福利视频在线观看 | 热re99久久精品国产66热6| 校园人妻丝袜中文字幕| 国产精品亚洲av一区麻豆 | 又黄又粗又硬又大视频| 一边亲一边摸免费视频| 欧美精品人与动牲交sv欧美| videosex国产| 如何舔出高潮| 亚洲国产精品成人久久小说| 国产精品久久久久成人av| 亚洲精品国产色婷婷电影| 熟女少妇亚洲综合色aaa.| 婷婷色综合大香蕉| 亚洲一码二码三码区别大吗| 国产野战对白在线观看| 新久久久久国产一级毛片| 老司机靠b影院| 丝袜脚勾引网站| 国产亚洲最大av| 亚洲av男天堂| 久久精品久久久久久噜噜老黄| 在线观看免费日韩欧美大片| 久久av网站| 日日啪夜夜爽| 亚洲美女搞黄在线观看| 国产无遮挡羞羞视频在线观看| 99九九在线精品视频| 久久热在线av| 精品久久蜜臀av无| 亚洲av日韩在线播放| av有码第一页| 亚洲久久久国产精品| av视频免费观看在线观看| 丝袜喷水一区| 男人舔女人的私密视频| 在线 av 中文字幕| 久久久久国产精品人妻一区二区| 婷婷成人精品国产| 91成人精品电影| 国产亚洲精品第一综合不卡| 久久久久久免费高清国产稀缺| 免费黄频网站在线观看国产| 亚洲第一av免费看| 国产深夜福利视频在线观看| 黄网站色视频无遮挡免费观看| 一级a爱视频在线免费观看| 午夜日韩欧美国产| 国产精品久久久久成人av| 搡老乐熟女国产| 日韩av免费高清视频| 国产一区二区三区av在线| 久久99一区二区三区| 男女免费视频国产| 国产免费现黄频在线看| 狠狠精品人妻久久久久久综合| 国产精品蜜桃在线观看| 老司机靠b影院| 婷婷成人精品国产| 久久久久久人妻| 成年动漫av网址| 在线观看人妻少妇| 亚洲美女搞黄在线观看| 国产精品免费视频内射| 麻豆精品久久久久久蜜桃| 美女国产高潮福利片在线看| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产一区二区精华液| 啦啦啦中文免费视频观看日本| 日韩欧美精品免费久久| 制服人妻中文乱码| 黑人猛操日本美女一级片| 日韩不卡一区二区三区视频在线| 国产精品一区二区在线不卡| 亚洲av中文av极速乱| 亚洲成色77777| 性高湖久久久久久久久免费观看| 天天影视国产精品| 中文字幕制服av| 欧美 亚洲 国产 日韩一| 亚洲成人手机| 日韩成人av中文字幕在线观看| 亚洲一级一片aⅴ在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲人成77777在线视频| www.av在线官网国产| 丝袜喷水一区| 天天躁夜夜躁狠狠躁躁| 不卡av一区二区三区| 色视频在线一区二区三区| 午夜激情久久久久久久| 欧美日韩视频精品一区| 亚洲欧美一区二区三区黑人| 国产一卡二卡三卡精品 | 亚洲中文av在线| 国产在线视频一区二区| 熟女av电影| 国产伦理片在线播放av一区| 熟女av电影| 亚洲成人免费av在线播放| 亚洲成人一二三区av| 亚洲熟女毛片儿| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美色中文字幕在线| 欧美变态另类bdsm刘玥| 久热这里只有精品99| 亚洲伊人色综图| 精品一区二区三卡| 亚洲国产看品久久| 国产又色又爽无遮挡免| 国产又色又爽无遮挡免| 熟女av电影| 亚洲视频免费观看视频| 99国产精品免费福利视频| 国产成人一区二区在线| 在线观看一区二区三区激情| 亚洲少妇的诱惑av| 美女午夜性视频免费| 日韩 欧美 亚洲 中文字幕| 日韩电影二区| 日韩欧美一区视频在线观看| 国产又爽黄色视频| 久久亚洲国产成人精品v| 亚洲av电影在线进入| 天天操日日干夜夜撸| 老鸭窝网址在线观看| 国产一区二区三区av在线| 十八禁人妻一区二区| 国产欧美日韩综合在线一区二区| 桃花免费在线播放| 69精品国产乱码久久久| 最黄视频免费看| 丝袜人妻中文字幕| 91国产中文字幕| 男的添女的下面高潮视频| av网站免费在线观看视频| 最黄视频免费看| 99香蕉大伊视频| 久久久久视频综合| 熟女少妇亚洲综合色aaa.| 观看美女的网站| 久久99热这里只频精品6学生| 亚洲精品久久午夜乱码| 国产免费一区二区三区四区乱码| 国产免费一区二区三区四区乱码| 女性被躁到高潮视频| 一级a爱视频在线免费观看| 9热在线视频观看99| 一二三四中文在线观看免费高清| 欧美日韩国产mv在线观看视频| svipshipincom国产片| 9色porny在线观看| 高清av免费在线| 中国国产av一级| 精品一区二区三区av网在线观看 | 欧美精品人与动牲交sv欧美| 亚洲av中文av极速乱| 亚洲国产av新网站| 久久ye,这里只有精品| 久久午夜综合久久蜜桃| 日韩免费高清中文字幕av| 97精品久久久久久久久久精品| 黄色 视频免费看| 97在线人人人人妻| 精品一品国产午夜福利视频| 国产伦理片在线播放av一区| 老司机影院毛片| 欧美日韩一区二区视频在线观看视频在线| 美女脱内裤让男人舔精品视频| 亚洲av成人精品一二三区| 国产高清国产精品国产三级| 老司机在亚洲福利影院| 国产亚洲av片在线观看秒播厂| 精品亚洲乱码少妇综合久久| 啦啦啦啦在线视频资源| 三上悠亚av全集在线观看| 精品国产超薄肉色丝袜足j| 国产精品嫩草影院av在线观看| 国产免费视频播放在线视频| 亚洲,一卡二卡三卡| 下体分泌物呈黄色| 天天躁日日躁夜夜躁夜夜| 99久久综合免费| 夜夜骑夜夜射夜夜干| av女优亚洲男人天堂| 下体分泌物呈黄色| 久久久精品区二区三区| 亚洲精品国产av蜜桃| 国产精品久久久av美女十八| 免费在线观看完整版高清| 久久婷婷青草| 黄色一级大片看看| 高清黄色对白视频在线免费看| 中文字幕人妻丝袜制服| 欧美在线一区亚洲| 丝袜人妻中文字幕| 色综合欧美亚洲国产小说| 成人18禁高潮啪啪吃奶动态图| 天堂8中文在线网| 91老司机精品| 最近的中文字幕免费完整| 亚洲精品中文字幕在线视频| 午夜福利视频在线观看免费| 亚洲欧美成人精品一区二区| 国产有黄有色有爽视频| 汤姆久久久久久久影院中文字幕| 女人精品久久久久毛片| 少妇猛男粗大的猛烈进出视频| 亚洲欧美清纯卡通| 精品国产超薄肉色丝袜足j| 日韩视频在线欧美| 90打野战视频偷拍视频| 麻豆av在线久日| 亚洲国产av新网站| 久久99热这里只频精品6学生| 欧美人与性动交α欧美软件| 一边摸一边抽搐一进一出视频| 黑人巨大精品欧美一区二区蜜桃| 三上悠亚av全集在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品亚洲成国产av| 日韩 欧美 亚洲 中文字幕| 国产伦理片在线播放av一区| 国产探花极品一区二区| av.在线天堂| 国产精品国产三级专区第一集| 最近最新中文字幕免费大全7| 久久综合国产亚洲精品| 啦啦啦视频在线资源免费观看| 老司机亚洲免费影院| 国产精品免费视频内射| 亚洲国产成人一精品久久久| videos熟女内射| 免费少妇av软件| 美女脱内裤让男人舔精品视频| 亚洲一区二区三区欧美精品| 七月丁香在线播放| 人人澡人人妻人| 欧美人与性动交α欧美软件| 国产精品一区二区精品视频观看| 狠狠精品人妻久久久久久综合| 男人舔女人的私密视频| 免费少妇av软件| 黄片小视频在线播放| 国产伦人伦偷精品视频| 日本午夜av视频| 爱豆传媒免费全集在线观看| 男女高潮啪啪啪动态图| 国产av国产精品国产| 午夜激情av网站| 97在线人人人人妻| 国产一区二区三区综合在线观看| 国产高清不卡午夜福利| 性高湖久久久久久久久免费观看| 久久久亚洲精品成人影院| 亚洲国产av影院在线观看| 熟女少妇亚洲综合色aaa.| 欧美日韩国产mv在线观看视频| 99九九在线精品视频| 蜜桃国产av成人99| 亚洲成人免费av在线播放| 赤兔流量卡办理| 你懂的网址亚洲精品在线观看| 母亲3免费完整高清在线观看| 欧美人与性动交α欧美精品济南到| 十分钟在线观看高清视频www| 一本色道久久久久久精品综合| 久久ye,这里只有精品| 9191精品国产免费久久| 久久人人97超碰香蕉20202| 搡老岳熟女国产| 男女床上黄色一级片免费看| av网站免费在线观看视频| 操美女的视频在线观看| 青春草亚洲视频在线观看| 丰满少妇做爰视频| 亚洲国产最新在线播放| 亚洲精品国产区一区二| 国产一区有黄有色的免费视频| 亚洲人成网站在线观看播放| 黑丝袜美女国产一区| 成人亚洲精品一区在线观看| 十八禁人妻一区二区| 亚洲精品乱久久久久久| 中文字幕色久视频| 日韩中文字幕视频在线看片| 久久热在线av| 久久精品久久精品一区二区三区| 又黄又粗又硬又大视频| 九色亚洲精品在线播放| 少妇人妻精品综合一区二区| 三上悠亚av全集在线观看| 亚洲视频免费观看视频| 亚洲在久久综合| 久久人妻熟女aⅴ| 18禁裸乳无遮挡动漫免费视频| 国产免费视频播放在线视频| 咕卡用的链子| 如何舔出高潮| 久久毛片免费看一区二区三区| 精品一品国产午夜福利视频| 日韩av不卡免费在线播放| 成人三级做爰电影| 亚洲精品久久午夜乱码| 韩国高清视频一区二区三区| 熟女av电影| 国产成人精品无人区| 性少妇av在线| 毛片一级片免费看久久久久| 欧美成人午夜精品| 男女无遮挡免费网站观看| 永久免费av网站大全| 午夜老司机福利片| 色播在线永久视频| 男人舔女人的私密视频| 一区福利在线观看| 男的添女的下面高潮视频| 国产极品粉嫩免费观看在线| 久久青草综合色| 麻豆精品久久久久久蜜桃| 精品人妻在线不人妻| 国产成人精品久久久久久| 日韩一卡2卡3卡4卡2021年| 美女福利国产在线| www.自偷自拍.com| 国产av精品麻豆| 精品国产乱码久久久久久小说| 老司机深夜福利视频在线观看 | 午夜日本视频在线| 国产亚洲欧美精品永久| 日韩免费高清中文字幕av| 国产成人欧美| 欧美黄色片欧美黄色片| 高清黄色对白视频在线免费看| 亚洲天堂av无毛| 午夜免费鲁丝| 国产爽快片一区二区三区| 尾随美女入室| 一级,二级,三级黄色视频| 中文字幕最新亚洲高清| 啦啦啦啦在线视频资源| 欧美变态另类bdsm刘玥| 久久99一区二区三区| 国产精品 欧美亚洲| 在线免费观看不下载黄p国产| 熟女av电影| 亚洲一卡2卡3卡4卡5卡精品中文| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看| h视频一区二区三区| 亚洲av欧美aⅴ国产| 免费久久久久久久精品成人欧美视频| 一级毛片我不卡| 国产亚洲av片在线观看秒播厂| 亚洲成色77777| 最新在线观看一区二区三区 | 99精国产麻豆久久婷婷| 又大又黄又爽视频免费| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| 亚洲欧美成人精品一区二区| 1024视频免费在线观看| av一本久久久久| 欧美日韩亚洲高清精品| 精品一品国产午夜福利视频| 男女下面插进去视频免费观看| 国产男人的电影天堂91| 女性被躁到高潮视频| 亚洲欧美成人精品一区二区| 街头女战士在线观看网站| 97人妻天天添夜夜摸| 老司机深夜福利视频在线观看 | 亚洲av男天堂| 建设人人有责人人尽责人人享有的| 久久久国产精品麻豆| 精品一区二区三区av网在线观看 | 午夜福利,免费看| 夫妻午夜视频| 国产精品久久久av美女十八| 欧美精品一区二区免费开放| 青春草国产在线视频| 母亲3免费完整高清在线观看| 在现免费观看毛片| 亚洲av国产av综合av卡| 在线亚洲精品国产二区图片欧美| 操美女的视频在线观看| 久久精品aⅴ一区二区三区四区| 国产精品欧美亚洲77777| 人妻一区二区av| 美女福利国产在线| 国产福利在线免费观看视频| 不卡av一区二区三区| 1024视频免费在线观看| 三上悠亚av全集在线观看| 日韩大片免费观看网站| 午夜免费男女啪啪视频观看| 一区二区三区四区激情视频| 精品国产露脸久久av麻豆| 一边摸一边抽搐一进一出视频| 丝袜人妻中文字幕| 久久久久久人妻| 精品久久蜜臀av无| 美女中出高潮动态图| 久久久国产一区二区| 日本欧美视频一区| 久久久久国产一级毛片高清牌| 午夜日本视频在线| 婷婷色综合www| 国产精品av久久久久免费| 热re99久久国产66热| 五月开心婷婷网| 黄色毛片三级朝国网站| 亚洲精品美女久久av网站| 日本av手机在线免费观看| 国产一卡二卡三卡精品 | 成人免费观看视频高清| 欧美日韩亚洲综合一区二区三区_| 91精品国产国语对白视频| 久久鲁丝午夜福利片| 在线观看国产h片| 国产毛片在线视频| 我的亚洲天堂| 欧美日本中文国产一区发布| √禁漫天堂资源中文www| 赤兔流量卡办理| 国产片内射在线| 午夜免费男女啪啪视频观看| 成人18禁高潮啪啪吃奶动态图| 高清视频免费观看一区二区| 看免费av毛片| 欧美激情极品国产一区二区三区| 国精品久久久久久国模美| 亚洲成色77777| 欧美乱码精品一区二区三区| 国产男女超爽视频在线观看| 中文字幕高清在线视频| 国产成人精品在线电影| 亚洲精品久久午夜乱码| 国产精品国产av在线观看| 日本猛色少妇xxxxx猛交久久| 精品一品国产午夜福利视频| 2018国产大陆天天弄谢| 日韩电影二区| 日韩av免费高清视频| 午夜影院在线不卡| 国产精品人妻久久久影院| 久久狼人影院| 午夜激情久久久久久久| 两个人免费观看高清视频| 亚洲欧洲精品一区二区精品久久久 | 久久影院123| 欧美人与善性xxx| 天美传媒精品一区二区| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 国产成人精品在线电影| 大片免费播放器 马上看| 性高湖久久久久久久久免费观看| 久久99热这里只频精品6学生| 免费看不卡的av| 久久午夜综合久久蜜桃| 久久av网站| 夫妻午夜视频| 另类亚洲欧美激情| 国产精品三级大全| 男人添女人高潮全过程视频| 一本—道久久a久久精品蜜桃钙片| 国产在线一区二区三区精| e午夜精品久久久久久久| 亚洲av在线观看美女高潮| 免费在线观看黄色视频的| 自线自在国产av| 日本wwww免费看| 亚洲成人免费av在线播放| 精品久久蜜臀av无| h视频一区二区三区| 免费久久久久久久精品成人欧美视频| 国产精品香港三级国产av潘金莲 | 国产精品三级大全| 午夜福利一区二区在线看| 伦理电影免费视频| 欧美黑人欧美精品刺激| 校园人妻丝袜中文字幕| 在线天堂中文资源库| 毛片一级片免费看久久久久| 90打野战视频偷拍视频| 夜夜骑夜夜射夜夜干| 一级毛片黄色毛片免费观看视频| 中文字幕精品免费在线观看视频| 精品免费久久久久久久清纯 | 久久综合国产亚洲精品| 十八禁网站网址无遮挡| 国精品久久久久久国模美| 久久久久久久久久久免费av| 一本久久精品| 日韩大码丰满熟妇| videos熟女内射| 久久热在线av| 大话2 男鬼变身卡| 亚洲成人一二三区av| 久久久国产一区二区| 岛国毛片在线播放| 国产精品99久久99久久久不卡 | 国产xxxxx性猛交| 色视频在线一区二区三区| 午夜福利网站1000一区二区三区| 国产精品久久久久久久久免| 欧美中文综合在线视频| 日韩熟女老妇一区二区性免费视频| 日韩 亚洲 欧美在线| 精品一区二区三区四区五区乱码 | 午夜福利在线免费观看网站| 精品少妇一区二区三区视频日本电影 | 人人妻人人澡人人看| 男人添女人高潮全过程视频| 美女福利国产在线| 欧美日韩成人在线一区二区| 亚洲欧美色中文字幕在线| 久久97久久精品| 1024视频免费在线观看| av在线app专区| 黄色怎么调成土黄色| 久久99一区二区三区| www.自偷自拍.com| 成人影院久久| 制服丝袜香蕉在线| 自线自在国产av| 久久ye,这里只有精品| 久久人妻熟女aⅴ| 国产精品蜜桃在线观看| 精品一区在线观看国产| 国产伦人伦偷精品视频| 女人被躁到高潮嗷嗷叫费观| 男女国产视频网站| 国产有黄有色有爽视频| 老汉色∧v一级毛片| 男女边吃奶边做爰视频| 国产av码专区亚洲av| 啦啦啦啦在线视频资源| 国产激情久久老熟女| 亚洲成人av在线免费| 妹子高潮喷水视频| √禁漫天堂资源中文www| 欧美日韩亚洲综合一区二区三区_| 悠悠久久av| 成人影院久久| 国产福利在线免费观看视频| 国产在线一区二区三区精| 天美传媒精品一区二区| 亚洲激情五月婷婷啪啪| 国产精品久久久av美女十八|