• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of a curved bed on the discharge equation in a spillway with a breast wall*

    2015-04-20 05:53:12NGUYENCongThanhWANGLingling王玲玲TANGHongwu唐洪武
    關(guān)鍵詞:洪武

    NGUYEN Cong-Thanh, WANG Ling-ling (王玲玲), TANG Hong-wu (唐洪武)

    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: thanhctt.dhxd@gmailcom

    Introduction

    Orifice spillways are widely used for controlling and measuring discharge in hydropower projects or irrigation systems[1]. The breast wall spillways, a type of orifice spillways, are often applied to release the flood and the sediment disposal in a reservoir[2]. The accurate estimation of the discharge capacity of breast wall spillways is very important from an operational,environmental and economic point of view in hydraulic engineering. The discharge capacity of orifice spillways could be obtained by using experimental, analytical[3]or numerical methods[4]. Ansar and Chen[5]used the dimensional analysis and the field flow measurements collected from 90 prototype gated spillways in South Florida, the Unite States, to obtain a single generalized equation under all flow conditions. However, this equation has a limitation that it can only be used for spillways with similar geometries, that is, the approaching and exiting channels. Ansar and Juan[6]also, based on the dimensional analysis, proposed a submerged vertical gated spillway and compared it with some existing ones. Bijankhan et al.[7], based on the Buckingham theorem and the incomplete self similarity (ISS), obtained a new stage-discharge relationship for the sluice gate with radial gates. In the case of the Ogee spillway with radial gates,Mazumdar and Indroniel[8]introduced a pressure correction factorCpas a function of both the head and the gated openings while showing a discrepancy between theoretical and experimental values of discharge. In these and other similar studies, the analytical method and the dimensional analysis were combined with the measured data to deduce a discharge prediction formula for the orifice spillways. However, the effect of the crest downstream profile on the variation of the mean pressure and the discharge capacity of theorifice spillway were not duly considered. In fact, the discharge capacity of the breast wall spillway depends on many factors, such as the water head, the orifice opening, the friction loss, and, especially, the mean vertical pressure distribution at the outlet section of the orifice opening[9].

    The flow through the breast wall spillways is a rapidly varied flow and is influenced by centripetal or centrifugal force depending on the convex or concave nature of the bottom, which is normal to the direction of the flow. Moreover, the pressure changes rapidly with great pressure gradient from the beginning to the end of the curve[10]. Therefore, the mean pressure over the cross-section may be smaller or larger than the hydrostatic pressure. Its distribution is in a curve form that depends on the velocity, the curvature of the downstream profile, the flow depth, and the orifice opening, etc.. The effect of a curved bed on the mean pressure distribution over the cross-section was studied,such as by Dewals et al.[11], Castro-Oscar[12]and Anh and Hosoda[13]. Recently, Castro-Orgaz and Dey[14]obtained a generalized depth-averaged channel flow equation for an arbitrary curved bed and an equation for the pressure distribution in they-direction normal to the channel bed in an one-dimensional problem.However, these equations are very difficult to solve without further hypotheses. As a result, these equations may only be applicable for the gradually varied unsteady and the steady flows or for constant slope channels. On the other hand, the flow through the spillway with a breast wall experiences an abrupt transition from the subcritical upstream to the supercritical downstream of the breast wall, which indicates that there might be an unsatisfactory mean vertical pressure distribution if the above theories are applied.

    Fig.1 The scheme to determine the discharge capacity and the mean pressure distribution at the outlet section of the free breast wall spillway

    Although the discharge capacity of orifice spillways has been widely studied, experimentally, theoretically and numerically, the flow through spillways with a breast wall has not received enough attention.As mentioned previously, there are abundant discharge calculations while there are few studies of the deviation of the mean pressure from the hydrostatic pressure and its influence on the discharge capacity of orifice spillways. This paper studies the effect of a convex crest profile on the mean pressure distribution,especially, the deviation of the mean hydrodynamic pressure from the hydrostatic pressure, and applies these results to the discharge calculation of the breast wall spillways by conducting experiments. Based on the measured data, the multi linear regression and the least squares method are applied to obtain a discharge prediction formula for the flow in this field.

    1. General discharge capacity prediction formula of the spillway with a breast wall

    The computational scheme for a spillway with a breast wall is shown in Fig.1. The datum is set equal to the crest elevation. According to White[15], the incompressible steady-flow energy equation, with no shaft work and negligible viscous work, including the friction loss between sections 0-0 and C-C for the streamline dz, is as follows

    in which,Hois the total head,zis the elevation above the datum plane (upward from the origin of the spillway),pis the mean static pressure value at the elevationz(at the cross-section C-C),gis the gravitational acceleration,γis the specific weight of the water,LhandDhare the length and the hydraulic diameter of the orifice openingD, respectively,k′ is the total head loss coefficient between two sections,bis the average width at the section C-C. The other symbols are shown in Fig.1. Integrating Eq.(1) over the section C-C with the assumption that

    the total headHois obtained as

    where ∑Kis the total minor head loss coefficient andfis the Darcy friction factor between two sections.αis the kinetic energy correction. According to Eq.(2), we have

    in which,∏andZo=Ho-∏denote the average potential energy at the outlet section C-C and the water head effect of the orifice flow, respectively. The discharge coefficientCodis determined by

    The general discharge capacity of a spillway with a breast wall,Q, is determined by

    whereA=bDis the area of the orifice corresponding to the orifice openingD. According to Eq.(6), the discharge coefficientCodand the mean pressure distribution over the cross-section C-C must be known before the discharge capacity of the spillway with a breast wall can be calculated. In an actual case, based on some hydraulic and geometric considerations of the spillways, the value of ∑Kandfcould be determined[15]. Therefore, only the mean pressure distributionp(z)/γover the cross-section C-C needs to be found. In other word, thep(z)/γvalue plays an important role in the discharge calculation of the flow in this field. This distribution affects considerably the accuracy of the discharge calculation according to Eq.(6). This study considers the flow through the spillway with a breast wall with the convex bottom profile in a parabolic profile. The mean pressure distributionp(z)/γis obtained from an experiment in a laboratory flume.

    2. Experiment setup and procedure

    2.1 Experiment setup

    The experiments are conducted in the Hydraulic Structures Laboratory at the National University of Civil Engineering (NUCE), Hanoi, Vietnam. Figure 2 shows the experimental scheme and the spillway model in this study. It consists of a flume, several pumps, a large feeding tank, a model of the breast wall spillway, and a flow circulating system. A series of experiments are conducted in a steel frame flume with two transparent Plexiglas sides, 0.4 m wide, 6 m long and 0.8 m deep. The bottom of the flume is made of stainless steel with a horizontal slope. The breast wall spillway models of Plexiglas of different dimensions are installed and placed at the position of 3 m from the beginning of the stilling tank in the flume.The upstream edge of the breast wall is in line with the upstream edge of the spillway and the downstream edge is in line with the spillway crest axis, as shown in Fig.1.

    Fig.2 The experimental hydraulic model scheme

    The water is pumped from the underground tank to the feeding tank, which supplies the water for the stilling tank, a part of the flume connected by an adjusting valve. The water is fed into the flume from the feeding tank through 0.25 m-diameter pipelines to guarantee that the water level is stable during the ex-periment in the stilling tank. The water surface profile from the upstream to the downstream is measured at the centerline of the flume with a point gauge of an accuracy of ±0 .0001m . Furthermore, the upstream water level of the model is measured at the position 1.5 m from the origin of the spillway toward the upstream. Consequently, the measured water surface is relatively steady during the experiment in the specific cases. The crest pressure and the vertical pressure distribution at the cross-section C-C behind the breast wall are measured by several static tubes, connected to a piezometer board with glass tubes vented to the atmosphere. The piezometer board readings give the average pressures at each pressure tap location. The measurements on this board are within ±0.001m precision. The discharge into the flume is also measured by a rectangular sharp-crested weir located in the gathering tank. The relative uncertainty in the measured discharge is 3%.

    Table 1 Experimental cases and parameters

    2.2 Experimental cases

    Table 1 lists the experimental cases and the fundamental geometric parameters of the spillway with a breast wall models. The spillway models are designed with three design heads (Hd), namely, 0.15 m, 0.2 m,and 0.25 m and with 0.3 m, 0.29 m and 0.35 m in height (Ps), respectively. The spillway’s upstream quadrant profile is in a shape of ellipse, which is similar to the Ogee profile of the free overflow spillway.Namely, the upstream quadrant profile is designed by an equationin this study. The downstream profile of the spillway is fabricated according to a parabolic equationwithφ=0.9. In addition, the breast wall profile is determined by the following equation.The experiments are performed for variations of the water headH, and the orifice openingDfor three spillway models. The measured parameters include the water surface profile, the mean vertical pressure distribution p(zi)at the outlet cross-section C-C andithe dischargeQex.

    Fig.3 The vertical pressure distribution at section C-C in some experimental cases

    3. Results and discussions

    3.1 Mean vertical pressure distribution at section C-C

    During the experiment, the mean vertical pressure distribution at the section C-C (see Fig.1) is measured in each specific case. Figure 3 shows the distribu-tion ofp(z) in some cases. They-axis is the water height upward from the origin of the spillway. As shown in Fig.3, the value ofp(z) depends on the parameters, such as the orifice openingD, the dischargeQand the total headHo. Furthermore, this distribu

    extion could be characterized by the value of the Froude number (, whereVis the average velocity at the section C-C) at the orifice opening. This distribution has a tendency to decrease as theFrnumber of the orifice flow increases. According to Fig.3, the mean pressure at each point in the flow depth is considerably smaller than the hydrostatic pressure (p(z)i/γ<zi). This is consistent with the conclusions of Dewals et al.[11]and Chaudhry for the influence of the centripetal force on the mean vertical pressure in the convex flow. However, their result is valid only for the free and gradually varied flow. Here,the flow is a rapidly varied flow, and one sees a dramatic transition from the subcritical to supercritical states as the flow goes through under the breast wall.Therefore, this mean pressure distributionp(z) may be different from the others.

    3.2 Prediction of the water head effect Zo of the flow through breast wall spillway

    According to Eq.(4), the value of the water head effectZomust be calculated from the average potential energy∏, but this value depends on the integral. Thus, the value ofZois not a fixed value in each specific case. This means that the accurate calculation ofZoplays an important role in the estimation of the discharge capacity for the flow in this study. To calculate the integralin Eq.(3), the mean pressure distribution is assumed as a third order polynomial function for all experimental cases. As a result, this integral can be evaluated, and the value of∏can be calculated by using Eq.(3) in specific cases. Then, the value ofZois also computed asZo=Ho-∏. It is found that the value of the calculated water head effectZodepends on some geometrical parameters, such asHd,D,sP, the downstream profileΦ(x) and the total headHo. Generally, this relationship can be expressed as

    Based on the dimensional analysis[16], Eq.(7) can be written as

    To find this relationship, the multiple linear regression method is applied to correlate the ratio ofto both the hydraulic and geometrical parameters. The general equation can be written as

    in which,c(1)-c(4) are the unknown coefficients of the regression analysis. These coefficients reflect the influence of the dimensionless quantities, such asandon thevalue and can be found by using the experimental data. Based on the least squares method, these unknown coefficients are determined, and a formula for the determination ofis obtained. This equation fits the experime-ntal data with a correlation coefficient,R2=0.98 and the standard error of estimation SEE=0.0168. This result shows that all unknown coefficients are statistically meaningful with the confidence level of 95%.Equation (9) is rewritten again as

    Equation (10) indicates that the contribution ofD/HoinZo/Hois the most significant, whereas the contributions ofHd/HoandP/Hoare smaller. To evaluate the best-fit line and its ability, in terms of the agreement between the experimental data and the prediction values ofZo, an average percentage error term,zε, proposed in Ref.[17], is defined as

    in which,Nis the number of data points,ZoexiandZoesmiare the experimental and estimated values of the water head effectZo, respectively. According to Haddadi and Rahimpour[17], the lower thezεvalue,the greater the accuracy of Eq.(10) and vice versa. The calculated value ofzεis 2.24% for the estimation ofZoin this study. This error is acceptable in hydraulic engineering. Furthermore, a comparison ofZobe-tween Eq.(10) and the experiment is shown in Fig.4,which shows a good agreement (R2=0.998) between the experimental and estimatedZovalues, whereZoOis mean the experimental value,ZoPis mean the computed value. In short, Eq.(10) could be used to estimate the value ofZowithin ±5% in the ranges 0.18≤D/Ho≤ 0.68, 0.35 ≤Hd/Ho≤ 1.57, and 0.69 ≤Ps/Ho≤ 3.27.

    Fig.4 Experimental versus predicted Zo values using Eq.(10)

    3.3 Proposal of the discharge formula and water head effect coefficient

    According to Eq.(10), the discharge formula(Eq.(6)) could be rewritten as follows

    Alternatively, aCZfactor, called the water head effect coefficient, can be defined as

    Hence, the discharge formula (12) becomes

    The proposed discharge formula (Eq.(14)) is in a familiar form in calculating the discharge capacity of the orifice spillway, except the coefficientCZ. This factor depends on some hydraulic and geometric parameters of the spillway and reflects the influence of the mean vertical pressure variation at the outlet crosssection C-C on the value of the water head effector the discharge capacity.

    3.4 Validation of the proposed discharge formula

    Before using the proposed discharge formula to calculate the estimated discharge, the value ofCodneeds to be determined for all cases. Based on the geometrical spillway models, theCodvalue is found in a range of 0.912-0.913 with known parameters,such asand=0.08 (whereis the relative roughness). In short, the value ofcould be taken in average as 0.913 for the discharge calculation in all cases.

    Fig.5 Measured versus computed discharges using Eq.(14)

    The estimated dischargeQeand the average percentage error termεQeare calculated by using Eq.(14)and Eq.(11), respectively. The value ofεQeis 2.26%for the measured dischargeQexfor all experimental cases. Figure 5 shows a close correlation (R2=0.997)between the measured and estimated discharge values,and the computed discharge is within ±5% of the measure one, whereQmis mean the measured value,Qcis mean the computed value. This means that the proposed discharge formula predicts quite accurately the discharge capacity of the flow in this study. However, the mean pressure distributionp(z) must be determined before the calculation as shown in the previous subsection. On the other hand, some assumptions are often made to simplify the discharge calculation for the flow in this field. By assuming the mean pressurep(zi)=0 over section C-C or the mean pressure distributionp(z) in the hydrostatic pressure law,the discharge formula (Eq.(6)) could be rewritten, respectively, as follows:

    whereCod1andCod2are the discharge coefficientsfor Eq.(15) and Eq.(16), respectively. These values could be obtained using a calibration method. The value ofCod1is in a range of 0.6-0.8 and depends onH0/D[18], and the value ofCod2could be assumed to be equal to the value ofCod.

    Fig.6 Measured versus computed discharges using Eq.(15)

    Fig.7 Measured versus computed discharges using Eq.(16)

    Figure 6 and Fig.7 show a deviation between Eq.(15) and Eq.(16) in comparison with the measured data, withR2f1=0.988andR2f2=0.986, the average percentage errorsεQf1=9.72%andεQf2=10.33%,respectively. Moreover, the computed discharge is within ±5 %-20% of the measure ones. Obviously,the big error (20% or even more) in the discharge calculation comes from the above assumptions. On the other hand, the application of the mean pressure variation at the outlet section leads to a more accurate discharge than the others as shown in Fig.5.

    4. Summary and conclusion

    The effect of the mean vertical pressure variation at the outlet section on the discharge capacity of a spillway with a breast wall is studied by experiments in this paper The mean pressure distribution is affected by some hydraulic parameters, such as the total headHo, the orifice openingD, the crest downstream profile. This distribution in turn affects the determination of the water head effectZoor the discharge capacity according to Eq.(6). Based on experimental data, a relationship betweenZo/Hoand the above quantities is established by using the multiple linear regression analysis and the least squares method, and a discharge formula is proposed. With the proposed discharge formula, accurate results (with errors within±5 %) can be obtained with the mean pressure distribution being applied in the determination of theZovalue. Otherwise, with the assumption of the mean pressurep(zi)=0 over the section C-C or the mean pressure in the hydrostatic pressure law, the big error(20% or even more) is obtained in comparison with the experimental data. In short, the proposed discharge formula is more accurate than the others under the conditions of this study. On the other hand, more work should be done under a wider range of hydraulic conditions in future.

    [1] WU Jian-hua, FENG Shu-rong and WU Wei-wei et al.Hydraulic characteristics of partial opening of the working gate for a discharge tunnel[J]. Journal of Hydrodynamics, 2007, 19(4): 488-493.

    [2] KHATSURIA R. M. Hydraulica of Spillways and Energy dissipators[M], New York, USA: Marcel Dekker, 2005.

    [3] JAVAN M., and SHAHROKHNIA M. A. Dimensionless Stage–Discharge relationship in radial gates[J].Journal of Irrigation and Drainage Engineering,2006, 132(2): 180-184.

    [4] BHAJANTRI M. R., ELDHO T. I. and DEOLAKIKAR P. B. Numerical investigation of the effects of sluice spillway roof profiles on the hydraulic characteristics[J].International Journal for Numerical Methods in Fluids, 2008, 57(7): 839-859.

    [5] ANSAR M., CHEN Z. Generalized flow rating equations at prototype gated spillways[J]. Journal of Hydraulic Engineering, ASCE, 2009, 135(7): 602-608.

    [6] ANSAR M., JUAN A G. C. Submeged weir flow at prototype gate spillway[C]. World Water and Environmental Resources Congress. Philadelphia, USA,2003.

    [7] BIJANKHAN M., FERRO V. and KOUCHAKZADEH S. New stage-discharge relationships for radial gates[J].Journal of Irrigation and Drainage Engineering,2012, 139(5): 378-387.

    [8] MAZUMDAR S. K., INDRONIEL D. R. Orifice flow in a gated spillway[J]. ISH Journal of Hydraulic Engineering, 1997, 3(2): 44-52.

    [9] NGUYEN Cong-Thanh, HUYNH Ba Ky Thuat. The water haed effect of undersluices as the shape of outlet is curved[J]. Viet Nam Science and Technology Journal of Agricultural and Rural Development,2012, 9(3): 30-34.

    [10] LIU Zhi-ping, ZHANG Dong and ZHANG Hong-Wei et al. Hydraulic characteristics of converse curvature section and aerator in high-head and large discharge spillway tunnel[J]. Science China Technological Sciences,2011, 54(Suppl. 1): 33-39.

    [11] DEWALS B. J., ERPICIM S. and AECHAMBEAU P.et al. Depth-integrated flow modelling taking into account bottom curvature[J]. Journal of Hydraulic Research, 2006, 44(6): 785-795.

    [12] CASTRO-ORGAZ O. Approximate modelling of 2D curvilinear open channel flows[J]. Journal of Hydraulic Research, 2010, 48(2): 213-224.

    [13] ANH T., HOSODA T. Depth-averaged model of openchannel flows over an arbitrary 3d surface and its applications to analysis of water surface profile[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(4): 350-360.

    [14] CASTRO-ORGAZ O., DEY S. One-dimensional channel flow equations with curvature revisited[J]. Journal of Hydraulic Research, 2009, 47(2): 157-166.

    [15] WHITE F. M. Fluid mechanics[M]. 4th edition, New York: McGraw-Hill, 2003.

    [16] WU Jian-hua, CAI Chang-guang and JI Wei et al. Hydraulic characteristics of water-wings for the middlepier of a discharge tunnel[J]. Journal of Hydrodynamics, 2006, 18(5): 567-571.

    [17] HADDADI H., RAHIMPOUR M. A discharge coefficient for a trapezoidal broad-crested side weir in subcritical flow[J]. Flow Measurement and Instrumentation, 2012, 26: 63-67.

    [18] HUSSAIN S., HUSSAIN A. and AHMAD Z. Discharge characteristics of orifice spillway under oblique approach flow[J]. Flow Measurement and Instrumentation,2014, 39: 9-18.

    猜你喜歡
    洪武
    心靜生明月 德高有好風(fēng)
    心靜生明月 德高有好風(fēng)
    書(shū)法
    大江南北(2022年6期)2022-06-16 09:26:34
    書(shū)法作品
    書(shū)法作品
    保健與生活(2022年4期)2022-02-13 20:18:27
    關(guān)于帶電顯示器防人觸電的研究
    書(shū)法作品
    保健與生活(2021年4期)2021-02-22 07:45:25
    春滿人間
    保健與生活(2020年8期)2020-04-28 08:02:50
    Critical velocities for local scour around twin piers in tandem *
    新發(fā)現(xiàn)又一種八十韻本《洪武正韻》
    国产免费福利视频在线观看| 日韩亚洲欧美综合| 精品久久久精品久久久| 丝瓜视频免费看黄片| 99热这里只有是精品50| 熟女电影av网| 18禁裸乳无遮挡动漫免费视频| 91久久精品国产一区二区成人| 乱系列少妇在线播放| 少妇精品久久久久久久| 欧美xxⅹ黑人| 我的女老师完整版在线观看| 最后的刺客免费高清国语| 狠狠精品人妻久久久久久综合| 尾随美女入室| 日本午夜av视频| 激情五月婷婷亚洲| a级毛色黄片| 免费少妇av软件| 99视频精品全部免费 在线| 少妇被粗大猛烈的视频| 91精品伊人久久大香线蕉| 国产日韩欧美视频二区| 伦精品一区二区三区| 亚洲精品aⅴ在线观看| 亚洲伊人久久精品综合| 最近手机中文字幕大全| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 亚州av有码| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 亚洲欧美一区二区三区黑人 | 免费黄色在线免费观看| 日韩在线高清观看一区二区三区| 欧美亚洲 丝袜 人妻 在线| 国产亚洲午夜精品一区二区久久| 三级国产精品片| 欧美变态另类bdsm刘玥| av在线观看视频网站免费| 男女国产视频网站| 青春草国产在线视频| 久久毛片免费看一区二区三区| 纵有疾风起免费观看全集完整版| a级毛片免费高清观看在线播放| 丝袜脚勾引网站| 男女无遮挡免费网站观看| 亚洲av日韩在线播放| 各种免费的搞黄视频| 亚洲国产最新在线播放| 黄色欧美视频在线观看| 国产黄色免费在线视频| 久久久久久久精品精品| 99久久人妻综合| h日本视频在线播放| 视频区图区小说| 久久韩国三级中文字幕| 一个人免费看片子| 久久热精品热| 久久综合国产亚洲精品| 在线观看www视频免费| 中国美白少妇内射xxxbb| 汤姆久久久久久久影院中文字幕| 久久97久久精品| 欧美日韩亚洲高清精品| 欧美最新免费一区二区三区| 777米奇影视久久| 色婷婷久久久亚洲欧美| 国产又色又爽无遮挡免| 免费人妻精品一区二区三区视频| 日本爱情动作片www.在线观看| 一级av片app| 欧美+日韩+精品| 欧美日韩在线观看h| 国产精品女同一区二区软件| 国产爽快片一区二区三区| 少妇高潮的动态图| 免费不卡的大黄色大毛片视频在线观看| 性色avwww在线观看| 在线观看人妻少妇| 日韩av不卡免费在线播放| 欧美国产精品一级二级三级 | 国产一区二区在线观看日韩| 亚洲综合精品二区| 国产一区有黄有色的免费视频| 男女免费视频国产| 国产精品欧美亚洲77777| 免费黄色在线免费观看| 日本黄色日本黄色录像| 少妇人妻久久综合中文| 春色校园在线视频观看| h视频一区二区三区| 一级,二级,三级黄色视频| 成人影院久久| 内地一区二区视频在线| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 亚洲国产欧美日韩在线播放 | 五月天丁香电影| 夜夜爽夜夜爽视频| 欧美精品一区二区免费开放| 国模一区二区三区四区视频| a级一级毛片免费在线观看| 亚洲精品久久久久久婷婷小说| 一级二级三级毛片免费看| 亚洲成人一二三区av| 免费大片黄手机在线观看| 日韩伦理黄色片| 一区二区三区免费毛片| h视频一区二区三区| 日韩一本色道免费dvd| 成年av动漫网址| 国产一区二区三区综合在线观看 | 国产极品天堂在线| 国产成人a∨麻豆精品| 久久精品国产a三级三级三级| 欧美日韩综合久久久久久| 各种免费的搞黄视频| 国产精品一区www在线观看| 国产精品人妻久久久久久| 只有这里有精品99| 丰满少妇做爰视频| 少妇被粗大的猛进出69影院 | 欧美人与善性xxx| 最黄视频免费看| 好男人视频免费观看在线| 亚洲av成人精品一区久久| 国产免费一级a男人的天堂| 国产视频首页在线观看| 自线自在国产av| 欧美日韩一区二区视频在线观看视频在线| 国产高清国产精品国产三级| 亚洲图色成人| 男人舔奶头视频| 亚洲精品久久午夜乱码| 99热这里只有是精品50| 欧美日韩视频精品一区| 王馨瑶露胸无遮挡在线观看| 亚洲三级黄色毛片| 日韩中字成人| 亚洲国产色片| 久久久久国产网址| 国产精品人妻久久久影院| 久久精品夜色国产| 五月开心婷婷网| 日韩三级伦理在线观看| 久久精品久久久久久久性| 少妇高潮的动态图| 97在线视频观看| 成人二区视频| 我的老师免费观看完整版| 青春草亚洲视频在线观看| 特大巨黑吊av在线直播| 国产免费福利视频在线观看| 天美传媒精品一区二区| 国产成人精品一,二区| 亚洲激情五月婷婷啪啪| 99久久综合免费| 成人美女网站在线观看视频| 午夜av观看不卡| 久久久久久久亚洲中文字幕| 国产精品福利在线免费观看| 婷婷色综合www| 免费看不卡的av| 少妇被粗大猛烈的视频| 亚洲av免费高清在线观看| 蜜桃在线观看..| 久久精品国产自在天天线| 中文字幕精品免费在线观看视频 | 精品久久久噜噜| 蜜臀久久99精品久久宅男| 日日爽夜夜爽网站| av专区在线播放| 久久国产乱子免费精品| 下体分泌物呈黄色| 三级经典国产精品| 日韩强制内射视频| 久久久久久久久久久丰满| 两个人的视频大全免费| 男男h啪啪无遮挡| 国产成人精品一,二区| 亚洲精品,欧美精品| 国模一区二区三区四区视频| 国产又色又爽无遮挡免| 亚州av有码| 青春草国产在线视频| 久久国产精品大桥未久av | 精品人妻熟女毛片av久久网站| 国产成人91sexporn| a 毛片基地| 欧美日本中文国产一区发布| 午夜久久久在线观看| 丝袜在线中文字幕| 久久免费观看电影| 欧美日韩国产mv在线观看视频| 人妻 亚洲 视频| av免费观看日本| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 又粗又硬又长又爽又黄的视频| 热re99久久精品国产66热6| 99精国产麻豆久久婷婷| 精品少妇久久久久久888优播| 国产深夜福利视频在线观看| 国产午夜精品久久久久久一区二区三区| 美女内射精品一级片tv| 国产精品99久久久久久久久| 精品久久国产蜜桃| tube8黄色片| 免费高清在线观看视频在线观看| 国产片特级美女逼逼视频| 不卡视频在线观看欧美| 国国产精品蜜臀av免费| 少妇精品久久久久久久| 日本午夜av视频| 亚洲精品日本国产第一区| 十八禁网站网址无遮挡 | 日日摸夜夜添夜夜添av毛片| 久久人人爽人人爽人人片va| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 国产片特级美女逼逼视频| 免费大片黄手机在线观看| 一级a做视频免费观看| 午夜精品国产一区二区电影| 蜜臀久久99精品久久宅男| 一区二区三区乱码不卡18| 亚洲无线观看免费| 多毛熟女@视频| 久久精品国产鲁丝片午夜精品| 最新的欧美精品一区二区| 能在线免费看毛片的网站| 日韩成人伦理影院| 大片电影免费在线观看免费| 高清在线视频一区二区三区| 国产欧美日韩综合在线一区二区 | 全区人妻精品视频| 一二三四中文在线观看免费高清| 午夜福利,免费看| 亚洲国产欧美在线一区| av黄色大香蕉| 国内揄拍国产精品人妻在线| 久久99热6这里只有精品| 免费观看在线日韩| 91精品伊人久久大香线蕉| 国产精品人妻久久久久久| 我的女老师完整版在线观看| 黑人巨大精品欧美一区二区蜜桃 | 纵有疾风起免费观看全集完整版| 亚洲va在线va天堂va国产| 亚洲国产精品999| 五月玫瑰六月丁香| 蜜桃久久精品国产亚洲av| 国产极品天堂在线| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 免费观看无遮挡的男女| 亚洲,欧美,日韩| 高清av免费在线| 亚洲av在线观看美女高潮| av在线app专区| 亚洲欧美精品专区久久| 狂野欧美激情性bbbbbb| 日韩欧美 国产精品| 精品国产国语对白av| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 国产欧美日韩一区二区三区在线 | 亚洲精品国产成人久久av| 老女人水多毛片| 天天躁夜夜躁狠狠久久av| 免费av中文字幕在线| 国产深夜福利视频在线观看| 汤姆久久久久久久影院中文字幕| 亚洲色图综合在线观看| 18+在线观看网站| 18禁裸乳无遮挡动漫免费视频| 纯流量卡能插随身wifi吗| 汤姆久久久久久久影院中文字幕| 亚洲人与动物交配视频| 男的添女的下面高潮视频| 一级毛片我不卡| 伊人久久精品亚洲午夜| 久久人人爽av亚洲精品天堂| 黄色欧美视频在线观看| 日韩三级伦理在线观看| av在线app专区| 久久精品国产自在天天线| 国产日韩欧美视频二区| a级毛片在线看网站| 大香蕉97超碰在线| 人体艺术视频欧美日本| 好男人视频免费观看在线| 精品人妻熟女毛片av久久网站| 激情五月婷婷亚洲| av视频免费观看在线观看| 日韩三级伦理在线观看| 国产色爽女视频免费观看| 亚洲欧美成人综合另类久久久| 天堂俺去俺来也www色官网| 纵有疾风起免费观看全集完整版| 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区| 亚州av有码| 色视频www国产| av线在线观看网站| 国产老妇伦熟女老妇高清| 欧美老熟妇乱子伦牲交| 男人舔奶头视频| 国产日韩一区二区三区精品不卡 | 美女福利国产在线| 高清毛片免费看| 亚洲第一区二区三区不卡| 97在线视频观看| 三上悠亚av全集在线观看 | 精品久久久精品久久久| 亚洲精品一二三| 极品人妻少妇av视频| 国产美女午夜福利| 黄色日韩在线| 一级毛片电影观看| 中文字幕免费在线视频6| 国产成人精品久久久久久| 青青草视频在线视频观看| 又爽又黄a免费视频| 久久热精品热| 嫩草影院新地址| 老熟女久久久| 日本av免费视频播放| 免费观看的影片在线观看| 午夜福利,免费看| 黑人高潮一二区| 国产 精品1| 岛国毛片在线播放| 最近最新中文字幕免费大全7| 在线免费观看不下载黄p国产| 黄色配什么色好看| av又黄又爽大尺度在线免费看| a级毛色黄片| 全区人妻精品视频| 青青草视频在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 男人舔奶头视频| 99久久综合免费| 欧美变态另类bdsm刘玥| 久久精品久久久久久噜噜老黄| 女性被躁到高潮视频| 在线精品无人区一区二区三| 亚洲精品乱久久久久久| a级毛色黄片| 你懂的网址亚洲精品在线观看| 亚洲精品国产色婷婷电影| 成年av动漫网址| 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 国产精品人妻久久久久久| 久久久精品94久久精品| 18+在线观看网站| 国产视频首页在线观看| 国产成人一区二区在线| 精品少妇久久久久久888优播| 久久久久久久久久成人| 久久97久久精品| 成年人免费黄色播放视频 | 成人综合一区亚洲| 多毛熟女@视频| 久久久精品免费免费高清| 男女边吃奶边做爰视频| 国产精品人妻久久久久久| 91久久精品国产一区二区三区| 赤兔流量卡办理| 欧美另类一区| 人妻一区二区av| 一级毛片久久久久久久久女| 国产欧美亚洲国产| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 久久午夜福利片| 色网站视频免费| 一本久久精品| 老司机影院毛片| 激情五月婷婷亚洲| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩视频精品一区| 人妻少妇偷人精品九色| 亚洲av欧美aⅴ国产| 国产精品一区www在线观看| 在线观看av片永久免费下载| 在线免费观看不下载黄p国产| 亚洲精品久久久久久婷婷小说| 国产视频内射| 91aial.com中文字幕在线观看| 另类精品久久| 又大又黄又爽视频免费| 国产亚洲av片在线观看秒播厂| 99热网站在线观看| 夜夜爽夜夜爽视频| 精品一区在线观看国产| 人妻一区二区av| 校园人妻丝袜中文字幕| 波野结衣二区三区在线| 99久国产av精品国产电影| 国产精品一区二区性色av| 亚洲欧美中文字幕日韩二区| 免费高清在线观看视频在线观看| 如何舔出高潮| 少妇人妻久久综合中文| 大又大粗又爽又黄少妇毛片口| 九色成人免费人妻av| 少妇被粗大的猛进出69影院 | 国产精品无大码| 国产一级毛片在线| 亚洲国产av新网站| 久久国产精品男人的天堂亚洲 | 亚洲av.av天堂| 99热这里只有是精品50| 一级毛片电影观看| 精品少妇黑人巨大在线播放| 国产免费视频播放在线视频| 国产精品久久久久久久电影| 亚洲国产精品成人久久小说| 国产亚洲5aaaaa淫片| 热re99久久精品国产66热6| 国产一区二区在线观看日韩| 国产亚洲av片在线观看秒播厂| 国产男人的电影天堂91| 国产精品国产av在线观看| 成人18禁高潮啪啪吃奶动态图 | 欧美国产精品一级二级三级 | av卡一久久| 国产高清不卡午夜福利| 五月天丁香电影| 日韩av在线免费看完整版不卡| 青春草国产在线视频| 美女主播在线视频| 久久久国产欧美日韩av| 一级毛片电影观看| 亚洲国产日韩一区二区| 日韩免费高清中文字幕av| 成人毛片60女人毛片免费| 最近的中文字幕免费完整| 亚洲一区二区三区欧美精品| 久久久久久久大尺度免费视频| 搡女人真爽免费视频火全软件| 中文在线观看免费www的网站| 99热6这里只有精品| 精品国产露脸久久av麻豆| 少妇猛男粗大的猛烈进出视频| 人体艺术视频欧美日本| 国产精品99久久99久久久不卡 | 黄色怎么调成土黄色| 色94色欧美一区二区| 国产精品久久久久成人av| 在线观看av片永久免费下载| 免费看日本二区| 欧美bdsm另类| 中文字幕制服av| 亚洲精品日韩av片在线观看| 天堂俺去俺来也www色官网| 精品熟女少妇av免费看| 国产成人91sexporn| 老熟女久久久| 日韩精品有码人妻一区| 在线观看www视频免费| 亚洲av国产av综合av卡| 下体分泌物呈黄色| 精品熟女少妇av免费看| 一二三四中文在线观看免费高清| a级片在线免费高清观看视频| 高清av免费在线| 欧美精品高潮呻吟av久久| 亚洲欧美成人综合另类久久久| 极品教师在线视频| 91aial.com中文字幕在线观看| 免费在线观看成人毛片| 男女啪啪激烈高潮av片| 欧美日韩av久久| 午夜福利网站1000一区二区三区| 我要看黄色一级片免费的| .国产精品久久| 美女福利国产在线| 精品酒店卫生间| 国精品久久久久久国模美| 久久精品国产亚洲av涩爱| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 国产亚洲最大av| 国产又色又爽无遮挡免| 爱豆传媒免费全集在线观看| 精品人妻一区二区三区麻豆| 一级毛片 在线播放| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区三区| 国产高清不卡午夜福利| 久久久久国产精品人妻一区二区| 26uuu在线亚洲综合色| 免费少妇av软件| 青青草视频在线视频观看| 99精国产麻豆久久婷婷| 秋霞在线观看毛片| 日韩制服骚丝袜av| 两个人免费观看高清视频 | 老司机影院毛片| 国产成人aa在线观看| 亚洲熟女精品中文字幕| 成人美女网站在线观看视频| 久久人人爽av亚洲精品天堂| 欧美最新免费一区二区三区| videossex国产| 亚洲精华国产精华液的使用体验| 久久国产精品大桥未久av | 国产精品麻豆人妻色哟哟久久| av福利片在线| 91精品国产九色| 亚洲天堂av无毛| 水蜜桃什么品种好| 男女免费视频国产| 好男人视频免费观看在线| 国产成人一区二区在线| 综合色丁香网| 午夜视频国产福利| 日韩不卡一区二区三区视频在线| 国产爽快片一区二区三区| 十分钟在线观看高清视频www | av福利片在线观看| av国产久精品久网站免费入址| 三级经典国产精品| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 大香蕉97超碰在线| 亚洲av日韩在线播放| 欧美日韩av久久| 亚洲av国产av综合av卡| a级毛色黄片| 69精品国产乱码久久久| 亚洲图色成人| 大片电影免费在线观看免费| 久久毛片免费看一区二区三区| 国产亚洲91精品色在线| 日本欧美视频一区| 又粗又硬又长又爽又黄的视频| 久久国产精品男人的天堂亚洲 | 成人综合一区亚洲| 日韩强制内射视频| 性高湖久久久久久久久免费观看| 国产免费一区二区三区四区乱码| av福利片在线观看| 99久国产av精品国产电影| 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 国产av码专区亚洲av| 国产成人aa在线观看| 日本午夜av视频| 女性被躁到高潮视频| 日日啪夜夜撸| 如何舔出高潮| 日本色播在线视频| 久久精品国产鲁丝片午夜精品| 大片电影免费在线观看免费| 国产成人一区二区在线| 99九九在线精品视频 | 2021少妇久久久久久久久久久| 国内少妇人妻偷人精品xxx网站| 性色av一级| 亚洲av男天堂| 久热这里只有精品99| 搡老乐熟女国产| 精品酒店卫生间| 我要看黄色一级片免费的| 在线看a的网站| 国产69精品久久久久777片| av在线观看视频网站免费| 啦啦啦啦在线视频资源| 菩萨蛮人人尽说江南好唐韦庄| 又爽又黄a免费视频| 免费av中文字幕在线| 黄色一级大片看看| 人妻人人澡人人爽人人| 日韩人妻高清精品专区| 丝袜在线中文字幕| 一本色道久久久久久精品综合| 少妇的逼水好多| 国产高清有码在线观看视频| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 少妇被粗大猛烈的视频| 精品人妻一区二区三区麻豆| 国产亚洲欧美精品永久| 亚洲国产精品999| 国产免费视频播放在线视频| 午夜福利网站1000一区二区三区| 免费看av在线观看网站| www.色视频.com| 久热这里只有精品99| 久久 成人 亚洲| 交换朋友夫妻互换小说| 女的被弄到高潮叫床怎么办| 精品午夜福利在线看| 国产精品人妻久久久久久| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 国产老妇伦熟女老妇高清| 亚洲熟女精品中文字幕| 日韩不卡一区二区三区视频在线| 国产一区有黄有色的免费视频| 2018国产大陆天天弄谢| 亚洲人成网站在线观看播放| av国产精品久久久久影院| 亚洲av日韩在线播放| 亚洲国产欧美日韩在线播放 | 伊人久久国产一区二区| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 熟女人妻精品中文字幕| 久久久久精品久久久久真实原创|