• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermodynamic analysis for a third grade fluid through a vertical channel with internal heat generation*

    2015-04-20 05:52:49ADESANYASamuelMAKINDEOluwole

    ADESANYA Samuel O., MAKINDE Oluwole D.

    1. Department of Mathematical Sciences, Redeemer’s University, Redemption, Nigeria,E-mail: adesanyaolumide@yahoo.com 2. Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha 7395, South Africa

    Introduction

    Studies related to conservation of thermal energy in a moving non-Newtonian fluid through vertical channel has several applications in Carnot engines,geology, metallurgical and petro-chemical engineering.As a result of the hyper-viscosity of some non-Newtonian fluids, technological processes occur at a very high temperature by either direct heating of the fluid or by simple exothermic chemical reaction.

    In this paper, emphasis is laid on the flow of reactive non-Newtonian fluid that is induced by chemical reaction. It is well known that internal heat generation is connected with moving fluid undergoing exothermic chemical reaction or combustion. Furthermore,the inability of the classical linear stress-strain relation for Newtonian fluids to explain the complex rheological properties of some non-Newtonian fluids like heavy hydrocarbon oil, bitumen, soaps, shampoos,certain oils, etc. has led to the development of many constitutive relations in literature. For example, the Eyring-Powel model[1-3], the couple stress model[4-6]and many more. In recent years, a lot of quality research work has been done on third grade fluid model by Hayat and his collaborators[7-12](and references therein). This is because third grade fluid model has the ability to describe the shear thinning/thickening even in steady flow situations past rigid boundaries but lack the ability to capture the polar and particle size effects.

    However, all the work in Refs.[7-12] neglects the thermodynamic analysis of the fluid flow. From application point of view, the performance of engines that utilize heat as the working medium can be measured by analysing the entropy-exergy of the thermal system.Similarly, thermodynamic irreversibility arises due to heat transfer and fluid friction. These indices help to determine the efficiency of a thermal system. Recently,a number of studies have been done on the entropy generation in a moving fluid. For example, Adesanya and Makinde[13]investigated the entropy generation in couple stress fluid flowing steadily through a porous channel with slip at the isothermal walls by using the Navier model. Similarly, Adesanya and Makinde[14]examined the effect of couple stresses on the entropy generation rate of an incompressible viscous fluid through a porous channel with convective heating at the walls. Makinde and Osalusi[15]presented the secondlaw analysis of a laminar falling viscous incompressible liquid film along an inclined porous heated plate in which the upper surface of the liquid film is considered free and adiabatic. Makinde[16]studied the inherent irreversibility in the flow of a variable-viscosity fluid through a channel with a non-uniform wall temperature with the assumption that the fluid viscosity varies linearly with temperature. While thermal stability and entropy generation in a temperature dependent viscous with Newtonian heating was investigated in the work of Makinde[17].

    Motivated by the above discussions, the objective of the present study is to investigate the thermodynamic properties of a reactive third grade fluid flow through a vertical channel taking the effect of internal heat generation into consideration. The out-coming result is very useful in many geological and petro-chemical engineering systems, in which exergy is maximized. One case in mind is the enhanced oil recovery duringin-situcombustion of heavy oil. That is, air is introduced into bitumen or heavy oil bed to induced chemical reaction of the hydrocarbon. The heat of reaction has melting effect on the hyper-viscous fluid and flow is induced by the combination of natural convection resulting from density changes and pump action for further processing in the refinery.

    The dimensionless problem is coupled and nonlinear. Hence, analytical solution will be obtained by using rapidly convergent Adomian decomposition method. The method has been shown to be convergent and successfully applied to several linear and nonlinear mathematical models in Refs.[18-20].

    Fig.1 Flow geometry

    1. Mathematical analysis

    Consider the steady mixed convective flow of third grade fluid through the space between two infinite parallel isothermal plates of distance 2hapart as shown in Fig.1. All fluid properties are assumed constant except for fluid density and internal heat generation that varies linearly with temperature. The fluid is assumed chemically active and chemical reactions occur in the middle of the channel. Hence, heat flows symmetrically from the centreline of the channel toward the fluid layer close to the cold plates.

    Therefore, the entropy lost in the hot region is gained in the cold region in accordance to the second law of thermodynamics. The velocity field is given by

    Under this configuration, the conservation of mass,conservation of momentum and balanced energy equation for an incompressible fluid are given by

    where D/Dtis the material derivative,cpis the specific heat,T′ is the fluid temperature,T0is the referenced fluid temperature,gis the gravitational force,βthe coefficient of volume expansion due to temperature,Lis the velocity gradient,Qis the reactant concentration that measures internal heat generation andSis the Cauchy stress tensor,kthe thermal conductivity,ρis the fluid density.

    The Cauchy stress tensorSis given by[7,8]

    whereIis the identity tensor,αi(i=1,2) andβi(i=1,2,3)are the material constants,μis the dynamic viscosity,p1is the pressure,Ai(i=1,2,3) are the kinematic tensors in which the first three kinematic tensorsAi(i=1,2,3) are defined by

    where ▽ is the gradient operator. As was shown in Refs.[7]-[12] (and references therein), if the motion of the fluid are compatible with the thermodynamics,then the Clausius-Duhem inequality together with the assumption that the Helmholtz free energy is minimum at equilibrium implies that

    For thermodynamically compatible third grade fluid,Eq.(5) becomes

    where the effective shear-dependent viscosity is

    then the thermodynamically developed flow are governed by the momentum equation

    and the energy equation

    and the entropy generation is given as

    together with boundary conditions

    hereu′ is the fluid velocity,T′ the fluid temperature,p′ the pressure,EGis the entropy generation parameter. Introducing the following dimensionless parameters and variables

    we obtain the dimensionless problem together with the appropriate boundary conditions

    whereAis the dimensionless pressure gradient taken to be unity,γis the dimensionless third grade material parameter,δrepresents internal heat generation parameter,Brviscous heating Brinkman number,θis the dimensionless temperature,uis the dimensionless velocity andGris the Buoyancy parameter andNSis the dimensionless entropy generation parameter,Uis the characteristic velocity andΩis the temperature difference parameter.

    2. Method of solution

    The differential Eqs.(16)-(17) can be written in the integral form as follows:

    where the constantsa0,b0are to be determined later by using the other boundary conditions aty=1. The nonlinear terms in Eqs.(19)-(20) can be represented as

    such that by introducing an infinite series solutions in the form

    the Adomian polynomials can be computed as follows:

    Similarly, using forms (22) in Eqs.(19)-(20) leads to the following recursive relation:

    Equations (23)-(26) are then coded on Mathematica software to obtain the partial sums

    as the approximate solutions and the graphical results are presented as Figs.2-17.

    Fig.2 Effect of Grashof numbers on velocity profile

    Fig.3 Effect of Grashof numbers on temperature distribution

    Fig.4 Effect of internal heat generation parameters on velocity profile

    Fig.5 Effect of internal heat generation parameters on temperature distribution

    Fig.6 Effect of Brinkman numbers on velocity profile

    Fig.7 Effect of Brinkman numbers on temperature profile

    Fig.8 Effect of non-Newtonian material parameters on velocity profile

    Fig.9 Effect of non-Newtonian material parameters on temperature profile

    whenevern>n0andεis sufficiently small.

    Proof: It is required to show that the sequences are convergent (Cauchy sequence) in the Hilbert spaceH. Let us define

    Then for everyε>0 there existn0∈Nsuch that for alln,m>n0and for everyy∈[-1 ,1], we havewhenever

    Then we have,

    From Cauchy’s inequality, we get

    Now suppose the continuity condition holds, then let us chooseε=εα> 0 whereαrepresent a positive constant. For everyn≥n0we get

    Hence, the sequenceun(y) →um(y) for sufficiently smallε> 0, thenun(y) converges tou(y). Using the same procedure the convergence of theθ(y) can be established. Table 1 confirms the rapid convergence of the series solution for certain values of the flow parameters given.

    Table 1 Convergence result for Br =0.02, γ=0.01, Gr=1, δ=0.1

    Error analysis: letunandun+1as any two consecutive sequences together with a positive constantκ.Then

    then by subtraction, Eqs.(33) becomes

    an estimate of the integral over boundaries can be obtained in the form

    by Cauchy estimates, then

    that is

    ifκis sufficiently small, then inequality (37) becomes

    Evidently, [κn+2/(1 -κ)] →0 asn→ ∞ whenever 0<κ≤1 showing that the error is negligibly small.Substituting forms (27) in Eq.(18), we get the entropy generation rate. Due to large size of the solution, only the graphical results are presented as Figs.10-13.While the irreversibility ratio can be computed from the entropy generation rate due to the contribution from heat transfer and that from fluid friction in the form

    Such that the irreversibility ratio denoted by Bejan number (Be) can be written as

    Fig.10 Effect of Brinkman numbers on entropy generation rate

    Fig.11 Effect of internal heat generation on entropy generation rate

    Fig.12 Effect of Grashof numbers on entropy generation rate

    Fig.13 Effect of non-Newtonian material parameters on entropy generation rate

    3. Discussion of results

    To understand the coupling between the fluid velocity and temperature, analytical results in the form of ADM solution are presented for various flow parameters.

    Figure 2 represents the effect of variations in the Grashof number on the velocity profile. An increase in the Grashof number is observed to increase the flow velocity maximum. This is true since an increase in the Grashof number implies a decrease in the dynamic viscosity of the fluid. This enhances the volumetric expansion within the channel. Moreover, Fig.3 shows that an increase in the Grashof number has an increasing effect on the temperature distribution within the channel. This is because as the Grashof number increases, there is a rise in the volumetric expansion within the channel. As can be observed in Fig.4, as the internal heat generation parameter increases, there is a corresponding rise in the fluid velocity. This is simply due to the fact that the fluid absorbs its own emissions.This lowers the viscosity of the hyper-viscous fluid.Similarly, a rise in the internal heat generation parameter is connected with the decrease in the thermal conductivity of the fluid. This shows that the heat dissipated will continue to rise within the flow channel as the heat generated due to chemical reactions increases as shown in Fig.5. Moreover, Fig.6 shows the effect of the Brinkman number on the velocity profile. From the figure it is observed that an increase in the Brinkman number increases the fluid flow velocity.This is due to the fact that the Brinkman number is an additional heat source and the kinetic energy of the moving fluid is converted into heat energy. On the other hand, as the Brinkman number increase, the thermal conductivity of the fluid decreases. As a result of collision of the fluid particles, heat is generated which eventually leads to an increase in the fluid temperature distribution as shown in Fig.7. Also, Fig.8 represents the effect of the variation of the non-Newtonian material parameter on the fluid flow velocity. From the figure it is observed that an increase in the non-Newtonian parameter leads to a decrease in the fluid velocity due to fluid thickening. As a result, the interparticle frictional force increases and the temperature of the fluid decreases within the channel as observed in Fig.9.

    In Fig.10, it is observed that entropy generation is higher at the heated walls due to the rise in the viscous dissipation parameter. This is because heat is transferred from the central line of the channel to the fluid layers close to the walls. Based on this, the result is well behaved and as such, the entropy generation decreases symmetrically towards the central line of the channel where the exergy is at the peak. Similarly,the heat released due to chemical interactions is observed to enhance the entropy generation rate at the walls. This is because heat is transferred from the central line of the channel to the fluid particles close to the walls. Hence the contribution of additional heat from combustion reaction will lead to excess heat near the cold walls while entropy is minimum at the central line of the channel as shown in Fig.11. Meanwhile,Fig.12 depicts the effect of the Grashof number on the entropy generation rate, and as seen from the figure,an increase in the Grashof number leads to a rise in the entropy generation at the walls. This is a result of heat transfer from the volumetric expansion of the fluid to the walls. While an increase in the non-Newtonian material parameter is observed to discourage entropy generation at the walls as observed in Fig.13. This is due to the fact that as the fluid viscosity rises, fluid friction also rises, thus minimizing entropy generation towards the cold walls.

    Fig.14 Effect of Grashof numbers on irreversibility ratio

    Fig.15 Effect of internal heat generation on irreversibility ratio

    Fig.16 Effect of Brinkman numbers on irreversibility ratio

    Fig.17 Effect of internal heat generation on Bejan number irreversibility ratio

    Figure 14 shows the effect of the Grashof number on the irreversibility ratio. As can be observed from the plot, an increase in the Grashof number shows that heat transfer dominates over the fluid friction across the channel but this dominance is more pronounced at the in the fluid layer close to the cold plate. This is due to the fact that decrease in fluid viscosity encourages the rise in the Grashof number.Hence, heat transfer is enhanced. Figure 15 shows the effect of internal heat generation parameter on the irreversibility ratio. As is observed, heat transfer dominates over the fluid friction throughout the channel.This is due to the fact that as the internal heat generation parameter increases there is a decrease in the fluid thermal conductivity. This encourages heat transfer from the channel centreline to the walls. Similar behavior is seen in Fig.16 where the effect of the Brinkman number on irreversibility of heat is presented. Finally,fluid friction dominates over heat transfer as the non-Newtonian material parameter increases as shown in Fig.17 due to the hyper-viscosity of the fluid.

    4. Conclusions

    In the present paper, the thermodynamics analysis of a reactive non-Newtonian fluid flow through a channel with uniform wall temperature is presented.Analytical solutions of the coupled nonlinear boundary valued problem are obtained using the rapidly convergent ADM. These solutions are used to compute the irreversibility ratio and entropy generation within the channel. Major contributions in this paper are as follows:

    (1) The exergy of the system increases with the rise in the non-Newtonian parameter while buoyancy force, internal heat generation and viscous heating of the fluid deplete the exergy level of the thermal system.

    (2) Fluid viscosity dominates the channel with the increase in the non-Newtonian material parameter while heat transfer dominates the channel with increase in the Grashof number, internal heat generation and Brinkman number.

    Acknowledgement

    The authors gratefully thank the anonymous reviewers of this manuscript for their useful comments and suggestions.

    [1] ADESANYA S. O. Steady magnetohydrodynamic visco-elastic heat generating /absorbing slip flow with thermal radiation through a porous medium[J].International Journal of Heat and Technology, 2012, 30: 69-74.

    [2] ELDABE N. T. M., HASSAN A. A. and MOHAMED MONA A. A. Effect of couple stresses on the MHD of a non-Newtonian unsteady flow between two parallel porous plates[J]. Zeitschrift für Naturforschung, A,2003, 58a: 204-210.

    [3] ZUECO J., BéG O. A. Network numerical simulation applied to pulsatile non-Newtonian flow through a channel with couple stress and wall mass flux effects[J].International Journal of Applied Mathematics and Mechanics, 2009, 5(2): 1-16.

    [4] ADESANYA S. O., MAKINDE O. D. Heat transfer to magnetohydrodynamic non-Newtonian couple stress pulsatile flow between two parallel porous plates[J].Zeitschrift für Naturforschung A, 2012, 67a: 647-656.

    [5] SRINIVASACHARYA D., SRIKANTH D. Effect of couple stresses on the pulsatile flow through a constricted annulus[J]. Computes Rendus Mécanique, 2008,336(11): 820-827.

    [6] SRINIVASACHARYA D., KALADHAR K. Mixed convection flow of couple stress fluid between parallel vertical plates with hall and ion-slip effects[J]. Communication in Nonlinear Science and Numerical Simulatiom, 2012, 17(6): 2447-2462.

    [7] ASGHAR S., MUDASSAR GULZAR and HAYAT T.Rotating flow of a third grade fluid by homotopy analysis method[J]. Applied Mathematics and Computation, 2005, 165(1): 213-221.

    [8] HAYAT T., KARA A. H. Couette flow of a third-grade fluid with variable magnetic field[J]. Mathematical and Computer Modelling, 2006, 43(1): 132-137.

    [9] HAYAT T., SHAHZAD F. and AYUB M. Analytical solution for the steady flow of the third grade fluid in a porous half space[J]. Applied Mathematical Modelling, 2007, 31(11): 2424-2432.

    [10] HAYAT T., ASIF FAROOQ M. and JAVED T. et al.Partial slip effects on the flow and heat transfer characteristics in a third grade fluid[J]. Nonlinear Analysis:Real World Applications, 2009, 10(2): 745-755.

    [11] ABELMAN S., MOMONIAT E. and HAYAT T. Couette flow of a third grade fluid with rotating frame and slip condition[J]. Nonlinear Analysis: Real World Applications, 2009, 10(6): 3329-3334.

    [12] HAYAT T., MUSTAFA M. and ASGHAR S. Unsteady flow with heat and mass transfer of a third grade fluid over a stretching surface in the presence of chemical reaction[J]. Nonlinear Analysis: Real World Applications,2010, 11(4): 3186-3197.

    [13] ADESANYA S. O., MAKINDE O. D. Entropy generation in couple stress fluid flow through porous channel with fluid slippage[J]. International Journal of Exergy, 2014, 15: 344-362.

    [14] ADESANYA S. O., MAKINDE O. D. Effects of couple stresses on entropy generation rate in a porous channel with convective heating[J]. Computational and Applied Mathematics, 2014, DOI: 10.1007/s40314-014-0117-z.

    [15] MAKINDE O. D., OSALUSI E. Entropy generation in a liquid film falling along an inclined porous heated plate[J]. Mechanics Research Communications, 2006,33(5): 692-698.

    [16] MAKINDE O. D. Entropy-generation analysis for variable-viscosity channel flow with non-uniform wall temperature[J].Applied Energy, 2008, 85(5): 384-393.

    [17] MAKINDE O. D. Irreversibility analysis of variable viscosity channel flow with convective cooling at the walls[J]. Canadian Journal of Physics,2008, 86(2):383-389.

    [18] ADESANYA S. O. Linear stability analysis of a plane-Poiseuille hydromagnetic flow using Adomian decomposition method[J]. University POLITEHNICA of Bucharest Science Bulletin, Series A, 2013, 75:99-106.

    [19] ADESANYA S. O. Thermal stability analysis of reactive hydro-magnetic third grade fluid through a channel with convective cooling[J]. Journal of the Nigerian Mathematical Society, 2013, 32: 61-72.

    [20] EL-KALLA I. L. Convergence of the Adomian method applied to a class of nonlinear integral equations[J].Applied Mathematics Letters, 2008, 21(4): 372-376.

    人妻系列 视频| 国产精品人妻久久久久久| 99久国产av精品国产电影| 久久久精品欧美日韩精品| 亚洲怡红院男人天堂| 久久99蜜桃精品久久| 免费观看在线日韩| 国产白丝娇喘喷水9色精品| av.在线天堂| 白带黄色成豆腐渣| 国产激情偷乱视频一区二区| av在线老鸭窝| 女的被弄到高潮叫床怎么办| 精品人妻熟女av久视频| 嘟嘟电影网在线观看| 午夜激情福利司机影院| 国产亚洲精品久久久com| 一本久久精品| 少妇裸体淫交视频免费看高清| 狂野欧美激情性xxxx在线观看| 亚洲综合色惰| 国产女主播在线喷水免费视频网站 | 欧美不卡视频在线免费观看| 国产精品人妻久久久久久| 天堂av国产一区二区熟女人妻| 日韩 亚洲 欧美在线| 国精品久久久久久国模美| 国产精品国产三级专区第一集| 三级经典国产精品| 在线天堂最新版资源| 亚洲欧美日韩东京热| 熟妇人妻久久中文字幕3abv| 亚洲精品一二三| 秋霞伦理黄片| 成年av动漫网址| 国产美女午夜福利| 人妻少妇偷人精品九色| 免费观看的影片在线观看| 最近手机中文字幕大全| 啦啦啦中文免费视频观看日本| 国产av国产精品国产| 亚洲精品久久午夜乱码| 69av精品久久久久久| 欧美日韩国产mv在线观看视频 | 直男gayav资源| 久久久久久久大尺度免费视频| 久久久久久久国产电影| 久久精品夜色国产| 大香蕉97超碰在线| 亚洲精品国产av成人精品| 亚洲婷婷狠狠爱综合网| 一夜夜www| 偷拍熟女少妇极品色| 国产亚洲最大av| 一级毛片久久久久久久久女| 爱豆传媒免费全集在线观看| 国产精品久久久久久精品电影| 亚洲成人中文字幕在线播放| 国产老妇女一区| 岛国毛片在线播放| 中文字幕人妻熟人妻熟丝袜美| 能在线免费观看的黄片| 在现免费观看毛片| 国产成人a∨麻豆精品| 少妇裸体淫交视频免费看高清| 乱人视频在线观看| videossex国产| 免费黄色在线免费观看| 国产一级毛片在线| 欧美丝袜亚洲另类| 天堂俺去俺来也www色官网 | 最近最新中文字幕大全电影3| 国产在线一区二区三区精| videos熟女内射| 小蜜桃在线观看免费完整版高清| 亚洲性久久影院| 九九在线视频观看精品| 五月伊人婷婷丁香| 一边亲一边摸免费视频| 少妇裸体淫交视频免费看高清| 久久精品久久精品一区二区三区| 久久精品久久精品一区二区三区| 成人特级av手机在线观看| 乱人视频在线观看| 日日干狠狠操夜夜爽| 午夜老司机福利剧场| 午夜福利在线观看吧| 最后的刺客免费高清国语| 免费观看无遮挡的男女| 男女国产视频网站| 成人无遮挡网站| 亚洲成人一二三区av| 亚洲精品456在线播放app| 国产一区有黄有色的免费视频 | 晚上一个人看的免费电影| 欧美成人午夜免费资源| 伊人久久国产一区二区| 最近最新中文字幕大全电影3| 免费少妇av软件| 最近最新中文字幕大全电影3| 蜜桃久久精品国产亚洲av| 成年av动漫网址| 亚洲无线观看免费| 男女边摸边吃奶| 有码 亚洲区| 久久99热这里只频精品6学生| 一级二级三级毛片免费看| 免费看美女性在线毛片视频| 九色成人免费人妻av| 色吧在线观看| 久久精品综合一区二区三区| 中国国产av一级| 亚洲av一区综合| 在线观看美女被高潮喷水网站| 国产人妻一区二区三区在| 乱系列少妇在线播放| 日本三级黄在线观看| 国产伦理片在线播放av一区| 寂寞人妻少妇视频99o| 26uuu在线亚洲综合色| 一级毛片久久久久久久久女| 男人爽女人下面视频在线观看| 亚洲精品一区蜜桃| 国产精品一区二区三区四区免费观看| 日韩人妻高清精品专区| 国产精品无大码| 久久久久久久久久黄片| 两个人视频免费观看高清| 国产精品国产三级国产专区5o| 伊人久久国产一区二区| 特级一级黄色大片| 午夜日本视频在线| 国产黄a三级三级三级人| 18禁裸乳无遮挡免费网站照片| 免费看日本二区| 久久久久免费精品人妻一区二区| 在线观看av片永久免费下载| 日韩制服骚丝袜av| 国产综合精华液| 男人和女人高潮做爰伦理| 99热这里只有是精品在线观看| 国产精品熟女久久久久浪| 久久国内精品自在自线图片| 在线免费十八禁| 免费在线观看成人毛片| 色尼玛亚洲综合影院| 欧美一级a爱片免费观看看| 成人午夜精彩视频在线观看| 国产午夜福利久久久久久| 国产亚洲5aaaaa淫片| 爱豆传媒免费全集在线观看| 毛片一级片免费看久久久久| 色视频www国产| 中文字幕av在线有码专区| 日韩欧美精品v在线| 亚洲高清免费不卡视频| 国产在线男女| 日日撸夜夜添| 麻豆av噜噜一区二区三区| 国产精品1区2区在线观看.| 天堂√8在线中文| 国产视频内射| 国产精品1区2区在线观看.| 午夜激情久久久久久久| 中文字幕制服av| 国产一级毛片七仙女欲春2| 精品久久久久久久久av| 久久久久网色| 99久国产av精品| 欧美+日韩+精品| 免费观看av网站的网址| 日韩欧美 国产精品| 永久免费av网站大全| 神马国产精品三级电影在线观看| 亚洲美女视频黄频| 乱人视频在线观看| 午夜福利视频1000在线观看| 国产一级毛片在线| 欧美97在线视频| 夫妻性生交免费视频一级片| 3wmmmm亚洲av在线观看| 精品久久久久久久久av| 欧美日韩国产mv在线观看视频 | 亚洲电影在线观看av| 亚洲综合色惰| 男人狂女人下面高潮的视频| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级 | 婷婷色av中文字幕| av网站免费在线观看视频 | 欧美高清成人免费视频www| 3wmmmm亚洲av在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲经典国产精华液单| 一级二级三级毛片免费看| 免费黄网站久久成人精品| 1000部很黄的大片| 国产精品久久视频播放| 日韩国内少妇激情av| 日韩大片免费观看网站| 久久久久久久国产电影| 人人妻人人澡欧美一区二区| 老司机影院成人| 特级一级黄色大片| 久久久久久国产a免费观看| 久久久久久久国产电影| 人人妻人人澡欧美一区二区| 国产片特级美女逼逼视频| 亚洲在久久综合| 免费不卡的大黄色大毛片视频在线观看 | 久久久欧美国产精品| 婷婷六月久久综合丁香| 午夜激情福利司机影院| av.在线天堂| 少妇裸体淫交视频免费看高清| 又黄又爽又刺激的免费视频.| 国产av在哪里看| 最近手机中文字幕大全| 看十八女毛片水多多多| 成人漫画全彩无遮挡| 免费黄频网站在线观看国产| 婷婷色综合大香蕉| 非洲黑人性xxxx精品又粗又长| 国产高清不卡午夜福利| 久久6这里有精品| 一级毛片aaaaaa免费看小| 国产不卡一卡二| 午夜爱爱视频在线播放| 色综合色国产| 国国产精品蜜臀av免费| 久久久a久久爽久久v久久| 精品人妻视频免费看| 亚洲精品影视一区二区三区av| 直男gayav资源| 成人高潮视频无遮挡免费网站| 三级国产精品欧美在线观看| 少妇被粗大猛烈的视频| 亚洲精品国产成人久久av| 大片免费播放器 马上看| 99热这里只有精品一区| 久久久久国产网址| 亚洲熟女精品中文字幕| 69av精品久久久久久| 能在线免费观看的黄片| 日韩电影二区| 高清午夜精品一区二区三区| 日韩三级伦理在线观看| 日韩亚洲欧美综合| 国产高清三级在线| 亚洲成人av在线免费| 国产午夜精品久久久久久一区二区三区| 国产精品三级大全| 免费在线观看成人毛片| 91精品一卡2卡3卡4卡| 日韩精品青青久久久久久| 久久综合国产亚洲精品| 亚洲精品乱码久久久v下载方式| 日本-黄色视频高清免费观看| 一级片'在线观看视频| 99热这里只有是精品在线观看| 免费av不卡在线播放| 久久久精品94久久精品| av女优亚洲男人天堂| 赤兔流量卡办理| 久久久久精品久久久久真实原创| 久久久久网色| 九草在线视频观看| 爱豆传媒免费全集在线观看| 亚洲精品中文字幕在线视频 | 日韩一本色道免费dvd| 色播亚洲综合网| 亚洲av成人精品一区久久| 亚洲精品久久久久久婷婷小说| 99九九线精品视频在线观看视频| 直男gayav资源| 久久久久久九九精品二区国产| 超碰av人人做人人爽久久| 中文在线观看免费www的网站| 亚洲电影在线观看av| 高清日韩中文字幕在线| 少妇人妻精品综合一区二区| 国产精品.久久久| 一级a做视频免费观看| 免费黄色在线免费观看| av在线亚洲专区| 免费av毛片视频| 国产黄色视频一区二区在线观看| 国产一区二区三区综合在线观看 | 亚洲精品影视一区二区三区av| 中文字幕人妻熟人妻熟丝袜美| 国产黄片美女视频| av免费在线看不卡| 精品一区二区三区视频在线| 尾随美女入室| 日产精品乱码卡一卡2卡三| 久久人人爽人人爽人人片va| 国产亚洲av嫩草精品影院| 99久久人妻综合| 国内精品美女久久久久久| 国产亚洲午夜精品一区二区久久 | 乱系列少妇在线播放| 精品久久久久久久人妻蜜臀av| 亚洲精品乱码久久久久久按摩| 欧美日韩视频高清一区二区三区二| 精品久久久久久成人av| 亚洲电影在线观看av| 激情五月婷婷亚洲| 麻豆av噜噜一区二区三区| 日韩在线高清观看一区二区三区| 黄片wwwwww| 亚洲最大成人手机在线| 少妇的逼水好多| 亚洲伊人久久精品综合| 亚洲欧美中文字幕日韩二区| 永久网站在线| 91在线精品国自产拍蜜月| 久久久久免费精品人妻一区二区| 18禁在线播放成人免费| 国产精品不卡视频一区二区| av在线天堂中文字幕| 久久久精品免费免费高清| 中文精品一卡2卡3卡4更新| 天堂影院成人在线观看| 99久久中文字幕三级久久日本| 丝瓜视频免费看黄片| eeuss影院久久| 久久精品久久久久久久性| 天天躁夜夜躁狠狠久久av| 国产亚洲av嫩草精品影院| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| 麻豆成人av视频| 乱人视频在线观看| 久久久久免费精品人妻一区二区| 亚洲av一区综合| 久久亚洲国产成人精品v| 久久久精品94久久精品| 国产精品人妻久久久久久| 精品久久国产蜜桃| 赤兔流量卡办理| 一级a做视频免费观看| 欧美97在线视频| 五月玫瑰六月丁香| 午夜精品一区二区三区免费看| 日韩欧美三级三区| 欧美一级a爱片免费观看看| 亚洲精品乱久久久久久| 国产高清三级在线| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 成人美女网站在线观看视频| 日韩av免费高清视频| 青春草视频在线免费观看| 国产成年人精品一区二区| 在线观看人妻少妇| 国产精品一区二区三区四区久久| 亚洲三级黄色毛片| 国产精品日韩av在线免费观看| 免费观看精品视频网站| 国国产精品蜜臀av免费| 国产亚洲精品av在线| 激情五月婷婷亚洲| av在线亚洲专区| 美女xxoo啪啪120秒动态图| 尾随美女入室| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 国模一区二区三区四区视频| 精品熟女少妇av免费看| 成人av在线播放网站| 中文天堂在线官网| 国产麻豆成人av免费视频| 国产永久视频网站| 午夜激情欧美在线| 日本与韩国留学比较| 超碰97精品在线观看| 亚洲自拍偷在线| 女人被狂操c到高潮| 深夜a级毛片| 超碰97精品在线观看| 少妇人妻一区二区三区视频| 女的被弄到高潮叫床怎么办| 精品国产三级普通话版| 又爽又黄a免费视频| 久久久久久伊人网av| 免费黄频网站在线观看国产| 高清av免费在线| 99久久精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 国产精品国产三级专区第一集| 日韩一区二区三区影片| 国产午夜精品久久久久久一区二区三区| 免费看av在线观看网站| 国产不卡一卡二| 亚洲不卡免费看| 久久这里只有精品中国| 又黄又爽又刺激的免费视频.| xxx大片免费视频| 成人一区二区视频在线观看| 日韩强制内射视频| 日韩国内少妇激情av| 69av精品久久久久久| 亚洲真实伦在线观看| 在线 av 中文字幕| 中文字幕av在线有码专区| 亚洲人成网站在线观看播放| 看非洲黑人一级黄片| 久热久热在线精品观看| 亚洲精品日韩av片在线观看| 毛片女人毛片| 欧美日本视频| 一级毛片电影观看| 国产高清三级在线| 亚洲国产av新网站| 干丝袜人妻中文字幕| 国产黄片美女视频| 69人妻影院| 看黄色毛片网站| 一级毛片 在线播放| 国产精品久久久久久久久免| 日韩一本色道免费dvd| 在线 av 中文字幕| 亚洲av日韩在线播放| 午夜福利在线观看吧| 小蜜桃在线观看免费完整版高清| 黑人高潮一二区| 十八禁国产超污无遮挡网站| 久久这里只有精品中国| 麻豆av噜噜一区二区三区| 91午夜精品亚洲一区二区三区| 亚洲国产精品成人综合色| 人人妻人人看人人澡| 日韩三级伦理在线观看| 亚洲精品乱码久久久v下载方式| 国产精品无大码| 亚洲精品成人av观看孕妇| 午夜福利在线观看免费完整高清在| 一个人观看的视频www高清免费观看| 国产亚洲精品av在线| 97在线视频观看| 青春草视频在线免费观看| 日韩欧美三级三区| 精品亚洲乱码少妇综合久久| 26uuu在线亚洲综合色| 亚洲成人一二三区av| 汤姆久久久久久久影院中文字幕 | 亚洲不卡免费看| 3wmmmm亚洲av在线观看| 啦啦啦啦在线视频资源| 激情五月婷婷亚洲| 国产日韩欧美在线精品| 91久久精品国产一区二区三区| 欧美+日韩+精品| 男女视频在线观看网站免费| 日本一二三区视频观看| 99久久九九国产精品国产免费| 午夜免费激情av| 日韩av不卡免费在线播放| 又爽又黄无遮挡网站| 草草在线视频免费看| 午夜久久久久精精品| 麻豆国产97在线/欧美| 国产伦一二天堂av在线观看| 精品久久久久久久末码| 91久久精品电影网| 免费看av在线观看网站| 99久久中文字幕三级久久日本| 欧美潮喷喷水| 校园人妻丝袜中文字幕| 亚洲成人av在线免费| 亚洲欧美中文字幕日韩二区| 哪个播放器可以免费观看大片| 亚洲av在线观看美女高潮| 久久久国产一区二区| 国产成人一区二区在线| 性色avwww在线观看| 久久久亚洲精品成人影院| 国产精品久久久久久久久免| 黑人高潮一二区| 国产精品不卡视频一区二区| 精品久久久久久久末码| 久久热精品热| 国产v大片淫在线免费观看| 日韩大片免费观看网站| 亚洲欧美成人精品一区二区| 一个人观看的视频www高清免费观看| 日本黄大片高清| 日本黄色片子视频| 国产成人免费观看mmmm| kizo精华| 一区二区三区免费毛片| 亚洲精品乱码久久久久久按摩| 亚洲av电影不卡..在线观看| 久久久国产一区二区| 搞女人的毛片| 最近手机中文字幕大全| 国产av在哪里看| 亚洲av在线观看美女高潮| 色哟哟·www| 亚洲最大成人中文| 老司机影院成人| 亚洲欧美日韩无卡精品| 国产大屁股一区二区在线视频| av一本久久久久| 网址你懂的国产日韩在线| 人妻少妇偷人精品九色| 又大又黄又爽视频免费| 免费人成在线观看视频色| 最近中文字幕高清免费大全6| 精品熟女少妇av免费看| 婷婷色av中文字幕| 亚洲自偷自拍三级| 亚洲,欧美,日韩| 一级毛片我不卡| 午夜福利在线在线| 中文字幕人妻熟人妻熟丝袜美| 综合色av麻豆| 夫妻性生交免费视频一级片| 久久人人爽人人片av| 亚洲怡红院男人天堂| 赤兔流量卡办理| 亚洲高清免费不卡视频| 亚洲精品日韩在线中文字幕| 极品少妇高潮喷水抽搐| av在线天堂中文字幕| 国产熟女欧美一区二区| 欧美丝袜亚洲另类| 亚洲成人中文字幕在线播放| 大又大粗又爽又黄少妇毛片口| 综合色丁香网| 亚洲欧美一区二区三区黑人 | 中文精品一卡2卡3卡4更新| 内射极品少妇av片p| 国产精品熟女久久久久浪| 久久国产乱子免费精品| 中文字幕久久专区| 丝袜美腿在线中文| 男女啪啪激烈高潮av片| 高清在线视频一区二区三区| 亚洲av电影在线观看一区二区三区 | 欧美三级亚洲精品| 免费看日本二区| 午夜激情久久久久久久| 精品酒店卫生间| 亚洲欧美中文字幕日韩二区| 亚洲av成人精品一二三区| 少妇的逼水好多| 国模一区二区三区四区视频| 自拍偷自拍亚洲精品老妇| 国产高清三级在线| 69人妻影院| 中文天堂在线官网| 日本三级黄在线观看| or卡值多少钱| 你懂的网址亚洲精品在线观看| 干丝袜人妻中文字幕| 中文精品一卡2卡3卡4更新| 岛国毛片在线播放| 最近的中文字幕免费完整| 国产精品久久久久久精品电影| 中国美白少妇内射xxxbb| 一本久久精品| 日本色播在线视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产精品成人综合色| 亚洲精品视频女| 精品亚洲乱码少妇综合久久| 欧美一区二区亚洲| 永久网站在线| 99热这里只有精品一区| 噜噜噜噜噜久久久久久91| av.在线天堂| 女的被弄到高潮叫床怎么办| 久久久久久国产a免费观看| 最近中文字幕2019免费版| 女人被狂操c到高潮| 高清av免费在线| 波野结衣二区三区在线| 美女高潮的动态| av又黄又爽大尺度在线免费看| 黄色一级大片看看| 在线免费观看不下载黄p国产| 免费电影在线观看免费观看| 久久久久久久久久成人| 精品一区二区三区视频在线| 亚洲国产av新网站| 小蜜桃在线观看免费完整版高清| 亚洲欧美清纯卡通| 少妇人妻一区二区三区视频| 午夜免费观看性视频| 性色avwww在线观看| 亚洲熟女精品中文字幕| 国产激情偷乱视频一区二区| 欧美xxxx黑人xx丫x性爽| 国产真实伦视频高清在线观看| 成人欧美大片| 18禁裸乳无遮挡免费网站照片| 91av网一区二区| 国产欧美日韩精品一区二区| 一级毛片我不卡| 婷婷色综合大香蕉| 天堂av国产一区二区熟女人妻| 亚洲va在线va天堂va国产| 免费观看a级毛片全部| 国产午夜精品一二区理论片| 一本久久精品| 男人舔女人下体高潮全视频| 在线播放无遮挡| 精品一区二区三区视频在线| 国产成人91sexporn| 免费看光身美女| 免费黄色在线免费观看| 亚洲18禁久久av| h日本视频在线播放|