劉飛飛,秦貴信*,姜海龍,孫澤威
(1.吉林農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,長(zhǎng)春 130118; 2.動(dòng)物生產(chǎn)與產(chǎn)品質(zhì)量安全教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130118)
腦-腸軸及其在動(dòng)物攝食調(diào)控中的作用
劉飛飛1,2,秦貴信1,2*,姜海龍1,孫澤威1
(1.吉林農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,長(zhǎng)春 130118; 2.動(dòng)物生產(chǎn)與產(chǎn)品質(zhì)量安全教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)春 130118)
攝食是動(dòng)物的一種反射性活動(dòng),動(dòng)物攝食行為的調(diào)節(jié)與腦-腸軸密切相關(guān)。動(dòng)物攝食后,營(yíng)養(yǎng)物質(zhì)接觸胃腸道從而刺激腦腸肽的釋放,通過迷走傳入神經(jīng)元將信號(hào)傳遞給中樞神經(jīng)系統(tǒng),神經(jīng)中樞將信號(hào)整合后經(jīng)傳出神經(jīng)到達(dá)效應(yīng)器官以促進(jìn)或抑制攝食。腦-腸肽是參與食物攝取的重要的胃腸激素,在腦-腸軸調(diào)控?cái)z食行為中起關(guān)鍵的作用,本文就腦-腸軸參與攝食調(diào)節(jié)作用方面的研究進(jìn)展作一綜述。
腦-腸軸;攝食調(diào)節(jié);腦-腸肽;ghrelin;NPY;orexin;CCK;GLP-1
隨著人類疾病如肥胖、糖尿病、局部缺血性心臟病和癌癥等的日益增多,飲食調(diào)控已成為全球關(guān)注的焦點(diǎn)[1-2],腦-腸軸和外周激素參與的食欲調(diào)控已成為近幾年的研究熱點(diǎn),并且在調(diào)控?cái)z食和能量平衡的分子信號(hào)通路方面的研究已有了巨大的進(jìn)展。對(duì)動(dòng)物而言,也越來(lái)越多地關(guān)注于由腦-腸軸整合的中樞神經(jīng)系統(tǒng)和腸神經(jīng)系統(tǒng)共同參與對(duì)攝食行為調(diào)節(jié)的研究[3]。攝食調(diào)控的機(jī)制是一個(gè)復(fù)雜的生理生化過程,對(duì)動(dòng)物攝食行為和能量穩(wěn)態(tài)的調(diào)節(jié)受到傳入到大腦中的各種反映營(yíng)養(yǎng)狀態(tài)和外部環(huán)境信號(hào)的共同影響。腦-腸軸系統(tǒng)能充分感應(yīng)機(jī)體的營(yíng)養(yǎng)狀況,同時(shí)釋放的腦-腸肽及相關(guān)神經(jīng)遞質(zhì)共同參與對(duì)食物攝取的調(diào)節(jié),以維持機(jī)體的能量穩(wěn)態(tài)[4]。因此,提高對(duì)腦-腸軸的重視,有助于加強(qiáng)對(duì)動(dòng)物胃腸道動(dòng)力學(xué)反應(yīng)的認(rèn)識(shí)。本文對(duì)近幾年腦-腸軸參與對(duì)動(dòng)物攝食行為的調(diào)節(jié),以及腦-腸肽類激素在動(dòng)物攝食行為調(diào)節(jié)作用的研究進(jìn)展進(jìn)行了綜述,為動(dòng)物營(yíng)養(yǎng)生理學(xué)及動(dòng)物自身病理生理方面的研究提供理論支持。
動(dòng)物攝食的體內(nèi)調(diào)節(jié)分為物理、化學(xué)和神經(jīng)內(nèi)分泌調(diào)節(jié)。物理調(diào)節(jié)主要與胃腸充盈狀態(tài)及胃腸動(dòng)力有關(guān)。哺乳動(dòng)物的胃腸道中均存在著牽張感受器,這些感受器受到食物的機(jī)械刺激后,則可增強(qiáng)迷走神經(jīng)元活動(dòng),引起下丘腦中下位區(qū)域興奮,從而使動(dòng)物停止采食?;瘜W(xué)調(diào)節(jié)信號(hào)來(lái)源于體液中的葡萄糖、游離脂肪酸、肽類和氨基酸等營(yíng)養(yǎng)物質(zhì),它們均為下丘腦飽感中樞的化學(xué)信號(hào)。哺乳動(dòng)物和禽類的攝食主要受到神經(jīng)內(nèi)分泌調(diào)節(jié),而腦-腸軸是將大腦中樞神經(jīng)系統(tǒng)和胃腸道聯(lián)系起來(lái)的神經(jīng)內(nèi)分泌網(wǎng)絡(luò),是中樞神經(jīng)系統(tǒng)(Central nervous system,CNS)與腸神經(jīng)系統(tǒng)(Enteric nervous system,ENS )之間的雙向整合系統(tǒng),包括有迷走神經(jīng)、交感神經(jīng)及脊神經(jīng)等神經(jīng)回路,以及細(xì)胞因子、激素、神經(jīng)肽等體液回路,具有多種生理功能。筆者對(duì)腦-腸軸參與的攝食調(diào)節(jié)過程進(jìn)行了分析并建立腦-腸軸示意圖(圖1),下丘腦和腦干是主要的調(diào)節(jié)攝食和能量穩(wěn)態(tài)的中樞神經(jīng)系統(tǒng),這些腦部區(qū)域接受外周神經(jīng)和胃腸激素的刺激信號(hào)參與對(duì)攝食的調(diào)節(jié)[5-7]。下丘腦腹內(nèi)側(cè)核(VMN)和外側(cè)區(qū)(LHA)分別被稱為飽食中樞和攝食中樞,而下丘腦弓狀核(ARC)對(duì)食物的攝取也起著重要的調(diào)節(jié)作用。ARC包含有兩個(gè)中樞食欲調(diào)節(jié)的關(guān)鍵區(qū)域,對(duì)食物的攝取起著不同的作用[8-9],內(nèi)側(cè)的神經(jīng)肽-豚鼠相關(guān)蛋白(NPY/AgRP)為促食欲神經(jīng)元,ARC外側(cè)的前阿片黑皮質(zhì)素原和可卡因-苯丙胺調(diào)節(jié)轉(zhuǎn)錄肽(POMC/CART)為抑制食欲神經(jīng)元。動(dòng)物機(jī)體借助腦-腸軸間的這種神經(jīng)內(nèi)分泌網(wǎng)絡(luò)參與對(duì)胃腸功能的調(diào)節(jié)是通過信號(hào)的傳導(dǎo)來(lái)實(shí)現(xiàn)的,而這種信號(hào)傳導(dǎo)因子是活性肽類。這種活性肽存在于腦和外周神經(jīng)組織中,同時(shí)也存在于消化道中,此類雙重分布的活性肽被稱為腦-腸肽,腦-腸肽兼有神經(jīng)遞質(zhì)和激素的雙重作用。
圖1 腦-腸軸示意圖Fig.1 Brain-gut axis
胃腸道是腦-腸軸體系中重要的參與者,動(dòng)物營(yíng)養(yǎng)物質(zhì)的攝入與食欲息息相關(guān),食欲調(diào)節(jié)包括長(zhǎng)期和短期調(diào)節(jié)。長(zhǎng)期食欲調(diào)節(jié)反應(yīng)了機(jī)體的能量穩(wěn)態(tài),短期食欲調(diào)節(jié)是由胃腸道分泌的腦-腸肽傳遞信號(hào)給下丘腦和腦干,通過交互作用來(lái)調(diào)節(jié)動(dòng)物攝食開始或結(jié)束。目前發(fā)現(xiàn)的50多種胃腸肽類激素中有20多種是腦-腸肽。
2.1 促進(jìn)攝食的腦-腸肽
2.1.1 Ghrelin Ghrelin是一種主要分泌于胃的腦-腸肽,具有促進(jìn)生長(zhǎng)激素釋放和調(diào)節(jié)食欲等重要的生物學(xué)功能[10]。人和大鼠體內(nèi)Ghrelin是含有28個(gè)氨基酸殘基的腦-腸肽,而雞、兔及小鼠的體內(nèi)檢測(cè)到的Ghrelin含有26個(gè)氨基酸殘基。其N端第3位絲氨酸殘基被疏水的n-辛?;揎棧@種?;腉hrelin對(duì)于維持Ghrelin的生物活性是必需的,可通過血腦屏障,與其受體相結(jié)合發(fā)揮調(diào)節(jié)作用。Ghrelin主要由胃內(nèi)分泌,在下丘腦、腸道、腎和胎盤等也有少量分泌。對(duì)豬、綿羊、山羊、牛和大鼠的胃腸道細(xì)胞研究表明,Ghrelin免疫活性細(xì)胞主要分布于胃的泌酸腺黏膜部位,豬以賁門和幽門部位較多[11],奶山羊體內(nèi)以皺胃黏膜內(nèi)最多,沿著小腸各段逐漸減少,瘤胃、網(wǎng)胃和瓣胃內(nèi)Ghrelin免疫陽(yáng)性細(xì)胞最少[12]。
Ghrelin是一種促食欲的腦-腸肽[13],試驗(yàn)表明,Ghrelin具有強(qiáng)烈的促進(jìn)動(dòng)物攝食,增加動(dòng)物體重的作用[13-14]。其促食欲作用與動(dòng)物能量消耗和動(dòng)物的攝食節(jié)律密切相關(guān)[15]。豬采食營(yíng)養(yǎng)物質(zhì)如色氨酸可能通過刺激胃內(nèi)Ghrelin的分泌及表達(dá)量而增加攝食量[16],但在攝食后1 h內(nèi)急劇下降。給斷奶仔豬靜脈注射外源Ghrelin,5 d后發(fā)現(xiàn)與注射生理鹽水組的仔豬相比,攝食次數(shù)增加,體重也明顯增大[17]。研究發(fā)現(xiàn),給幼齡野生紅鱒魚投喂Ghrelin,增加了采食活動(dòng)和游動(dòng)能力,魚體重也增加[18]。研究表明,Ghrelin促進(jìn)攝食的作用機(jī)制是通過中樞和外周食欲調(diào)節(jié)網(wǎng)絡(luò)實(shí)現(xiàn)的[14],激活位于弓狀核產(chǎn)生的NPY/AgRP神經(jīng)元的GH-R,促進(jìn)NPY和AGRP的表達(dá)和釋放,刺激食物的攝入。Ghrelin及其受體也表達(dá)在大鼠的迷走傳入神經(jīng)元[19],向大鼠腹腔內(nèi)注射Ghrelin發(fā)現(xiàn),大鼠的攝食量增加,可能的機(jī)制是Ghrelin選擇性刺激膈下迷走神經(jīng),通過迷走神經(jīng)將神經(jīng)信號(hào)傳入大腦從而導(dǎo)致大鼠攝食增加。
2.1.2 神經(jīng)肽Y 神經(jīng)肽Y(Neuropeptide Y,NPY)是含有36個(gè)氨基酸殘基的腦-腸肽,廣泛存在于大腦中樞及外周神經(jīng)系統(tǒng)中[20-21]。目前研究發(fā)現(xiàn)哺乳動(dòng)物體內(nèi)NPY有5種不同的受體亞型,其中只有Y1和Y5參與對(duì)動(dòng)物食物攝取的調(diào)節(jié)[22]。NPY產(chǎn)生于下丘腦弓狀核,并通過軸突傳遞到室旁核,室旁核中的NPY與Y1或Y5受體結(jié)合,產(chǎn)生的信號(hào)抑制交感神經(jīng)興奮,從而提高食欲,增加采食量。動(dòng)物攝入的日糧營(yíng)養(yǎng)狀態(tài)也會(huì)影響動(dòng)物體內(nèi)NPY的表達(dá)[23],研究發(fā)現(xiàn)動(dòng)物機(jī)體空腹時(shí)下丘腦中NPY mRNA的表達(dá)量增加,NPY釋放增多,而進(jìn)食后減少。因此,NPY被認(rèn)為是一種重要的攝食調(diào)節(jié)因子[24]。下丘腦弓狀核中NPY/AgRP神經(jīng)元對(duì)促食欲的調(diào)節(jié)起重要作用,對(duì)成年小鼠研究表明,選擇性的去除NPY/AgRP神經(jīng)元,可顯著的降低小鼠的采食量,因此NPY/AgRP神經(jīng)元對(duì)小鼠機(jī)體健康不可缺少[25]。研究表明,向腦室內(nèi)注射NPY可顯著增加動(dòng)物的攝食量,并抑制交感神經(jīng)活性,降低能量消耗,引起動(dòng)物體重增加。在哺乳動(dòng)物體內(nèi),NPY與CCK和Leptin等腦-腸肽共同參與對(duì)食物攝取的調(diào)節(jié)[26]。NPY的基因及其cDNA的研究已在不同品種魚類體內(nèi)發(fā)現(xiàn),如草魚[27]、斑馬魚[28]和金魚[29]等。已有研究報(bào)道,由中樞或外周注射NPY均可不同程度的刺激魚類攝食量增加[27,30]。
2.1.3 食欲肽 食欲肽(Orexin)是下丘腦分泌的一種促食欲神經(jīng)肽,分為Orexin A和Orexin B。Orexin及其受體在人和動(dòng)物的腦及其他組織均有分布[31-32]。然而在不同種屬動(dòng)物Orexin及其受體的分布也不同,研究發(fā)現(xiàn),Orexin在豬[33-34]、新生狗[35]和馬[36]的胃腸道神經(jīng)系統(tǒng)均有分布,而在反芻動(dòng)物體內(nèi)Orexin并沒有作用于腸神經(jīng)系統(tǒng),而是在腸道黏膜下層和肌層發(fā)現(xiàn)有OX1R的分布[37]。研究表明,Orexin具有促進(jìn)哺乳動(dòng)物對(duì)食物攝取的作用[32],給大鼠腦室內(nèi)注射Orexin后激活了促采食神經(jīng)元,并呈劑量依賴性促進(jìn)大鼠進(jìn)食。通過腦室注射Orexin會(huì)引起洞穴魚和斑馬魚食欲增加[38-39]。研究表明,Orexin促食欲的作用機(jī)制主要是激活G蛋白耦聯(lián)的細(xì)胞表面受體OX1R和OX2R,進(jìn)而參與機(jī)體對(duì)攝食行為的調(diào)節(jié)。并且Orexin的釋放受到動(dòng)物日糧營(yíng)養(yǎng)狀態(tài)的影響,可通過調(diào)節(jié)與攝食有關(guān)的神經(jīng)通路活性進(jìn)而調(diào)控?cái)z食[40]。
2.2 抑制攝食的腦-腸肽
2.2.1 胰高血糖素樣肽1 胰高血糖素樣肽1(Glucagon like peptide-1,GLP-1)是含有30個(gè)氨基酸殘基的肽類,采用免疫組織化學(xué)方法對(duì)大鼠、豬和人胎兒體內(nèi)研究發(fā)現(xiàn),GLP-1免疫陽(yáng)性受體細(xì)胞主要分布在胰腺及腸道遠(yuǎn)端、回腸末端、結(jié)腸和直腸的L-細(xì)胞分泌較多,不同種屬動(dòng)物間的GLP-1受體細(xì)胞密度分布不同,但分布規(guī)律趨于一致,即由腸道近端向遠(yuǎn)端逐漸增多[41]。GLP-1神經(jīng)元在腦中(如下丘腦、腦干尾端的孤束核(NTS)、背側(cè)丘腦和隔區(qū)以及大腦皮層等)都有廣泛的分布[42]。GLP-1在腸道和腦中的廣泛分布表明它們之間存在整合作用,在中樞神經(jīng)系統(tǒng)中具有對(duì)動(dòng)物攝食行為進(jìn)行調(diào)控的重要生理功能。
研究發(fā)現(xiàn),GLP-1的主要功能是分泌血糖依賴性的腸促胰島素,對(duì)維持血糖水平起重要作用。目前越來(lái)越多的研究發(fā)現(xiàn)GLP-1還可以通過腦-腸軸作用,發(fā)揮延緩胃排空,抑制腸道運(yùn)動(dòng),增加飽腹感和抑制動(dòng)物攝食[43-45]等作用,從而減少體重。給正常和肥胖的人靜脈注射GLP-1后發(fā)現(xiàn)呈劑量依賴性的減少食物攝取,延緩胃排空。通過外周注射GLP-1后發(fā)現(xiàn)VMH和PVN的GLP-1神經(jīng)元密度增大[46]。通過免疫細(xì)胞化學(xué)和免疫印跡方法在大鼠體內(nèi)研究發(fā)現(xiàn)GLP-1R蛋白表達(dá)在大鼠的迷走傳入神經(jīng)元[47],靜脈注射GLP-1后呈劑量依賴性抑制大鼠對(duì)食物的攝取[48],GLP-1對(duì)攝食調(diào)節(jié)機(jī)制可能是由腦干中的GLP-1激活神經(jīng)元通過迷走傳入神經(jīng)元[49]和腦干通路發(fā)揮作用[50],進(jìn)而延緩胃腸道排空速度,增強(qiáng)動(dòng)物飽感,從而減少對(duì)食物的攝取,而這種厭食反應(yīng)在切斷迷走神經(jīng)的嚙齒動(dòng)物體內(nèi)沒有變化[51]。以上研究表明,GLP-1是通過下丘腦和腦干區(qū)域引起動(dòng)物食欲下降和攝食量減少,但GLP-1傳出神經(jīng)元到達(dá)下丘腦作用靶點(diǎn)對(duì)攝食調(diào)控的機(jī)制還需要進(jìn)一步研究。
2.2.2 膽囊收縮素 膽囊收縮素(Cholecystokinin,CCK)是一種典型的腦-腸肽,廣泛分布于胃腸道和中樞及外周神經(jīng)系統(tǒng),并以神經(jīng)遞質(zhì)的形式發(fā)揮重要的生理作用[52-53]。CCK存在著多種分子形式,研究者在多種動(dòng)物腸道發(fā)現(xiàn)有CCK58、CCK22、CCK8、CCK7、CCK6和CCK5等。研究表明,豬的CCK分子在腦和腸道組織是相同的,而不同分子形式的CCK是由于翻譯后加工所致。CCK受體分為兩型,CCK-AR和CCK-BR。 CCK-AR主要分布在外周組織如胰腺、膽囊及腸道的迷走傳入神經(jīng)元[54],中樞神經(jīng)系統(tǒng)上的某些區(qū)域也有分布,CCK-AR主要參與對(duì)食物攝取的調(diào)控。CCK-BR有不同的分布,發(fā)現(xiàn)在大腦皮層、下丘腦、迷走神經(jīng)和胃黏膜上,這些區(qū)域涉及到對(duì)食欲進(jìn)行調(diào)節(jié)。研究證實(shí),CCK是動(dòng)物攝食后從小腸內(nèi)釋放,通過與靶細(xì)胞膜上的特異性受體結(jié)合而發(fā)揮促胰酶分泌、膽囊收縮、延緩胃排空和抑制攝食等生理作用[55]。CCK被認(rèn)為是一種飽感因子,因其不能通過血腦屏障,靜脈注射的CCK 必然作用于外周部位引起動(dòng)物飽感信號(hào)增強(qiáng),因此,CCK是外周攝食調(diào)節(jié)的主要生理因子。不同CCK的分子形式、不同動(dòng)物和不同的生理狀態(tài),對(duì)動(dòng)物攝食的調(diào)控也存在差異。對(duì)兔、豬和羊等動(dòng)物已有報(bào)道,無(wú)論外源性的CCK還是內(nèi)源性的CCK都可能引起動(dòng)物機(jī)體產(chǎn)生飽感,從而降低動(dòng)物的攝食量。脂肪是強(qiáng)大的內(nèi)源性CCK釋放的刺激物,脂肪酸可與小腸上皮細(xì)胞的G-蛋白偶聯(lián)受體相結(jié)合以促進(jìn)CCK的釋放,從而引起動(dòng)物短期的飽感[56]。給雞靜脈注射不同劑量的CCK后發(fā)現(xiàn),雞的采食量呈劑量依賴性降低。對(duì)禁食的荷斯坦小母牛研究發(fā)現(xiàn),其飼喂后小腸上皮細(xì)胞的CCK mRNA表達(dá)量明顯上升,說(shuō)明CCK可能參與牛的攝食調(diào)節(jié)[57]。
有研究報(bào)道,介導(dǎo)CCK抑制動(dòng)物對(duì)食物攝取的主要途徑有抑制胃排空途徑和迷走神經(jīng)途徑[58],研究表明,向羊的腦脊液中注入一定量的CCK發(fā)現(xiàn)羊的采食量下降,但若向腦室內(nèi)注入CCK的抑制劑后,動(dòng)物的攝食量有明顯的上升[59]。體外培養(yǎng)迷走傳入神經(jīng)元,在無(wú)血清時(shí)添加CCK可通過蛋白激酶C(PKC)和cAMP反應(yīng)元件結(jié)合蛋白途徑激活CART的表達(dá)。CCK還可以通過與此途徑中其他肽類激素的釋放,共同參與對(duì)食物攝取的調(diào)控,如瘦素、食欲素-A等。CCK參與動(dòng)物機(jī)體生理功能的發(fā)揮是無(wú)可爭(zhēng)議的,但其對(duì)動(dòng)物攝食調(diào)節(jié)的復(fù)雜機(jī)制還有待于進(jìn)一步研究。
2.2.3 肽YY 肽YY (Peptide tyrosine tyrosine,PYY)是含有36個(gè)氨基酸殘基的肽類,廣泛存在于哺乳動(dòng)物的腸道和神經(jīng)系統(tǒng)中,采用免疫組織化學(xué)方法對(duì)不同發(fā)育階段的牛的不同部位研究發(fā)現(xiàn),牛的食道和胃中沒有PYY表達(dá),而在腸道各個(gè)部位均存在,小腸中PYY陽(yáng)性細(xì)胞較少,從回腸到直腸逐漸增多,PYY陽(yáng)性細(xì)胞在胎兒時(shí)期表達(dá)最多,與其相比,在犢牛和成年牛體內(nèi)較少[60]。研究發(fā)現(xiàn),PYY3-36參與動(dòng)物的攝食調(diào)節(jié)和能量穩(wěn)態(tài)[61]。研究表明,長(zhǎng)期注射PYY3-36能減少小鼠和兔的攝食量及體重增加量,而且動(dòng)物攝食量的減少與注射PYY3-36的量存在劑量依賴關(guān)系。給鼠的腹腔注射PYY3-36后,發(fā)現(xiàn)鼠的攝食量減少,體重降低[62]。還有研究報(bào)道,給禁食動(dòng)物的腹腔注射PYY3-36會(huì)抑制動(dòng)物的攝食,但在持續(xù)飼喂的動(dòng)物注射PYY3-36后,對(duì)攝食量的影響并不明顯。此外,PYY可與其他腦-腸肽共同參與對(duì)食物攝取的調(diào)節(jié)[63-64],但調(diào)節(jié)機(jī)制有待于進(jìn)一步研究。
大量的研究和實(shí)踐表明,腦-腸軸在動(dòng)物攝食行為調(diào)節(jié)方面的作用是不可忽視的,深入研究腦-腸軸對(duì)動(dòng)物攝食調(diào)控的機(jī)制,有利于更好地了解動(dòng)物攝食中樞調(diào)節(jié)的信號(hào)整合位點(diǎn)及作用方式,明確迷走神經(jīng)在腦-腸軸信號(hào)的作用,對(duì)于動(dòng)物營(yíng)養(yǎng)生理學(xué)的研究具有重要的理論意義。同時(shí),可與動(dòng)物自然的攝食行為相結(jié)合,對(duì)于合理配制日糧有較大的幫助,這不但有利于改善動(dòng)物食欲,促進(jìn)動(dòng)物健康生長(zhǎng),而且有利于提高經(jīng)濟(jì)效益。此外,腦-腸肽作為動(dòng)物體內(nèi)的神經(jīng)內(nèi)分泌調(diào)節(jié)劑,對(duì)動(dòng)物的繁殖能力、仔畜存活率和維持動(dòng)物機(jī)體生長(zhǎng)發(fā)育,都會(huì)起到良好的促進(jìn)作用,此外還有其他腦-腸肽(如Leptin、OXM和PP等)共同參與對(duì)動(dòng)物攝食的調(diào)節(jié),但腦-腸肽間的相互作用對(duì)動(dòng)物攝食行為的調(diào)控機(jī)制,仍有待于進(jìn)一步研究。
[1] WHITLOCK G,LEWINGTON S,SHERLIKER P,et al.Body-mass index and cause-specific mortality in 900 000 adults:collaborative analyses of 57 prospective studies[J].Lancet,2009,373(9669):1083-1096.
[2] ZHENG W,MCLERRAN D F,ROLLAND B,et al.Association between body-mass index and risk of death in more than 1 million Asians[J].NEnglJMed,2011,364(8):719-729.
[3] BREEN D M,YANG C S,LAM T K T.Gut-brain signalling:how lipids can trigger the gut[J].DiabetesMetabResRev, 2011,27(2):113-119.
[4] MITHIEUX G.Crosstalk between gastrointestinal neurons and the brain in the control of food intake[J].BestPractResCLEN,2014,28:739-744.
[5] JANSSEN P,VANDEN BERGHE P,VERSCHUEREN S,et al.Review article:the role of gastric motility in the control of food intake[J].AlimentPharmacolTher,2011,33(8):880-894.
[6] CUMMINGS D E,OVERDUIN J.Gastrointestinal regulation of food intake[J].ClinInvest,2007,117(1):13-23.
[7] LAM C K L,CHARI M,RUTTER G A,et al.Hypothalamic nutrient sensing activates a forebrain-hindbrain neuronal circuit to regulate glucose productioninvivo[J].Diabetes,2011,60(1):107-113.
[8] MORTON G J,CUMMINGS D E,BASKIN D G,et al.Central nervous system control of food intake and body weight[J].Nature,2006,443(7109):289-295.
[9] CHAUDHRI O B,F(xiàn)IELD B C T,BLOOM S R.Gastrointestinal satiety signals[J].IntJObes,2008,32:S28-S31.
[10] VERHULST P J,DEPOORTERE I.Ghrelin’s second life:from appetite stimulator to glucose regulator[J].WorldJGastroenterol,2012,18(25):3183-3195.
[11] VITARRI F,DI GIANCAMILLO A,DEPONTI D,et al.Distribution of ghrelin-producing cells in the gastrointestinal tract of pigs at different ages[J].VetResCommun,2012,36(1):71-80.
[12] 于高水,張文龍,黃 勇,等.Ghrelin在撒能奶山羊胃腸道內(nèi)的分布與表達(dá)[C]//獸醫(yī)病理學(xué)會(huì)議[A].2012:141. YU G S,ZHANG W L,HUANG Y,et al.Distribution and expression of ghrelin in gastrointestinal tract of goats[C]//Veterinary Pathology Conference Proceedings[A].2012:141.(in Chinese)
[13] BEWICK G A,KENT A,CAMPBELL D,et al.Mice with hyperghrelinemia are hyperphagic and glucose intolerant and have reduced leptin sensitivity[J].Diabetes,2009,58(4):840-846.
[14] KANG K S,YAHASHI S,MATSUDA K.Central and peripheral effects of ghrelin on energy balance,food intake and lipid metabolism in teleost fish[J].Peptides,2011,32(11):2242-2247.
[15] KATARZYNA K,DOROTA A Z.Ghrelin-mediated appetite regulation in the central nervous system[J].Peptides,2011,32(11):2256-2264.
[16] ZHANG H W,YIN J D,LI D F,et al.Tryptophan enhances ghrelin expression and secretion associated with increased food intake and weight gain in weanling pigs[J].DomestAnimEndocrinol,2007,33(1):47-61.
[17] SALFEN B E,CARROLL J A,KEISLER D H,et al.Effects of exogenous ghrelin on feed intake,weight gain,behavior,and endocrine responses in weanling pigs[J].AnimSci,2004,82(7):1957-1966.
[18] TINOCO A B,NASLUND J,DELGADO M J,et al.Ghrelin increases food intake,swimming activity and growth in juvenile brown trout (Salmotrutta)[J].PhysiolBehav,2014,124:15-22.
[19] PAGE A J,SLATTERY J A,MILTE C,et al.Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents[J].AmJPhysiolGastrointestLiverPhysiol,2007,292(5):G1376-G1384.
[20] HOLZER P,REICHMANN F,F(xiàn)ARZI A.Neuropeptide Y,peptide YY and pancreatic polypeptide in the gut-brain axis[J].Neuropeptides,2012,46(6):261-274.[21] ZHANG L,BIJKER M S,HERZOG H,et al.The neuropeptide Y system:Pathophysiological and therapeutic implications in obesity and cancer[J].PharmacolTher,2011,131(1):91-113.
[22] PATEL D,PATEL N M.Review of NPY and NPY receptor for obesity[J].IntJPharm,2009,8:2.
[23] NGUYEN M V,JORDAL A E O,ESPE M,et al.Feed intake and brain neuropeptide Y (NPY) and cholecystokinin (CCK) gene expression in juvenile cobia fed plant-based protein diets with different lysine to arginine ratios[J].CompBiochemPhysA,2013,165 (3):328-337.
[24] YOKOBORI E,AZUMA M,NISHIGUCHI R,et al.Neuropeptide Y stimulates food intake in the Zebrafish,Daniorerio[J].JNeuroendocrinol,2012,24(5):766-773.
[25] LUQUET S,PEREZ F A,HNASKO T S,et al.NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates[J].Science,2005,310(5748):683-685.
[26] MERCER R,CHEE M J S,COLMERS W F,et al.The role of NPY in hypothalamic mediated food intake[J].FrontNeuroendocrin,2011,32(4):398-415.
[27] ZHOU Y,LIANG X F,YUAN X C,et al.Neuropeptide Y stimulates food intake and regulates metabolism in grass carp,Ctenopharyngodon idellus[J].Aquaculture,2013,380:52-61.
[28] FILBY A L,PAULL G C,BARTLETT E J,et al.Physiological and health consequences of social status in zebrafish (Daniorerio)[J].PhysiolBehav,2010,101(5):576-587.
[29] KAMIJO M,KOJIMA K,MARUYAMA K,et al.Neuropeptide Y in tiger puffer (Takifugurubripes):distribution,cloning,characterization and mRNA expression responses to prandial condition[J].ZoologSci,2011,28(12):882-890.
[30] MATSUDA K,KANG K S,SAKASHITA A,et al.Behavioral effectof neuropeptides related to feeding regulation in fish[J].AnnNYAcadSci,2011,1220(1):117-126.
[31] WONG K K Y,NG S Y L,LEE L T O,et al.Orexins and their receptors from fish to mammals:A comparative approach[J].GeneCompEndocrinol,2011,171(2):124-130.
[32] SHIMIZU S,NAKAMACHI T,KONNO N,et al.Orexin A enhances food intake in bullfrog larvae[J].Peptides,2014,59:79-82.
[33] DALL’AGLIO C,ZANNONI A,F(xiàn)ORNI M,et al.Orexin system expression in the gastrointestinal tract of pigs[J].ResVetSci,2013,95 (1):8-14.
[34] DALL’AGLIO C,ZANNONI A,F(xiàn)ORNI M,et al.Differential gene expression and immune localization of the orexin system in the major salivary glands of pigs[J].RegulPept,2011,172(1-3):51-57.
[35] DALL’AGLIO C,PASCUCCI L,MERCATI F,et al.Identification of orexin A- and orexin type 2 receptor-positive cells in the gastrointestinal tract of neonatal dogs[J].EurJHistochem,2009,52(4):229-236.
[36] DALL’AGLIO C,PASCUCCI L,MERCATI F,et al.Immunohistochemical identification and localization of orexin A and orexin type 2 receptor in the horse gastrointestinal tract[J].ResVetSci,2009,86(2):189-193.
[37] DALL’AGLIO C,PASCUCCI L,MERCATI F,et al.Localization of the orexin system in the gastrointestinal tract of fallow deer[J].ActaHistochem,2012,114(2):74-78.
[38] PENNEY C C,VOLKOFF H.Peripheral injections of cholecystokinin,apelin,ghrelin and orexin in cavefish (Astyanax fasciatus mexicanus):Effects on feeding and on the brain expression levels of tyrosine hydroxylase,mechanistic target of rapamycin and appetite-related hormones[J].GenCompEndocrinol,2014,196:34-40.
[39] YOKOBORI E,KOJIMA K,AZUMA M,et al.Stimulatory effect of intracerebroventricular administration of orexin A on foodintake in the zebrafish,Danio rerio[J].Peptides,2011,32(7):1357-1362.
[40] KIRSZ K,SZCZESNA M,DUDEK K,et al.Influence of season and nutritional status on the direct effects of leptin,orexin-A and ghrelin on luteinizing hormone and growth hormone secretion in the ovine pituitary explant model[J].DomestAnimEndocrin,2014,48:69-76.
[41] 王俊波,李艷君,寧樹君,等.GLP-1-IR細(xì)胞在鼠、豬和人胎兒腸道的分布[J].解剖科學(xué)進(jìn)展,2000,6(2):140-143. WANG J B,LI Y J,NING S J,et al.Study of distribution on GLP-1-IR cells in the gut of rat,pig and foetus of human[J].ProgressAnatomScience,2000,6(2):140-143.(in Chinese)
[42] HOLST J J.The physiology of glucagon-like peptide 1[J].PhysiolRev,2007,87(4):1409-1439.
[43] WILLIAMS D L.Neural integration of satiation and food reward:Role of GLP-1 and orexin pathways[J].PhysiolBehav,2014,136:194-199.
[44] PUNJABI M,ARNOLD M,GEARY N,et al.Peripheral glucagon-like peptide-1 (GLP-1) and satiation[J].PhysiolBehav,2011,105(1):71-76.
[45] POLENI P E,AKIEDA-ASAI S,KODA S,et al.Possible involvement of melanocortin-4-receptor and AMP-activated protein kinase in the interaction of glucagon-like peptide-1 and leptin on feeding in rats[J].BiochemBiophysResCommun,2012,420(1):36-41.[46] PARKINSON J R C,CHAUDHRI O B,KUO Y T,et al.Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1,oxyntomodulin and lithium chloride in mice detected by manganese enhanced magnetic resonance imaging (MEMRI)[J].Neuroimage,2009,44(3):1022-1031.
[47] CHARLOTTE C R,GUILLAUME D L,HELEN E R.Ability of GLP-1 to decrease food intake is dependent on nutritional status[J].PhysiolBehav,2014,135:222-229.
[48] HAYES M R,KANOSKI S E,ALHADEFF A L,et al.Comparative effects of the long-acting GLP-1 receptor ligands,liraglutide and exendin-4,on food intake and body weight suppression in rats[J].Obesity,2011,19(7):1342-1349.
[49] PLAMBOECK A,VEEDFALD S,DEACON C F,et al.The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty[J].AmJPhysiolGastrointestLiverPhysiol,2013,304(12):1117-1127.
[50] SCHIRRA J,NICOLAUS M,WOERLE H,et al.GLP-1 regulates gastroduodenal motility involving cholinergic pathways[J].NeurogastroentMotil,2009,21(6):609-618.
[51] ABBOTT C R,MONTEIRO M,SMALL C J,et al.The inhibitory effects of peripheral administration of peptide YY(3-36)and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway[J].BrainRes,2005,1044(1):127-131.
[52] LIDDLE R A.Cholecystokinin:its role in health and disease[J].CurrOpinEndocrinolDiabetes,2003,10(1):50-54.
[53] CHEUNG G W C,KOKOROVIC A,LAM C K L,et al.Intestinal cholecystokinin controls glucose production through a neuronal network[J].CellMetab,2009,10(2):99-109.
[54] MORAN T H,KINZIG K P.Gastrointestinal satiety signals II.Cholecystokinin[J].AmJPhysiolGastrointestLiverPhysiol,2004,286 (2):183-188.
[55] DOCKRAY G J.Cholecystokinin[J].CurrOpinEndocrinolDiabetesObes,2012,19:8-12.
[56] LIOU A P,LU X,SEI Y,et al.The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin[J].Gastroenterology,2011,140(3):903-912.
[57] SUOMINEN A H,GLIMM D R,OKINE E K,et al.Development of aninvivomethod to study bovine intestinal response to dietary manipulation at the molecular level[J].JAnimSci,1998,76(10):2678-2686.
[58] RIPKEN D,VAN DER WIELEN N,VAN DER MEULEN J,et al.Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy[J].PhysiolBehav,2015,139:167-176.
[59] 譚岳華,黃生強(qiáng).CCK、CCKAR 對(duì)動(dòng)物采食量影響的研究進(jìn)展[J].豬與禽,2008,28(5):69-71. TAN Y H,HUANG S Q.Advances on the effect of CCK,CCKAR on the animal feed intake[J].PigPoultry,2008,28(5):69-71.(in Chinese)
[60] ASADULLAH H P,MIYUKI I,MOTOKI S,et al.Immunohistochemical study on the ontogenetic development of the regional distribution of peptide YY,pancreatic polypeptide,and glucagon-like peptide 1 endocrine cells in bovine gastrointestinal tract[J].RegulPept,2012,175(1):15-20.
[61] STADLBAUER U,WOODS S C,LANGHANS W,et al.PYY3-36:Beyond food intake[J].FrontNeuroendocrin,2015,38:1-11.
[62] BABU M,PURHONEN A K,BANSIEWICZ T,et al.Effect of total colectomy and PYY infusion on food intake and body weight in rats[J].RegulPept,2005,131(1):29-33.
[63] KOUKEI M,ATSUSHI S,ERI Y,et al.Neuroendocrine control of feeding behavior and psychomotor activity by neuropeptide Y in fish[J].Neuropeptides,2012,46(6):275-283.
[64] DE SILVA A,SALEM V,LONG C J,et al.The gut hormones PYY3-36and GLP-17-36amide reduce food intake and modulate brain activity in appetite centers in humans[J].CellMetab,2011,14(5):700-706.
(編輯 程金華)
Advanced of Brain-gut Axis and Its Role in Modulating Food Intake of Animals
LIU Fei-fei1,2,QIN Gui-xin1,2*,JIANG Hai-long1,SUN Ze-wei1
(1.CollegeofAnimalScienceandTechnology,JilinAgriculturalUniversity,Changchun130118,China;2.KeyLaboratoryofAnimalProduction,ProductQualityandSecurity,MinistryofEducation,Changchun130118,China)
Feeding is a reflective activity in animals,and regulation of feeding behavior is associated with brain-gut axis.After feeding,brain-gut peptides were released from gastrointestinal after receiving signal stimuli of nutrients,vagal afferent neurons received signal of brain-gut peptides and transferred them to central nervous system,which integrated these signals to effector organ and promoted or inhibited feeding.Brain-gut peptides,important gastrointestinal hormones involved in food intake,are playing a critical role in the regulation of feeding behavior of brain-gut axis.The advances on food intake regulation of brain-gut axis are reviewed in this article.
brain-gut axis;feeding regulation;brain-gut peptides;ghrelin;NPY;orexin;CCK;GLP-1
2014-12-03
產(chǎn)業(yè)技術(shù)創(chuàng)新戰(zhàn)略聯(lián)盟項(xiàng)目(20140309013NY);國(guó)家科技支撐計(jì)劃項(xiàng)目(2012BAD39B03)
劉飛飛(1985-),女,吉林長(zhǎng)春人,博士生,主要從事動(dòng)物營(yíng)養(yǎng)學(xué)研究,E-mail:feikathy@163.com
*通信作者:秦貴信,教授,博士生導(dǎo)師,E-mail:qgx@jlau.edu.cn
10.11843/j.issn.0366-6964.2015.07.001
S852
A
0366-6964(2015)07-1077-07