• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Safe operation of inverted siphon during ice period*

    2015-04-20 05:52:21FUHui付輝YANGKailin楊開林GUOXinlei郭新蕾GUOYongxin郭永鑫WANGTao王濤
    關(guān)鍵詞:王濤

    FU Hui (付輝), YANG Kai-lin (楊開林), GUO Xin-lei (郭新蕾), GUO Yong-xin (郭永鑫),WANG Tao (王濤)

    State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China, E-mail: fuhui_iwhr@126.com

    Introduction

    The Beijing-Shijiazhuang section in the Middle Route of the South-to-North Water Diversion Project starts from Guyunhe and ends up at Tuancheng Lake,with an overall length of about 307 km. The 227.4 km long canal from Guyunhe to Beijumahe is an open channel. The other 80.1 km long canal from Beijumahe to Beijing is a pipeline, with 16 inverted siphons arranged along this section.

    For open channel water diversion projects in the high latitude area in China, previous reports indicate that the inverted siphons might be jammed by ice,such as the inverted siphons of the Shahe irrigation district in 2003 and the water diversion project from Yellow River to Baiyangdian in 2008. For preventing the inverted siphons from ice jamming, the discharge of the Beijing-Shijiazhuang section in the Middle Route of the South-to-North Water Diversion Project was reduced to about 10 m3/s which was only 1/6 of the design discharge. For a long distance water diversion project, once one of inverted siphons is jammed,the safe operation of the whole project will be threatened. So the water diversion efficiency of the water diversion projects is significantly lower during the ice period[1-3].

    At present, many studies focused on the ice cover and the bend channel[4-6]. But the studies for the safe operation of the inverted siphon during the ice period were few, and similar studies include the ice transportation through a submerged gate[7]. The ice accumulation processes at the inlet of an inverted siphon are modeled under a real ice condition on the experiment platform at the China Institute of Water Resources and Hydropower Research, and the hydraulic conditions for the ice jam prevention are analyzed. Experimental results provide some information for the safe operation of the inverted siphons at the Beijing-Shijiazhuang section.

    1. Ice entrainment and transportation

    In hydrostatics, the forces on the ice are balanced by gravity and buoyancy. But in hydrodynamics, the forces on the ice come also from the additionalBernoulli’s effect and the flow separation[8](as shown in Fig.1 and Fig.2).

    Fig.1 Schematic diagram of flow separation

    Fig.2 Negative pressure distribution caused by Bernoulli effect and flow separation

    The critical condition of the ice entrainment can be described by[9]

    whereFrcris the critical Froude number,Vcris the critical velocity upstream of the ice,gis the acceleration of gravity,iρandwρrepresent the densities of the ice and the water, respectively,tis the thickness of the ice,His the total water depth,Kis a coefficient.

    The critical condition of the under-turning submergence can be described as[9]

    whereVcis the flow velocity of the upstream open channel,Vuis the flow velocity under the ice,Lis the length of the ice,αis the under-turning angle when the leading edge of the ice just submerges,tiis the ice thickness below the water surface.

    The under-turning angleαcan be calculated as

    When the ice submerges at the leading edge of the ice jam, it may be transported downstream or accumulate at the bottom of the ice jam to thicken the ice jam. This critical hydraulic conditions can be described as[10]

    wheresjis the porosity of the ice jam,si=ρi/ρw.

    During the last 30 years, it was generally believed that the most important variables were the Froude number based on the outlet velocity and the depth of the top of the outlet beneath the upstream water surface and the ratio of the outlet depth to the full depth. A good discrimination between the entrainment and the non-entrainment was achieved using these variables[7].So the upstream Froude number of the inverted siphon is used to judge the safe operation conditions of the inverted siphon.

    Fig.3 Layout of inverted siphon experiment

    2. Experimental set up

    A series of experiments are conducted in a flume of 50 m long, 0.8 m wide and 0.8 m high at the State Key Laboratory of the China Institute of Water Resources and Hydropower Research. An inverted siphon of 6 m long is used to model the typical Tanghe inverted siphon at the Beijing-Shijiazhuang section,and the model scale is 1:23.4 (according to the width of the flume and the prototype dimension of the Tanghe inverted siphon). Because of the limitation of the laboratory length, the horizontal length of the inverted siphon model is shortened. The ice of 0.0276 m×0.018.6 m×0.0025 m is used to model the ice accumulation and transportation at the inlet of theinverted siphon. Detailed arrangement of the inverted siphon and the flume is shown in Fig.3.

    The real ice experiment platform is automatic,and includes a control computer, a DDC device drive and data collecting module, axial flow fans, centrifugal fans, a heating system, a temperature feed-back system, 9 refrigeration units. 27 high-accuracy temperature sensors which provide real-time temperature readings for the temperature control system are distributed in the platform. By this air temperature control system, the lowest temperature can be -15oC, with a control accuracy of ±0.5oC, and the temperature fluctuation less than 1oC. The detailed performance and the control mode of this platform were described by Fu et al.[11].

    Fig.4 Schematic diagram of the inverted siphon inlet

    Fig.5 Ice entrainment of inverted siphon under different conditions

    3. Critical Froude number for ice jam prevention of inverted siphon

    The schematic diagram of the inverted siphon inlet is shown in Fig.4,H1is the submerged water depth from the water surface to the top of the inlet,andHis the total water depth. 49 real ice experiments are carried out, with the values ofH1/Hbetween 0.039 and 0.330. These cases cover the normal operation conditions of the inverted siphons at the Beijing-Shijiazhuang section. With the increase of the value ofH1/H, the critical Froude number for judging the ice transport also increases. At the low submerged depth,the critical Froude number is about 0.06, at the high submerged depth, the critical Froude number can reach 0.08-0.09. Obviously, the ratio between the submerged depth and the total water depth is a key factor for the ice jam prevention. Along with the increase of the submerged depth, a greater hydrodynamic force is needed to overcome the transportation resistance from the water surface to the inverted siphon.

    Results of 49 experiments are shown in Fig.5.The critical condition for the ice to be transported into the inverted siphon can be described as

    whereQis the flow discharge of the canal,Ais the cross-sectional area of the canal.

    The curve described by Eq.(5) shows a critical condition for the safe operation of the inverted siphon during the ice period. The hydraulic conditions below the curve are safe, which gives the safe condition for the operation of the water diversion project during the ice period. The hydraulic conditions above the curve will be unsafe and may lead to ice jamming.

    Fig.6 Ice entrainment at submerged gate

    Fig.7 The difference between experimental results and those in Ref.[7]

    Equation (5) is valid forH1/Hin the range between 0.039 and 0.330. The wind, the water level fluctuation and other factors might easily promote the ice transportation. For the ice jam prevention in practicalengineering, it is better for the submerged depth to be controlled as high as possible by the gate during the ice period, especially, under the low submerged depth conditions. So under a practical operation condition, it is better for for the Froude number to be controlled below the curve as shown in Fig.5. WhenH1/H>0.33, the critical Froude number should be controlled between 0.08 and 0.09, which seems to be near the flow condition of the ice entrainment at the leading edge of the ice cover[12-14]. For a long distance water diversion project, the safe operation is the prior consideration, so a Froude number less than 0.09 is suggested even under high submerged depth conditions.

    Fig.8 Design parameters of inverted siphons

    Fig.9 Ratio between water diversion capacity (at design and maximum water level) and design discharge

    Equation (5) is different from that for the submerged gate of Ref.[7], which suggested that when,can be used to judge the ice entrainment(Fig.6). The main reason for this difference might be the viscous effect.Plastic was used in Ashton’s experiments, while in the inverted siphon experiment, the real ice is used. When the flow dynamic force is small (a low Froude number), the ice adheres to each other, grows in size and then the stability of the ice increases. So under a low Froude number condition, the critical Froude number of the ice entrainment of the real ice is greater than that of the plastic ice (Fig.7). Along with the increase of the flow dynamic force (a high Froude number), the viscous effect is reduced (as compared to the flow dynamic force). And the adhered ice breaks up into pieces of single or small size ice. For the real and plastic ices of the same size, the critical entrainment velocity of the plastic ice is greater than that of the real ice by about 40%-50%. So under the high Froude number condition (Fr> 0.07), the critical Froude number of the ice entrainment of the real ice is smaller than that of the plastic ice (Fig.7). The different shapes of the submerged gate and the inverted siphon might be another reason[15,16].

    4. Safe operation of inverted siphon

    From Hutuohe to Beijumahe, the top and bottom elevations of the inlet, the design and maximum water levels of 15 inverted siphons at the Beijing-Shijiazhuang section are shown in Fig.8 (the design parameters of the Jiehe inverted siphon are not available). And the vertical coordinate represents elevationHe.

    Fig.10 Minimum operation water level of 50%, 60% and 70% of design discharge along the section

    By the water diversion along the canal of the Beijing-Shijiazhuang section, the design discharge decreases from 170 m3/s to 60 m3/s and the maximum discharge decreases from 200 m3/s to 70 m3/s. Because of different dimensions, and different design and maximum water levels shown in Fig.8, the submerged depth of every inverted siphon shows irregular variations.

    Equation (5) is used to analyze the maximum safe operation discharge of 15 inverted siphons at the design and maximum water levels. Because of the insufficient submerged depth, all inverted siphons at the Beijing-Shijiazhuang section cannot safely transfer the design discharge at the design or maximum water levels during the ice period.

    From Fig.9, it is obvious that the water diversion capacity (Qs) of the Beijing-Shijiazhuang section is limited by the Hutuohe, Puyanghe and Matougou inverted siphons, and the water diversion capacity is about 50.2%, 47.7% and 43.6% of the design discharge (Qd) at the design water level, respectively. If the operation water level is increased from the design water level to the maximum water level, the water diversion capacity of these three inverted siphons can be increased to reach 62.2%, 66.9% and 55.7% of the design discharge, respectively. Under this condition, the water diversion capacity of the canal is limited by the Matougou inverted siphon.

    The water diversion capacity of a canal is decided by the structure of the lowest water diversion capacity. So it means that if the operation water level of the Beijing-Shijiazhuang section is adjusted to the design and maximum water levels, the maximum water diversion capacity of the whole section is 43.6% and 55.7% of the design discharge, respectively, because of the limitation of the Matougou inverted siphon.

    For the Middle Route of the South-to-North Water Diversion Project, the 1.5 m safety freeboard is reserved in the design. So if a part of this safety freeboard can be used to improve the water diversion capacity of some limitation structures as the Matougou inverted siphon, the water diversion efficiency of the whole canal can be improved.

    For the Beijing-Shijiazhuang section, if the water diversion objective is controlled as 50% of the design discharge, the minimum operation water level of the inverted siphons is in the range of from 0.11 m to 1.09 m below the maximum water level and the safety freeboard is not to be used. If the water diversion objection is controlled as 60% of the design discharge,only 0.09 m safety freeboard of the Matougou inverted siphon needs to be used, the operation water level of other inverted siphons is in the range of from 0.09 m to 0.71 m below the maximum water level. If the water diversion objection is controlled as 70% of the design discharge, the safety freeboard from 0.03 m to 0.29 m of 9 inverted siphons (Hutuohe, Shahebei,Puyanghe, Puhe, Qilizhuang, Matougou, Wenzhuanghe, Nanjuma and Beijuma) need to be used. Among them, Hutuohe and Matougou inverted siphons need 0.26 m and 0.29 m, respectively. The minimum operation water levels of the inverted siphons are shown in Fig.10 and the operation discharges are 50%, 60% and 70% of the design discharge, respectively.

    Based on above analyses, it is a safe option that the operation discharge is controlled as 50% of the design discharge, all inverted siphons can operate below the maximum water level. When the water diversion capacity is controlled as 60% of the design discharge,the Matougou inverted siphon needs 0.09 m safety freeboard, and the water capacity of the canal can increase 10%. This operation regulation takes into account both the safety and the efficiency. If the water diversion capacity is controlled as 70% of the design discharge, the safety freeboard of most inverted siphons needs to be used, and the operation is unsafe during the ice period[17,18].

    It is necessary to point out that the above mentio-ned control water level is the minimum value for the operation, and the exact value needs to be confirmed by prototype tests.

    5. Conclusions

    (1) A series refrigerated experiments are conducted in an ice laboratory, to study the hydraulic conditions of the ice jam prevention for inverted siphons at the Beijing-Shijiazhuang section of the Middle Route of the South-to-North Water Diversion Project during the ice period.

    (2) Based on the critical cases for the ice to be transported into the inverted siphon, the relationship betweenH1/Hand the critical Froude number of the upstream canalFrcris obtained and this relationship is used to analyze the water diversion capacity and the operation water level of inverted siphons at the Beijing-Shijiazhuang section.

    (3) The advantages and the disadvantages of three operation methods for 50%, 60% and 70% of the design discharge are studied during the ice period. The related operation water level is shown in Fig.10. For 15 inverted siphons, the operation discharge with 50%of the design discharge is a safe selection, with 60%of the design discharge both the safety and the efficiency are taken into account, with 70% of the design discharge, the operation discharge seems to be an unsafe selection. It is best for the discharge of these inverted siphons to be controlled as 60% of the design discharge. These analysis results provide references for the ice jam prevention of inverted siphons during the ice period.

    [1] FU Hui, YANG Kai-lin and WANG Tao et al. Progress in the study of river ice hydraulics[J]. South-to-North Water Transfers and Water Science and Technology,2010, 8(1):14-18(in Chinese).

    [2] WANG Jun, CHEN Pang-pang and SUI Jueyi. Progress in studies on ice accumulation in river bends[J]. Journal of Hydrodynamics, 2011, 23(6): 737-744.

    [3] YANG Kai-lin. Theory of hydraulic control for modern water diversion projects[J]. South-to-North Water Diversion and Water Science and Technology, 2011,9(4): 1-7(in Chinese).

    [4] WANG Jun, HE Liang and CHEN Pang-pang et al. Numerical simulation of mechanical breakup of river icecover[J]. Journal of Hydrodynamics, 2013, 35(3):415-421.

    [5] WANG Jun, LI Qing-gang and SUI Jueyi. Floating rate of frazil ice particles in flowing water in bend channels-A three-dimensional numerical analysis[J]. Journal of Hydrodynamics, 2010, 22(1): 19-28.

    [6] BELTAOS S. Progress in the study and management of river ice jams[J]. Cold Regions Science and Technology, 2008, 51(1): 2-19.

    [7] ASHTON G. D. Ice entrainment through submerged gate[C]. Proceedings of the 19th IAHR International Symposium on Ice. Vancouver, Canada, 2008, 129-138.

    [8] DOW K. E., HICKS F. E. and STEFFLER P. M.. Experimental investigation of the pressure distribution beneath a floating ice block[J]. Journal of Hydraulic Engineering, ASCE, 2011, 137(4): 399-411.

    [9] ASHTON G. D. Froude criterion for ice block stability[J]. Journal of Glaciology, 1974, 13(68): 307-313.

    [10] LAL A. W., SHEN H. T. Mathematical model for river ice processes[J]. Journal of Hydraulic Engineering,ASCE, 1991, 117(7); 851-867.

    [11] FU Hui, YANG Kai-lin and TAN Shui-wei et al. Development and application of low temperature ice-hydrodynamics experiment platform[J]. Journal of Hydraulic Engineering, 2013, 44(3): 355-360(in Chinese).

    [12] SHEN H. T. Mathematical modeling of river ice processes[J]. Cold Regions Science and Technology, 2010,62(1): 3-13.

    [13] MCFARLANE V., LOEWEN M. and HICKS F. Laboratory measurements of the rise velocity of frazil ice particles[J]. Cold Regions Science and Technology,2014, 106-107: 120-130.

    [14] SUI J., KARNEY B. and SUN Z. C. et al. Field investigation of frazil jam evolution–A case study[J]. Journal of Hydraulic Engineering, ASCE, 2002,128(8): 781-787.

    [15] LI Z. J., WANG Y. and LI G. On the flexural strength of DUT-1 synthetic model ice[J]. Cold Regions Science and Technology, 2002, 35(2): 67-72.

    [16] SUI J., WANG J. and HE Y. et al. Velocity profiles and incipient motion of frazil particles under ice cover[J].International Journal of Sediment Research, 2010,25(1): 39-51.

    [17] YANG Kai-lin, WANG Tao and GUO Xin-lei et al.Safety regulations of water conveyance in the Middle Route of South-to-North Water Diversion Project in ice period[J]. South-to-North Water Transfers and Water Science and Technology, 2011, 9(2): 1-8(in Chinese).

    [18] FU H., YANG K. and GUO X. et al. Ice processes simulation for Middle Route of South-to-North Water Diversion Project[C]. Proceedings of 35th IAHR World Congress. Chengdu, China, 2013.

    猜你喜歡
    王濤
    綿師學(xué)人
    ——王濤
    Review of a direct epitaxial approach to achieving micro-LEDs
    “雞兔同籠”問題解法探析及思考
    Nonlinear excitation of a geodesic acoustic mode by reversed shear Alfvén eignemodes
    Transition to chaos in lid–driven square cavity flow?
    王濤油畫作品
    大眾文藝(2020年23期)2021-01-04 08:48:40
    王濤 李佳星作品
    大眾文藝(2020年22期)2020-12-13 11:37:16
    Effect of Pore Distribution on Melting Behavior of Paraffin in Fractal Metal Foam?
    ONE-DIMENSIONAL VISCOUS RADIATIVE GAS WITH TEMPERATURE DEPENDENT VISCOSITY?
    王濤作品
    国产亚洲精品一区二区www | 国产精品国产高清国产av | 人人妻人人澡人人爽人人夜夜| 亚洲专区中文字幕在线| 亚洲精品av麻豆狂野| 日本wwww免费看| 日韩视频一区二区在线观看| 成人av一区二区三区在线看| 亚洲人成伊人成综合网2020| 亚洲国产欧美一区二区综合| 国产主播在线观看一区二区| 下体分泌物呈黄色| 亚洲精品乱久久久久久| 国产精品秋霞免费鲁丝片| 中文字幕另类日韩欧美亚洲嫩草| 搡老岳熟女国产| 黄色视频在线播放观看不卡| 国产高清国产精品国产三级| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕一二三四区 | 国产区一区二久久| 免费观看av网站的网址| 丝袜美腿诱惑在线| 一区福利在线观看| 丰满饥渴人妻一区二区三| 高潮久久久久久久久久久不卡| 成人国产av品久久久| 国产人伦9x9x在线观看| 欧美日韩视频精品一区| 亚洲精品粉嫩美女一区| 国产野战对白在线观看| 亚洲五月色婷婷综合| 久久99热这里只频精品6学生| 亚洲国产av新网站| 国产精品九九99| 日韩欧美免费精品| 国产精品久久久人人做人人爽| 妹子高潮喷水视频| 亚洲午夜理论影院| 久久精品国产99精品国产亚洲性色 | 午夜久久久在线观看| 欧美日韩成人在线一区二区| 日本一区二区免费在线视频| 成在线人永久免费视频| 免费少妇av软件| 建设人人有责人人尽责人人享有的| 亚洲中文日韩欧美视频| 热99国产精品久久久久久7| 777米奇影视久久| 免费人妻精品一区二区三区视频| 国产在线免费精品| 男女无遮挡免费网站观看| 巨乳人妻的诱惑在线观看| 国产精品免费视频内射| 亚洲色图综合在线观看| 国产成人欧美在线观看 | 亚洲色图 男人天堂 中文字幕| 性高湖久久久久久久久免费观看| 欧美精品高潮呻吟av久久| 国产精品1区2区在线观看. | 成人手机av| 精品国产一区二区三区久久久樱花| 日韩欧美一区视频在线观看| 欧美 日韩 精品 国产| 欧美在线黄色| 久久国产精品影院| 精品一区二区三区av网在线观看 | 50天的宝宝边吃奶边哭怎么回事| 国产高清国产精品国产三级| 免费观看a级毛片全部| 黄片小视频在线播放| 日韩制服丝袜自拍偷拍| 在线观看舔阴道视频| 国产精品熟女久久久久浪| av网站在线播放免费| 欧美日韩亚洲综合一区二区三区_| 80岁老熟妇乱子伦牲交| 精品一品国产午夜福利视频| 国产深夜福利视频在线观看| 亚洲专区国产一区二区| 午夜日韩欧美国产| 中文字幕最新亚洲高清| 亚洲国产中文字幕在线视频| 99久久国产精品久久久| a级毛片在线看网站| 91成年电影在线观看| 国产免费av片在线观看野外av| 精品人妻在线不人妻| 国产男靠女视频免费网站| 麻豆乱淫一区二区| 搡老熟女国产l中国老女人| 国产高清国产精品国产三级| 啦啦啦中文免费视频观看日本| 黄色丝袜av网址大全| av片东京热男人的天堂| 久久性视频一级片| 欧美精品一区二区大全| 国产黄色免费在线视频| 国产福利在线免费观看视频| 性高湖久久久久久久久免费观看| kizo精华| 久久国产精品男人的天堂亚洲| 天天躁夜夜躁狠狠躁躁| 老汉色∧v一级毛片| 老熟妇乱子伦视频在线观看| 国产免费视频播放在线视频| 高清在线国产一区| 夫妻午夜视频| 少妇的丰满在线观看| 99香蕉大伊视频| 1024视频免费在线观看| 精品免费久久久久久久清纯 | 99在线人妻在线中文字幕 | 国产免费av片在线观看野外av| 久久久国产欧美日韩av| 成人av一区二区三区在线看| 一区福利在线观看| 一个人免费看片子| 亚洲专区中文字幕在线| 亚洲精品在线美女| 亚洲专区国产一区二区| 嫩草影视91久久| 久久婷婷成人综合色麻豆| av免费在线观看网站| 国产亚洲精品一区二区www | 精品少妇内射三级| 精品少妇内射三级| 一级毛片女人18水好多| www.熟女人妻精品国产| 中文字幕色久视频| 国产麻豆69| 亚洲伊人久久精品综合| 精品国产乱码久久久久久小说| 久久性视频一级片| 99riav亚洲国产免费| 久久99一区二区三区| 国产成人av教育| 69精品国产乱码久久久| 高清毛片免费观看视频网站 | 国产激情久久老熟女| 丁香六月欧美| 日本av手机在线免费观看| 中文字幕最新亚洲高清| √禁漫天堂资源中文www| 久久久久国产一级毛片高清牌| 黑人欧美特级aaaaaa片| 久久久精品94久久精品| 高清av免费在线| 十分钟在线观看高清视频www| 精品国产一区二区久久| 日本一区二区免费在线视频| 热99re8久久精品国产| 91国产中文字幕| 视频在线观看一区二区三区| 老鸭窝网址在线观看| 精品福利永久在线观看| 一本色道久久久久久精品综合| 女人精品久久久久毛片| 久久久精品国产亚洲av高清涩受| 操出白浆在线播放| 99riav亚洲国产免费| 免费人妻精品一区二区三区视频| a级毛片在线看网站| 欧美激情高清一区二区三区| 亚洲av日韩精品久久久久久密| 欧美大码av| av电影中文网址| 啦啦啦在线免费观看视频4| 精品国产一区二区久久| 这个男人来自地球电影免费观看| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品一区二区免费开放| 亚洲综合色网址| 在线观看免费午夜福利视频| 99riav亚洲国产免费| 久久免费观看电影| 国产精品自产拍在线观看55亚洲 | 大型黄色视频在线免费观看| 成年版毛片免费区| 欧美精品啪啪一区二区三区| 91精品国产国语对白视频| 久久国产精品影院| 国产精品一区二区精品视频观看| 夜夜骑夜夜射夜夜干| 亚洲国产欧美网| 亚洲色图综合在线观看| netflix在线观看网站| 99国产精品99久久久久| 丰满迷人的少妇在线观看| 国产片内射在线| 精品欧美一区二区三区在线| 亚洲第一欧美日韩一区二区三区 | 狂野欧美激情性xxxx| 后天国语完整版免费观看| 丝袜人妻中文字幕| 亚洲国产欧美一区二区综合| 成人三级做爰电影| 国产极品粉嫩免费观看在线| 99久久国产精品久久久| 天天添夜夜摸| 国产伦理片在线播放av一区| av网站免费在线观看视频| 久久久国产精品麻豆| 十八禁网站免费在线| 欧美变态另类bdsm刘玥| 国产精品国产av在线观看| 女性生殖器流出的白浆| 99国产精品免费福利视频| a级片在线免费高清观看视频| 国产不卡一卡二| tube8黄色片| 日韩视频在线欧美| 国产日韩欧美在线精品| 精品亚洲乱码少妇综合久久| 亚洲全国av大片| 999久久久国产精品视频| 亚洲全国av大片| 99精品欧美一区二区三区四区| 国产精品国产av在线观看| 两个人免费观看高清视频| 少妇被粗大的猛进出69影院| 国产亚洲精品第一综合不卡| 在线观看免费视频网站a站| 1024香蕉在线观看| 国产在线免费精品| 91av网站免费观看| 亚洲欧美一区二区三区黑人| 99riav亚洲国产免费| 国产成人免费观看mmmm| av一本久久久久| 黄色a级毛片大全视频| 窝窝影院91人妻| 免费在线观看日本一区| 我要看黄色一级片免费的| 嫩草影视91久久| 日韩 欧美 亚洲 中文字幕| 亚洲精品久久成人aⅴ小说| 午夜精品久久久久久毛片777| 搡老乐熟女国产| 精品高清国产在线一区| 香蕉久久夜色| 久久国产精品影院| 好男人电影高清在线观看| 国产欧美亚洲国产| 国产午夜精品久久久久久| 国产免费现黄频在线看| 男人操女人黄网站| 69精品国产乱码久久久| 成年女人毛片免费观看观看9 | 久久久国产欧美日韩av| 久久久国产欧美日韩av| 免费黄频网站在线观看国产| h视频一区二区三区| 欧美老熟妇乱子伦牲交| 中文字幕人妻丝袜一区二区| 久久国产精品大桥未久av| 久久性视频一级片| 久久久久久亚洲精品国产蜜桃av| 欧美成人免费av一区二区三区 | 一级,二级,三级黄色视频| 国产精品一区二区在线不卡| 男男h啪啪无遮挡| 久久精品亚洲精品国产色婷小说| 午夜激情av网站| 亚洲全国av大片| 80岁老熟妇乱子伦牲交| 午夜福利在线免费观看网站| 后天国语完整版免费观看| 国产精品久久电影中文字幕 | 久久午夜亚洲精品久久| 国产精品亚洲av一区麻豆| 多毛熟女@视频| 日韩一区二区三区影片| 午夜精品国产一区二区电影| 午夜免费成人在线视频| 久久精品熟女亚洲av麻豆精品| 在线天堂中文资源库| 亚洲av第一区精品v没综合| 婷婷丁香在线五月| 亚洲精品av麻豆狂野| 97人妻天天添夜夜摸| 狠狠精品人妻久久久久久综合| 一区福利在线观看| 91成年电影在线观看| 欧美日韩成人在线一区二区| 精品国内亚洲2022精品成人 | 亚洲精品乱久久久久久| 一级毛片女人18水好多| 成年版毛片免费区| 欧美 日韩 精品 国产| 久久精品人人爽人人爽视色| 久久精品成人免费网站| 别揉我奶头~嗯~啊~动态视频| 成年女人毛片免费观看观看9 | 午夜精品久久久久久毛片777| 高清在线国产一区| 亚洲欧美一区二区三区久久| 国产精品国产高清国产av | 悠悠久久av| 80岁老熟妇乱子伦牲交| 久久九九热精品免费| 99久久精品国产亚洲精品| 国产精品一区二区在线不卡| 国产精品久久久久成人av| 久久久精品区二区三区| 男女无遮挡免费网站观看| 黄频高清免费视频| 精品熟女少妇八av免费久了| 久久久久国产一级毛片高清牌| 免费一级毛片在线播放高清视频 | 妹子高潮喷水视频| 深夜精品福利| 久久99一区二区三区| 亚洲人成电影免费在线| 高清av免费在线| 美国免费a级毛片| 女人被躁到高潮嗷嗷叫费观| 成在线人永久免费视频| 亚洲国产av影院在线观看| 国产日韩一区二区三区精品不卡| 成人永久免费在线观看视频 | 99riav亚洲国产免费| 精品欧美一区二区三区在线| 搡老熟女国产l中国老女人| 在线亚洲精品国产二区图片欧美| 久久精品aⅴ一区二区三区四区| 极品教师在线免费播放| 久9热在线精品视频| 国产aⅴ精品一区二区三区波| 成年版毛片免费区| 国产一区二区三区综合在线观看| 亚洲天堂av无毛| 午夜成年电影在线免费观看| 女人爽到高潮嗷嗷叫在线视频| 美女视频免费永久观看网站| 久久久久久久国产电影| www.999成人在线观看| 女人精品久久久久毛片| 一区二区三区国产精品乱码| 久久久久久免费高清国产稀缺| 久久久精品免费免费高清| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 91老司机精品| 国产高清视频在线播放一区| 欧美午夜高清在线| 久久免费观看电影| 亚洲综合色网址| av不卡在线播放| 久久久久久久大尺度免费视频| 久久毛片免费看一区二区三区| 免费观看a级毛片全部| 欧美大码av| 国产精品久久久久久精品电影小说| 亚洲美女黄片视频| 国产一区二区三区在线臀色熟女 | 国产又色又爽无遮挡免费看| 露出奶头的视频| 黄色片一级片一级黄色片| 国产精品电影一区二区三区 | 国产无遮挡羞羞视频在线观看| 午夜福利欧美成人| 亚洲色图 男人天堂 中文字幕| www.精华液| 9191精品国产免费久久| 另类精品久久| a级片在线免费高清观看视频| 最新的欧美精品一区二区| 国产片内射在线| 天天躁夜夜躁狠狠躁躁| 高清在线国产一区| 香蕉久久夜色| 黑人巨大精品欧美一区二区蜜桃| 99国产精品免费福利视频| 亚洲色图 男人天堂 中文字幕| 国产在线精品亚洲第一网站| 美女午夜性视频免费| 一个人免费在线观看的高清视频| 精品一区二区三区四区五区乱码| 日日夜夜操网爽| 亚洲全国av大片| 90打野战视频偷拍视频| 国产精品美女特级片免费视频播放器 | 国产深夜福利视频在线观看| 女性生殖器流出的白浆| 久久九九热精品免费| 我要看黄色一级片免费的| 久久久国产欧美日韩av| 免费女性裸体啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 女人爽到高潮嗷嗷叫在线视频| 人人妻,人人澡人人爽秒播| 五月开心婷婷网| 国产高清videossex| 女性被躁到高潮视频| 午夜福利欧美成人| 狠狠狠狠99中文字幕| 亚洲欧洲日产国产| 国产精品98久久久久久宅男小说| 波多野结衣av一区二区av| 日韩大码丰满熟妇| 国产一区二区 视频在线| 亚洲欧美日韩另类电影网站| 国产91精品成人一区二区三区 | 亚洲自偷自拍图片 自拍| 久久精品国产a三级三级三级| 亚洲九九香蕉| 一级毛片女人18水好多| 男人舔女人的私密视频| 午夜福利在线免费观看网站| 99香蕉大伊视频| 中文字幕高清在线视频| 亚洲精品在线观看二区| 性色av乱码一区二区三区2| 自拍欧美九色日韩亚洲蝌蚪91| 日韩中文字幕欧美一区二区| 亚洲av美国av| 99精品久久久久人妻精品| 亚洲国产欧美网| 国产日韩欧美在线精品| 久久天躁狠狠躁夜夜2o2o| 最近最新中文字幕大全电影3 | 午夜福利免费观看在线| 国产成人免费观看mmmm| 老司机深夜福利视频在线观看| 99re在线观看精品视频| 亚洲色图 男人天堂 中文字幕| 少妇猛男粗大的猛烈进出视频| 黑人巨大精品欧美一区二区蜜桃| av片东京热男人的天堂| 丁香六月欧美| 久久狼人影院| 在线观看免费午夜福利视频| 美国免费a级毛片| 欧美变态另类bdsm刘玥| 69精品国产乱码久久久| 一本综合久久免费| 午夜福利一区二区在线看| 亚洲色图 男人天堂 中文字幕| 色综合婷婷激情| 午夜福利一区二区在线看| 亚洲熟女精品中文字幕| 日日夜夜操网爽| 国产精品久久久av美女十八| 久久亚洲真实| 91老司机精品| 新久久久久国产一级毛片| 亚洲黑人精品在线| 热99国产精品久久久久久7| 亚洲av美国av| 99热网站在线观看| 欧美性长视频在线观看| 久久毛片免费看一区二区三区| 99精品久久久久人妻精品| 99国产精品一区二区三区| 精品乱码久久久久久99久播| 国产精品美女特级片免费视频播放器 | 午夜福利免费观看在线| 久久久国产一区二区| 亚洲中文字幕日韩| 欧美亚洲 丝袜 人妻 在线| 精品国产国语对白av| 久久精品国产亚洲av香蕉五月 | 亚洲七黄色美女视频| 久久热在线av| 韩国精品一区二区三区| www.999成人在线观看| 国产精品免费大片| 久久久久久免费高清国产稀缺| 日韩欧美一区视频在线观看| 制服诱惑二区| 啦啦啦视频在线资源免费观看| 99re在线观看精品视频| 久9热在线精品视频| 欧美精品啪啪一区二区三区| 捣出白浆h1v1| 欧美久久黑人一区二区| 日韩欧美国产一区二区入口| 人成视频在线观看免费观看| 丁香六月欧美| av视频免费观看在线观看| 久久性视频一级片| 我要看黄色一级片免费的| √禁漫天堂资源中文www| 国产高清视频在线播放一区| 波多野结衣一区麻豆| 国产老妇伦熟女老妇高清| 黄色视频不卡| 免费av中文字幕在线| 999久久久国产精品视频| 久久亚洲真实| 9191精品国产免费久久| 一进一出好大好爽视频| 两人在一起打扑克的视频| 黑人巨大精品欧美一区二区蜜桃| 色精品久久人妻99蜜桃| 亚洲av片天天在线观看| 考比视频在线观看| 亚洲成a人片在线一区二区| 久久久精品区二区三区| 亚洲七黄色美女视频| 啦啦啦在线免费观看视频4| 久久精品aⅴ一区二区三区四区| 熟女少妇亚洲综合色aaa.| www.自偷自拍.com| 欧美日韩成人在线一区二区| 欧美人与性动交α欧美软件| 日韩三级视频一区二区三区| 国产亚洲欧美精品永久| 久久精品国产a三级三级三级| 久久精品亚洲av国产电影网| 老司机亚洲免费影院| 大陆偷拍与自拍| netflix在线观看网站| 欧美日本中文国产一区发布| 久久久国产一区二区| 日本五十路高清| 成人黄色视频免费在线看| 色老头精品视频在线观看| 91成年电影在线观看| 久久久久久久久免费视频了| 国产精品久久久av美女十八| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 香蕉国产在线看| 曰老女人黄片| 丝袜美腿诱惑在线| 国精品久久久久久国模美| 人妻 亚洲 视频| 久久久久视频综合| 18禁观看日本| 欧美日韩视频精品一区| 激情视频va一区二区三区| 免费人妻精品一区二区三区视频| 国产精品国产高清国产av | 露出奶头的视频| 一级毛片女人18水好多| 宅男免费午夜| 欧美中文综合在线视频| 亚洲国产毛片av蜜桃av| 国产欧美日韩综合在线一区二区| 久久久精品区二区三区| 久久免费观看电影| a级毛片黄视频| 黄频高清免费视频| 99久久99久久久精品蜜桃| 国产高清激情床上av| 精品欧美一区二区三区在线| 国产日韩欧美亚洲二区| 高清毛片免费观看视频网站 | 国产欧美日韩精品亚洲av| 大码成人一级视频| 久久精品国产a三级三级三级| 亚洲一卡2卡3卡4卡5卡精品中文| 建设人人有责人人尽责人人享有的| 欧美精品一区二区大全| 超碰成人久久| 国产亚洲精品久久久久5区| 成人永久免费在线观看视频 | 欧美大码av| 日韩欧美一区二区三区在线观看 | 国产精品一区二区在线观看99| 亚洲成a人片在线一区二区| 999久久久国产精品视频| 99久久精品国产亚洲精品| 男女午夜视频在线观看| 三级毛片av免费| 中文字幕制服av| 国产熟女午夜一区二区三区| 曰老女人黄片| 亚洲七黄色美女视频| 亚洲va日本ⅴa欧美va伊人久久| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 在线天堂中文资源库| 无限看片的www在线观看| 黑丝袜美女国产一区| netflix在线观看网站| 午夜福利免费观看在线| 99国产精品99久久久久| 亚洲精品国产精品久久久不卡| 看免费av毛片| 91精品三级在线观看| 黄色丝袜av网址大全| 在线永久观看黄色视频| www.熟女人妻精品国产| 岛国毛片在线播放| 午夜福利视频精品| 人人妻人人澡人人爽人人夜夜| 热re99久久国产66热| 成人亚洲精品一区在线观看| 色综合婷婷激情| 成在线人永久免费视频| 国产成+人综合+亚洲专区| 久久国产精品大桥未久av| 亚洲av成人一区二区三| 成人亚洲精品一区在线观看| 欧美日韩国产mv在线观看视频| 日韩欧美免费精品| 在线十欧美十亚洲十日本专区| 久久99一区二区三区| 欧美精品亚洲一区二区| 久久精品91无色码中文字幕| 午夜激情av网站| 丝袜人妻中文字幕| 精品一区二区三区视频在线观看免费 | 嫁个100分男人电影在线观看| 在线观看www视频免费| 波多野结衣一区麻豆| 男人舔女人的私密视频| 极品人妻少妇av视频| 日韩制服丝袜自拍偷拍| 桃花免费在线播放| 久久狼人影院| 亚洲欧洲精品一区二区精品久久久|