• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水熱法制備N(xiāo)iS/Cd1-xZnxS及其高效光催化產(chǎn)氫性能

    2015-01-04 05:22:54林彩芳陳小平上官文峰上海交通大學(xué)燃燒與環(huán)境技術(shù)中心上海200240
    物理化學(xué)學(xué)報(bào) 2015年1期
    關(guān)鍵詞:文峰產(chǎn)氫上官

    林彩芳 陳小平 陳 澍 上官文峰(上海交通大學(xué)燃燒與環(huán)境技術(shù)中心,上海200240)

    水熱法制備N(xiāo)iS/Cd1-xZnxS及其高效光催化產(chǎn)氫性能

    林彩芳 陳小平 陳 澍 上官文峰*
    (上海交通大學(xué)燃燒與環(huán)境技術(shù)中心,上海200240)

    利用水熱法制備N(xiāo)iS負(fù)載的Cd1-xZnxS光催化劑.結(jié)果表明:在0.35 mol·L-1Na2SO3和0.25 mol·L-1Na2S犧牲劑下,0.5%(摩爾分?jǐn)?shù),y)NiS/Cd0.3Zn0.7S(1840 μmol·h-1)獲得最好活性,是Cd0.3Zn0.7S(884 μmol·h-1)的2.1倍,高于0.5%(質(zhì)量分?jǐn)?shù),w)Pt(1390 μmol·h-1)的產(chǎn)氫活性.測(cè)得其在λ=420 nm附近的表觀量子效率為36.8%.X射線(xiàn)衍射(XRD)、紫外-可見(jiàn)漫反射光譜(UV-Vis DRS)、透射電子顯微鏡(TEM)以及X射線(xiàn)光電子能譜(XPS)的表征結(jié)果表明,NiS作為產(chǎn)氫活性位,轉(zhuǎn)移光生電子,因此提高了光催化產(chǎn)氫活性.

    Cd1-xZnxS;NiS;水熱法;光催化活性;產(chǎn)氫

    1 Introduction

    As the increasing global energy and environmental problems, hydrogen energy as the future energy carrier has attracted great attention.1-3Compared with traditional hydrogen production methods,4photocatalytic hydrogen production from water splitting using semiconductors is more clean and economic.5-7Since the first report about photocatalytic hydrogen production using titanium dioxide by Fujishima and Honda in 1972,8extensive works have been devoted to the research of photocatalytic hydrogen production from water over semiconductor.6,9-11Especially,the research under visible light has been paid more attention due to its various advantages.9-11

    Among the visible-light-sensitive photocatalysts reported,CdS-based photocatalysts have been extensively investigated,owing to its relatively narrow band gap with good visible light absorption properties and more negative conduction band edge than theH/H2reduction potential. However,CdS alone exhibits low activities and inherent photocorrosion,which limits its application.16,17Numerous efforts have been made to solve these problems,such as modifying CdS with cocatalysts,18-20fabricating CdS/ oxide heterostructures,21,22incorporating CdS particles into an interlayer,23doping CdS with another wide band gap semiconductor.24,25Recently,the photocatalytic properties of CdS mixed with ZnS,a kind of wide band gap semiconductor,to form Cd1-xZnxS solid solution have been paid a great deal of attention, owning to the significantly improved photocatalytic activity and reduced usage of toxic Cd.26,27Further,the band position and light absorption of a certain Cd1-xZnxS solid solution can be controlled by adjusting the value of x,28which consequently enhances H2production activity.Besides,the x value of Cd1-xZnxS with the highest H2production activity can be affected by the synthesis method.It has been reported that the certain Cd1-xZnxS solid solution exhibits the optimal H2production activity,when x was 0.9,290.65,300.6,310.5,320.4,33respectively.Further,the recombination of photogenerated electron-hole pairs of Cd1-xZnxS is still inevitable,and always plays the main role in a photocatalytic reaction. Loading cocatalysts can promote separating and transferring the photogenerated carriers,thus notably improving the photocatalytic activity.34,35However,in most work reported so far,the employed cocatalysts are usually noble metals or their oxides.36,37Practical applications of noble metals in large scale are greatly limited by their high cost.Since the first report of MoS2loaded CdS for effective photocatalytic H2evolution,18great efforts have been undertaken to develop noble metal free cocatalysts.19,38,39Among them,it has been reported that Ni,either in the form of a metallic or oxidized state,is served as a cocatalyst enhancing photocatalytic H2evolution.20,39,40Recently,NiS loaded on Cd1-xZnxS by insitu synthesis method was reported by Wang31and Li et al.,40respectively.

    ?Editorial office ofActa Physico-Chimica Sinica

    In this paper,we report a simple synthesis of Cd1-xZnxS solid solution photocatalysts by a hydrothermal method.Then,NiS was loaded on Cd1-xZnxS by a hydrothermal method for further improving its photocatalytic hydrogen evolution activity.And the possible mechanism for the enhanced photocatalytic activity is also discussed.

    2 Experimental

    2.1 Preparation of Cd1-xZnxS solid solutions

    All of the reagents used were of analytical purity and used without further purification.Cd1-xZnxS solid solutions were prepared by a co-precipitation and hydrothermal method.In a typical synthesis,appropriate amounts of Cd(CH3COO)2·2H2O(≥98.5%, Sinopharm Chemical Reagent Co.,Ltd.)and Zn(CH3COO)2·2H2O (≥99.0%,Sinopharm Chemical Reagent Co.,Ltd.)were dissolved in 50 mL deionized water in a 100 mL stainless Teflon-lined autoclave.After magnetic stirring for 30 min,a certain amount of Na2S·9H2O(≥98.0%,Sinopharm Chemical Reagent Co.,Ltd.) was added.Then the autoclave was sealed and heated at 200°C for 12 h,cooled down to room temperature naturally.The resulting precipitates were separated by centrifugation and washed using deionized water several times,followed by drying at 80°C for 10 h in an oven.

    2.2 Preparation of NiS modified Cd0.3Zn0.7S

    Typically,the as-prepared Cd0.3Zn0.7S was dispersed in 30 mL deionized water in a 100 mL stainless Teflon-lined autoclave,followed by a drop-wise addition of a certain volume of Ni(CH3COO)2(0.05 mol·L-1,≥98.0%,Sinopharm Chemical Reagent Co.,Ltd.).After magnetic stirring for 30 min,a certain amount of Na2S·9H2O was added.Then the autoclave was sealed and heated at 180°C for 5 h.After cooling,the product was separated by centrifugation,washed with deionized water several times and dried at 80°C for 10 h in an oven.

    2.3 Characterization

    X-ray diffraction(XRD)patterns were confirmed by X-ray diffraction(Rigaku D/max-2200/PC Japan)with Cu Kαradiation (40 kV,20 mA).The UV-Vis diffuse reflection spectra(DRS) were measured on a UV-Vis spectrophotometer UV-2450(Shimadzu,Japan)and were converted to absorbance by the Kubelka-Munk method.The transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM) images were taken on a JEM-2100F(Japan).The surface area of the prepared samples were analyzed by BET measurement (Quanta Chrome NOVA1000,USA).The surface electronic state was analyzed by X-ray photoelectron spectroscopy(XPS,Shimadzu-Kratos,Axis Ultra DLD,Japan).All the binding energy (EB)values were referenced to the standard EBvalue of contaminant carbon(EB(C 1s)=284.6 eV).The amounts of metal elements were determined by inductively coupled plasma analyzer(ICAP 6000 Radial,Thermo).

    2.4 Photocatalytic H2production activities test

    Photocatalytic reactions were conducted in a Pyrex reaction cell connected to a closed gas circulation.0.1 g as-prepared photocatalysts were suspended in 100 mL of aqueous solution containing 0.35 mol·L-1Na2SO3(≥97.0%,Sinopharm Chemical Reagent Co.,Ltd.)and 0.25 mol·L-1Na2S.The suspension was then thoroughly degassed and irradiated by a Xe lamp(300 W) equippedwithachemical liquidfilter(λ>400nm,containing1mol· L-1NaNO2).Pt as a cocatalyst was photodeposited on the photocatalyst from the precursor of H2PtCl6·6H2O.The reaction cell was connected to a vacuum system,and the rate of H2generation was analyzed using an online gas chromatography.The apparent quantum efficiency(QE)was measured under the photocatalytic reaction condition with irradiation light at 420 nm by using combined band-pass(Kenko)and cut-off filters(HOYA)and 500 W Xe lamp.The QE was calculated as following equations:

    3 Results and discussion

    3.1 Cd1-xZnxS solid solution

    The various Cd1-xZnxS solid solutions were synthesized by a simple hydrothermal method as described in the experimental section.The successive transitions of XRD patterns and UV-Vis spectra were shown in Fig.1 and Fig.2 respectively,which can confirm the feature of the Cd1-xZnxS solid solution.From Fig.1 it can be found that there were three predominant peaks of Cd1-xZnxS,and the diffraction peaks of the photocatalysts shifted to a higher-angle side from the hexagonal CdS(JCPDF No.411049)to the cubic ZnS(JCPDF No.050566)as the value of x increased.The successive shifts of the XRD patterns indicate that the crystals obtained were not a simple mixture of ZnS and CdS,but Cd1-xZnxS solid solution,in well agreement with the literature.28,32,40

    Fig.1 XRD patterns of Cd1?xZnxS solid solutions with different x values

    Fig.2 UV-Vis spectra of Cd1?xZnxS with different x values

    As shown in Fig.2,the absorption edge of each solid solution was gradually red shifted as the amount of zinc decreased and distributed between CdS and ZnS.Surprisingly,the absorption edge of Cd0.3Zn0.7S sample was not so smooth,which indicated that Cd1-xZnxS samples prepared by this method were not quite homogeneous solid solutions between ZnS and CdS.And the similar absorption features of Cd1-xZnxS samples synthesized can also be found in literature.30,31

    The photocatalytic H2production activities of the various Cd1-xZnxS solid solutions in an aqueous solution containing 0.25 mol·L Na2S and 0.35 mol·L Na2SO3under visible light irradiation(λ>400 nm)were compared in Fig.3.It could be found from Fig.3 that all of the solid solutions had much better activities of H2evolution than pure CdS.And the Cd0.3Zn0.7S exhibited the optimal H2production activity(885.4 μmol·h-1),three times of the one of pure CdS under visible light irradiation.It was known that the band gap would continuously increase as the amount of Zn ions increased in Cd1-xZnxS solid solutions.The increase of band gap would lead to the decrease in visible light absorption,which was undesired for photocatalytic reactions under visible light. However,the increase of band gap contributed to a higher conduction band,beneficial to the enhancement of the reduction ability for H+to be reduced to H2.Therefore,the optimal hydrogen evolution activity of Cd0.3Zn0.7S might attribute to the delicate balance between an appropriate band gap width and a suitable conduction band edge position.41

    Fig.3 Photocatalytic H2production activities of Cd1?xZnxS solid solution in an aqueous solution containing 0.25 mol·L-1Na2S and 0.35 mol·L-1Na2SO3under visible light irradiation(λ>400 nm)

    Fig.4 UV-Vis spectra of as prepared Cd0.3Zn0.7S and NiS/Cd0.3Zn0.7S photocatalysts

    3.2 NiS modified Cd0.3Zn0.7S

    3.2.1 Characterization of NiS modified Cd0.3Zn0.7S

    UV-Vis diffuse reflectance spectra of Cd0.3Zn0.7S solid solutions with different NiS contents were shown in Fig.4.There was no obvious shift in the absorption edge of the NiS/Cd0.3Zn0.7S samples in comparison to naked Cd0.3Zn0.7S,implying that NiS was just deposited on the surface instead of being incorporated into thelattice of Cd0.3Zn0.7S.

    A series of the NiS modified Cd0.3Zn0.7S samples were studied by XRD to identify the crystal structure,as shown in Fig.5.It is worth noting that characteristic peaks of NiS can not be observed in these XRD patterns,which may be due to the low concentration and the high dispersion of NiS particles on the surface of Cd0.3Zn0.7S.Besides,the intensity and the peak position of the XRD diffraction peaks of all as-prepared samples changes little, indicating that NiS surface modification has no clear influence on the crystal structure.No lattice deformation is obtained from the XRD data,suggesting that NiS particles are highly dispersed on the surface but not doped into the lattice of Cd0.3Zn0.7S.

    Fig.5 XRD patterns of as prepared Cd0.3Zn0.7S and NiS/Cd0.3Zn0.7S photocatalysts

    As shown in Table 1,the BET surface area and pore volume change a little with loading the NiS,which may be attributed to the formation of NiS depositing on the surface of Cd0.3Zn0.7S.The atomic ratio of Zn/Cd obtained from ICP was also displayed, which suggested that the chemical compositions measured were very close to theoretical values.However,the loaded NiS content measured by ICP was relatively lower than theoretical values.It may attribute to the loss of NiS during the loading process,and NiS was not fully loaded on the surface of Cd0.3Zn0.7S.

    Table 1 Nickel contents,BET surface area,and pore structure of samples

    TEM and HRTEM images of the prepared NiS/Cd0.3Zn0.7S were presented in Fig.6.As shown in Fig.6,the sample was composed of numerous nanoparticles of about 30-50 nm in diameter and the HRTEM image clearly showed lattice fringes suggesting a welldefined crystal structure.It can be seen from these images that a layer of NiS was deposited on the surface of Cd0.3Zn0.7S.The HRTEM image shows fringes with lattice spacing of 0.200 and 0.320 nm,corresponding to the(111)plane of NiS and the(111) plane of Cd0.3Zn0.7S,respectively.A more detailed observation indicates that an intimate contact between NiS and Cd0.3Zn0.7S lattices was formed during the hydrothermal loading process of NiS in this work,and thus enhancing the charge separation and photocatalytic activity.18

    Fig.6 Images of NiS/Cd0.3Zn0.7S sample

    Fig.7 (a)XPS survey spectrum and(b)high-resolution XPS spectrum of Ni 2p

    XPS survey spectra of NiS/Cd0.3Zn0.7S sample was shown in Fig.7.The existences of Cd,S,Ni,and O elements were shown in Fig.7a.From Fig.7b,the observed binding energy of Ni 2p3/2at 856.8 eV indicated the existence of NiS,31which was consistent with TEM results.

    3.2.2 Photocatalytic performance of NiS modified Cd0.3Zn0.7S

    The influence of the amount of NiS on the H2evolution rate over NiS/Cd0.3Zn0.7S samples was shown in Fig.8.The H2evolution rate of Cd0.3Zn0.7S was 884 μmol·h-1.After a small amount of NiS loaded on the surface of Cd0.3Zn0.7(the mole ratio of Ni2+/ (Cd2++Zn2+)was 0.05%),the H2evolution rate increased to 1243 μmol·h-1.Further increasing the amount of NiS(the mole ratio of Ni2+/(Cd2++Zn2+)was 0.5%)led to the highest H2evolution rate of 1840 μmol·h-1with a quantum efficiency of 36.8%at 420 nm when 0.35 mol·L-1Na2SO3and 0.25 mol·L-1Na2S as sacrifice agent,even higher than the one of Cd0.3Zn0.7S loaded with 0.5% (w)Pt(1390 μmol·h-1).Further increasing the content of NiS,the activity decreased,probably because of shielding the incident light by covering the surface of Cd0.3Zn0.7S.

    Fig.8 Photocatalytic hydrogen production activity of samples under visible light irradiation

    Based on above discussions,a proposed role of NiS for enhancing the photocatalytic H2evolution activity is inferred.As shown in Fig.9,photogenerated charges are produced when the Cd0.3Zn0.7S was irradiated under visible light.The holes are consumed by the S/SO3during the photocatalytic process and the photogenerated electrons in the conduction band of Cd0.3Zn0.7S are easily transferred to the surface of NiS due to the intimate contact between the two phases,respectively.The p-type NiS intimately loaded on the surface of n-type Cd0.3Zn0.7S could form a large number of p-n junctions,which could effectively reduce the recombination rate of photogenerated electrons and holes,thus greatly enhancing the photocatalytic activity.Besides,it was suggested that the H+could be easily adsorbed on the surface of NiS and the NiS cocatalyst was as the active site for H2evolution,42which was beneficial to transferring electrons quickly,hence leading to the enhancement of photocatalytic activity.

    Fig.9 Proposed role of NiS for enhancing the photocatalytic H2evolution activity

    4 Conclusions

    NiS surface modified Cd0.3Zn0.7S photocatalysts can be easily prepared by a simple hydrothermal method.The highest H2production rate reaches 1840 μmol·h-1,when Cd0.3Zn0.7S loaded with 0.5%(y)NiS and Na2SO3and Na2S as sacrificial agent,even higher than the one of Cd0.3Zn0.7S modified with 0.5%(w)Pt.The NiS cocatalyst is as active sites for H2evolution,which is more beneficial to transfer electron quickly,thus leading to the enhancement of photocatalytic activity.This work suggests the possibility to use the low cost NiS as a substitute for noble metals in photocatalytic hydrogen evolution.

    (1) Andrews,J.;Shabani,B.Int.J.Hydrog.Energy2012,37, 1184.doi:10.1016/j.ijhydene.2011.09.137

    (2) Lewis,N.S.Science2007,315,798.doi:10.1126/ science.1137014

    (3) Cortright,R.D.;Davda,R.R.;Dumesic,J.A.Nature2002,418,964.doi:10.1038/nature01009

    (4) Turner,J.A.Science2004,305,972.doi:10.1126/ science.1103197

    (5) Maeda,K.;Teramura,K.;Lu,D.;Takata,T.;Saito,N.;Inoue, Y.;Domen,K.Nature2006,440,295.doi:10.1038/440295a

    (6) Kudo,Y.;Miseki,Y.Chem.Soc.Rev.2009,38,253.doi: 10.1039/b800489g

    (7) Chen,X.B.;Shen,S.H.;Guo,L.J.;Mao,S.S.Chem.Rev.2010,110,6503.doi:10.1021/cr1001645

    (8) Fujishima,A.;Honda,K.Nature1972,238,37.doi:10.1038/ 238037a0

    (9) Navarro,Y.R.;álvarez,G.M.;Del,V.F.;José,A.V.M.;José, L.G.F.ChemSusChem2009,2,471.doi:10.1002/cssc.v2:6

    (10) Zhang,K.;Guo,L.Catal.Sci.Technol.2013,3,1672.doi: 10.1039/c3cy00018d

    (11) Dong,L.L.;Wang,Y.Y.;Tong,X.L.;Jin,G.Q.;Guo,X.Y.Acta Phys.-Chim.Sin.2014,30,135.[董莉莉,王英勇,童希立,靳國(guó)強(qiáng),郭向云.物理化學(xué)學(xué)報(bào),2014,30,135.]doi: 10.3866/PKU.WHXB201311052

    (12) Buehler,N.;Meier,K.;Reber,J.F.J.Phys.Chem.1984,88, 3261.doi:10.1021/j150659a025

    (13) Bao,N.;Shen,L.;Takata,T.;Domen,K.Chem.Mat.2008,20, 110.doi:10.1021/cm7029344

    (14) Li,Y.X.;Hu,Y.F.;Peng,S.Q.;Lu,G.X.;Li,S.B.J.Phys. Chem.C2009,113,9352.

    (15) Chen,X.P.;Shangguan,W.F.Front.Energy2013,7,111.doi: 10.1007/s11708-012-0228-4

    (16) Meissner,D.;Memming,R.;Kastening,B.J.Phys.Chem.1988,92,3476.doi:10.1021/j100323a032

    (17) Acharya,K.P.;Khnayzer,R.S.;O'Connor,T.;Diederich,G.; Kirsanova,M.;Klinkova,A.;Roth,D.;Kinder,E.;Imboden, M.;Zamkov,M.Nano Lett.2011,11,2919.

    (18)Zong,X.;Yan,H.J.;Wu,G.B.;Ma,G.J.;Wen,F.Y.;Wang,L.; Li,C.J.Am.Chem.Soc.2008,130,7176.doi:10.1021/ ja8007825

    (19) Lin,P.B.;Yang,Y.;Chen,W.;Gao,H.Y.;Chen,X.P.;Yuan,J.; Shangguan,W.F.Acta Phys.-Chim.Sin.2013,29(6),1313. [林培賓,楊 俞,陳 威,高寒陽(yáng),陳小平,袁 堅(jiān),上官文峰.物理化學(xué)學(xué)報(bào),2013,29(6),1313.]doi:10.3866/PKU. WHXB201303141

    (20) Chen,X.P.;Chen,W.;Lin,P.B.;Yang,Y.;Gao,H.Y.;Yuan,J.; Shangguan,W.F.Catal.Commun.2013,36,104.doi:10.1016/j. catcom.2013.03.016

    (21) Wang,X.W.;Liu,G.;Chen,Z.G.;Li,F.;Wang,L.Z.;Lu,G. Q.;Cheng,H.M.Chem.Commun.2009,3452.

    (22) Li,W.;Xie,S.L.;Li,M.Y.;Ouyang,X.W.;Cui,G.F.;Lu,X. H.;Tong,Y.X.J.Mater.Chem.A2013,1,4190.doi:10.1039/ c3ta10394c

    (23) Shangguan,W.F.;Yoshida,A.J.Phys.Chem.B2002,106, 12227.doi:10.1021/jp0212500

    (24) Jang,J.S.;Kim,H.G.;Joshi,U.A.;Janga,J.W.;Lee,J.S.Int. J.Hydrog.Energy2008,33,5975.doi:10.1016/j. ijhydene.2008.07.105

    (25) Wu,G.;Tian,M.;Chen,A.J.Photochem.Photobiol.2012,233, 65.doi:10.1016/j.jphotochem.2012.02.021

    (26) Villoria,J.A.;Navarro,Y.R.;Al-Zahrani,S.M.;Fierro,J.L.G.Ind.Eng.Chem.Res.2010,49,6854.doi:10.1021/ie901718r

    (27) Shi,J.Y.;Cui,H.N.;Liang,Z.X.;Lu,X.H.;Tong,Y.X.;Su, C.Y.;Liu,H.Energy Environ.Sci.2011,4,466.doi:10.1039/ c0ee00309c

    (28) Xing,C.;Zhang,Y.;Yan,W.;Guo,L.Int.J.Hydrog.Energy2006,31,2018.doi:10.1016/j.ijhydene.2006.02.003

    (29) Zhang,X.H.;Jing,D.W.;Liu,M.C.;Guo,L.J.Catal. Commun.2008,9,1720.doi:10.1016/j.catcom.2008.01.032

    (30) Zhang,W.;Xu,R.Int.J.Hydrog.Energy2009,34,8495.doi: 10.1016/j.ijhydene.2009.08.041

    (31) Wang,J.;Li,B.;Chen,J.Z.;Li,N.;Zheng,J.F.;Zhao,J.H.; Zhua,Z.P.Appl.Surf.Sci.2012,259,118.

    (32) Li,Q.;Meng,H.;Zhou,P.;Zheng,Y.Q.;Wang,J.;Yu,J.G.; Gong,J.R.ACS Catal.2013,3,882.doi:10.1021/cs4000975

    (33) Yu,Y.G.;Chen,G.;Hao,L.X.Chem.Commun.2013,49, 10142.doi:10.1039/c3cc45568h

    (34) Yan,H.J.;Yang,J.H.;Ma,G.J.;Wu,G.P.;Zong,X.;Lei,Z. B.;Shi,J.Y.;Li,C.J.Catal.2009,266,165.doi:10.1016/j. jcat.2009.06.024

    (35) Ran,J.R.;Zhang,J.;Yu,J.G.;Jaronie,M.;Zhang,S.Chem. Soc.Rev.2014,doi:10.1039/c3cs60425j

    (36) Maeda,K.;Teramura,K.;Lu,D.;Saito,N.;Inoue,Y.;Domen, K.Angew.Chem.Int.Edit.2006,45,7806.

    (37) Wang,Y.B.;Wang,Y.S.;Xu,R.J.Phys.Chem.C2013,117, 783.

    (38) Ran,J.R.;Yu,J.G.;Jaroniec,M.Green Chem.2011,13, 2708.doi:10.1039/c1gc15465f

    (39) Zhang,W.;Wang,Y.B.;Wang,Z.;Zhong,Z.Y.;Xu,R.Chem. Commun.2010,46,7631.doi:10.1039/c0cc01562h

    (40) Li,N.X.;Zhou,B.Y.;Guo,P.H.;Zhou,J.C.;Jing,D.W.Int.J. Hydrog.Energy2013,38,11268.doi:10.1016/j. ijhydene.2013.06.067

    (41) Valle,F.D.;Ishikawa,A.;Domen,K.;Villoria,J.A.;Mano,D. L.;Sánchez-Sánchez,M.C.;González,I.D.;Herreras,S.; Mota,N.;Rivas,M.E.;álvarez,G.M.C.;Fierro,J.L.G.; Navarro,R.M.Catal.Today2009,143,51.doi:10.1016/j. cattod.2008.09.024

    (42) Assuncao,N.A.;Giz,M.J.;Tremiliosi,G.;Gonzalez,E.R.J.Electrochem.Soc.1997,144,2794.doi:10.1149/1.1837897

    Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2Evolution

    LIN Cai-Fang CHEN Xiao-Ping CHEN Shu SHANGGUAN Wen-Feng*
    (Research Center for Combustion and Environment Technology,Shanghai Jiao Tong University,Shanghai 200240,P.R.China)

    NiS-modified Cd1-xZnxS has been prepared using a simple hydrothermal method.Notably,the H2evolution rate of 0.5%(y,molar fraction)NiS/Cd0.3Zn0.7S(1840 μmol·h-1)was found to be 2.1-and 1.3-fold greater than those of Cd0.3Zn0.7S(884 μmol·h-1)and 0.5%(w,mass fraction)Pt(1390 μmol·h-1),respectively,when 0.35 mol·L-1Na2SO3and 0.25 mol·L-1Na2S were used as sacrificial agents.The apparent quantumefficiency of 0.5% (y)NiS/Cd0.3Zn0.7S at 420 nm was 36.8%.The characterization of this material by X-ray diffraction(XRD), ultraviolet-visible diffuse reflection spectroscopy(UV-Vis DRS),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS)showed that the NiS particles provided the active sites required for H2evolution and transferring the photo generated electrons,and therefore enhanced the photocatalytic activity of the catalyst towards H2production.

    Cd1-xZnxS;NiS;Hydrothermal method;Photocatalytic activity;Hydrogen production

    O643

    10.3866/PKU.WHXB201411175www.whxb.pku.edu.cn

    Received:October 8,2014;Revised:November 17,2014;Published on Web:November 17,2014.

    ?Corresponding author.Email:shangguan@sjtu.edu.cn;Tel/Fax:+86-21-34206020.

    The project was supported by the National High Technology Research and Development Program of China(863)(2012AA051501)and International Cooperation Project of Shanghai Municipal Science and Technology Commission,China(12160705700).

    國(guó)家高技術(shù)研究發(fā)展計(jì)劃項(xiàng)目(863)(2012AA051501)和上海市科委國(guó)際合作項(xiàng)目(12160705700)資助

    猜你喜歡
    文峰產(chǎn)氫上官
    ZnCoP/CdLa2S4肖特基異質(zhì)結(jié)的構(gòu)建促進(jìn)光催化產(chǎn)氫
    上官米良藝術(shù)簡(jiǎn)介
    胡文峰博士簡(jiǎn)介
    上官文露 行走的名著
    海峽姐妹(2020年2期)2020-03-03 13:36:34
    上官蓮花 珠寶因用心而珍貴
    海峽姐妹(2019年8期)2019-09-03 01:00:48
    Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak?
    Development of novel microsatellite markers for Holothurian scabra (Holothuriidae), Apostichopus japonicas(Stichopodidae) and cross-species testing in other sea cucumbers*
    第四周期過(guò)渡金屬催化硼氫化鈉分解制氫研究*
    有機(jī)廢棄物生物制氫研究
    化工管理(2017年25期)2017-03-05 23:32:36
    文峰街
    重慶與世界(2016年6期)2016-10-09 06:27:10
    舔av片在线| 高清日韩中文字幕在线| 熟妇人妻久久中文字幕3abv| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕久久专区| 国产在线男女| 在线播放无遮挡| 在线国产一区二区在线| 1000部很黄的大片| 99热只有精品国产| 亚洲最大成人手机在线| 99热这里只有精品一区| 黄色日韩在线| 国产私拍福利视频在线观看| 91久久精品国产一区二区成人| 国产69精品久久久久777片| 国产探花在线观看一区二区| 国产黄a三级三级三级人| 99riav亚洲国产免费| 直男gayav资源| 婷婷亚洲欧美| 国产三级在线视频| 美女xxoo啪啪120秒动态图| 国产人妻一区二区三区在| 国产成人a区在线观看| 人妻制服诱惑在线中文字幕| 又紧又爽又黄一区二区| 麻豆成人午夜福利视频| 欧美日韩黄片免| 麻豆久久精品国产亚洲av| 亚洲欧美日韩东京热| 国产熟女欧美一区二区| 九九在线视频观看精品| 欧美日韩黄片免| 91午夜精品亚洲一区二区三区 | 精品一区二区免费观看| 亚洲综合色惰| 国产主播在线观看一区二区| 美女高潮喷水抽搐中文字幕| 久久精品综合一区二区三区| 中亚洲国语对白在线视频| 午夜老司机福利剧场| 色播亚洲综合网| 搡老妇女老女人老熟妇| 亚洲aⅴ乱码一区二区在线播放| 男人和女人高潮做爰伦理| 欧美中文日本在线观看视频| 一级黄片播放器| 亚洲在线自拍视频| 亚洲第一区二区三区不卡| 久久久久久久久久黄片| 亚洲欧美清纯卡通| 亚洲不卡免费看| 亚洲av五月六月丁香网| 久久99热这里只有精品18| 亚洲五月天丁香| 欧美国产日韩亚洲一区| 午夜福利在线观看免费完整高清在 | 成年人黄色毛片网站| 国产精品一区二区免费欧美| 日韩中文字幕欧美一区二区| 久久人人爽人人爽人人片va| 春色校园在线视频观看| 亚洲av成人精品一区久久| 全区人妻精品视频| 国产一区二区在线av高清观看| a在线观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 少妇的逼水好多| 亚洲午夜理论影院| 免费看光身美女| 黄色一级大片看看| 中文亚洲av片在线观看爽| 我的老师免费观看完整版| 久久精品人妻少妇| 亚洲美女视频黄频| 长腿黑丝高跟| 亚洲一级一片aⅴ在线观看| 精品人妻一区二区三区麻豆 | 热99在线观看视频| 美女黄网站色视频| 黄色视频,在线免费观看| 嫩草影院入口| 91久久精品国产一区二区三区| 搡老妇女老女人老熟妇| 一边摸一边抽搐一进一小说| 人妻少妇偷人精品九色| 国产精品伦人一区二区| 天堂影院成人在线观看| 国产又黄又爽又无遮挡在线| 欧美潮喷喷水| 伦精品一区二区三区| 精品一区二区三区人妻视频| 一级黄色大片毛片| 亚洲中文日韩欧美视频| 日韩,欧美,国产一区二区三区 | 欧美+亚洲+日韩+国产| 日本 av在线| 99在线人妻在线中文字幕| 国产成人aa在线观看| 真人做人爱边吃奶动态| 亚洲精品成人久久久久久| 丝袜美腿在线中文| 久久久久精品国产欧美久久久| 变态另类成人亚洲欧美熟女| 欧美一区二区精品小视频在线| 99久久精品一区二区三区| 99在线视频只有这里精品首页| 桃色一区二区三区在线观看| 久久人妻av系列| 国产白丝娇喘喷水9色精品| 黄色一级大片看看| 欧美最新免费一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 国产乱人视频| 国产伦精品一区二区三区视频9| 琪琪午夜伦伦电影理论片6080| 欧美成人a在线观看| 国产成人aa在线观看| 欧美潮喷喷水| 五月伊人婷婷丁香| 俺也久久电影网| 最新中文字幕久久久久| 午夜福利视频1000在线观看| 国产伦精品一区二区三区四那| 免费看a级黄色片| 乱人视频在线观看| 国产综合懂色| av在线观看视频网站免费| 一个人免费在线观看电影| 亚洲久久久久久中文字幕| 国产亚洲精品久久久久久毛片| 十八禁网站免费在线| 在现免费观看毛片| 人妻制服诱惑在线中文字幕| 少妇的逼好多水| 日本撒尿小便嘘嘘汇集6| 久久久久国产精品人妻aⅴ院| 99热网站在线观看| 欧美色欧美亚洲另类二区| 国产精品一区二区三区四区免费观看 | 999久久久精品免费观看国产| 亚洲熟妇熟女久久| 亚洲人成伊人成综合网2020| 变态另类成人亚洲欧美熟女| 精品久久久久久久久av| 最近在线观看免费完整版| 午夜精品在线福利| 99热网站在线观看| 少妇的逼好多水| 色播亚洲综合网| 中文字幕免费在线视频6| 男女那种视频在线观看| 在线播放无遮挡| 色综合色国产| 91午夜精品亚洲一区二区三区 | 禁无遮挡网站| 欧美成人免费av一区二区三区| 欧美绝顶高潮抽搐喷水| 日日啪夜夜撸| 国产精品日韩av在线免费观看| 欧美xxxx性猛交bbbb| 中文字幕av在线有码专区| 日本免费一区二区三区高清不卡| 十八禁网站免费在线| 国产精华一区二区三区| av在线老鸭窝| 国产极品精品免费视频能看的| 日韩欧美精品v在线| 日本精品一区二区三区蜜桃| 欧美成人一区二区免费高清观看| 麻豆精品久久久久久蜜桃| 国产色爽女视频免费观看| 日韩国内少妇激情av| 91久久精品电影网| 国产不卡一卡二| 日本精品一区二区三区蜜桃| 女人十人毛片免费观看3o分钟| 精品99又大又爽又粗少妇毛片 | 最近最新免费中文字幕在线| av女优亚洲男人天堂| 他把我摸到了高潮在线观看| 最近视频中文字幕2019在线8| 黄色视频,在线免费观看| 精品欧美国产一区二区三| 中出人妻视频一区二区| 免费av观看视频| 91午夜精品亚洲一区二区三区 | 伊人久久精品亚洲午夜| 久久久久久国产a免费观看| 精品午夜福利视频在线观看一区| 此物有八面人人有两片| 久久久久九九精品影院| 人妻制服诱惑在线中文字幕| 露出奶头的视频| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 久久天躁狠狠躁夜夜2o2o| 麻豆一二三区av精品| 日韩精品有码人妻一区| 久久久久性生活片| 不卡一级毛片| 日本 欧美在线| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件 | 如何舔出高潮| 又粗又爽又猛毛片免费看| 91久久精品国产一区二区成人| 欧美潮喷喷水| 日韩欧美三级三区| 亚洲avbb在线观看| 色在线成人网| 日韩欧美精品免费久久| 国产中年淑女户外野战色| 免费av毛片视频| 久久久久久国产a免费观看| 两个人视频免费观看高清| xxxwww97欧美| 国产午夜精品论理片| 国产三级在线视频| 91久久精品国产一区二区三区| 性色avwww在线观看| 午夜福利成人在线免费观看| 亚洲欧美日韩高清在线视频| 动漫黄色视频在线观看| 日韩欧美一区二区三区在线观看| 国模一区二区三区四区视频| 精品久久久久久久久久久久久| 亚洲av二区三区四区| 搡老岳熟女国产| 欧美性猛交黑人性爽| 好男人在线观看高清免费视频| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩高清专用| 十八禁国产超污无遮挡网站| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 精品久久久久久久久av| 人妻少妇偷人精品九色| 免费在线观看日本一区| av在线蜜桃| 变态另类丝袜制服| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区| 一进一出抽搐gif免费好疼| 免费不卡的大黄色大毛片视频在线观看 | 国产高清不卡午夜福利| 欧美日韩精品成人综合77777| 欧美成人性av电影在线观看| 亚洲国产精品久久男人天堂| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 好男人在线观看高清免费视频| 中文字幕人妻熟人妻熟丝袜美| 婷婷亚洲欧美| 婷婷六月久久综合丁香| 中亚洲国语对白在线视频| 国产aⅴ精品一区二区三区波| 日本-黄色视频高清免费观看| 波多野结衣高清作品| 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 婷婷色综合大香蕉| 色播亚洲综合网| 亚洲av成人精品一区久久| 日韩中字成人| 51国产日韩欧美| 国产老妇女一区| 国产伦人伦偷精品视频| 亚洲无线观看免费| 我要看日韩黄色一级片| 午夜免费男女啪啪视频观看 | 一夜夜www| 成人欧美大片| 国产精品一区二区三区四区久久| 九色国产91popny在线| avwww免费| 国产亚洲欧美98| 成人毛片a级毛片在线播放| 色精品久久人妻99蜜桃| 国语自产精品视频在线第100页| 国产精品精品国产色婷婷| 午夜精品一区二区三区免费看| 亚洲美女视频黄频| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区三区av在线 | 亚洲欧美清纯卡通| 婷婷亚洲欧美| 欧美在线一区亚洲| 少妇高潮的动态图| 日本爱情动作片www.在线观看 | av天堂在线播放| 日本欧美国产在线视频| 999久久久精品免费观看国产| 最近最新免费中文字幕在线| h日本视频在线播放| av在线天堂中文字幕| 日韩一区二区视频免费看| 国产私拍福利视频在线观看| 一本精品99久久精品77| 国产一区二区在线观看日韩| 老司机福利观看| 亚洲美女黄片视频| av女优亚洲男人天堂| 国产精品久久久久久久电影| 一本久久中文字幕| h日本视频在线播放| 听说在线观看完整版免费高清| 久久久久久久久久久丰满 | 3wmmmm亚洲av在线观看| 99久久无色码亚洲精品果冻| 中文字幕久久专区| av国产免费在线观看| 国内精品宾馆在线| 中文字幕高清在线视频| 国产真实伦视频高清在线观看 | 久久香蕉精品热| 男女之事视频高清在线观看| 欧美最黄视频在线播放免费| 搡老岳熟女国产| 18禁黄网站禁片午夜丰满| 色综合色国产| 色吧在线观看| 亚洲成a人片在线一区二区| 国产毛片a区久久久久| 国产成人福利小说| 国产久久久一区二区三区| 精品人妻偷拍中文字幕| 午夜福利在线观看吧| 久久精品国产亚洲av涩爱 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av美国av| 18禁黄网站禁片午夜丰满| 波野结衣二区三区在线| 变态另类丝袜制服| 精品日产1卡2卡| 老熟妇乱子伦视频在线观看| 十八禁网站免费在线| 色av中文字幕| 亚洲 国产 在线| 性插视频无遮挡在线免费观看| 天堂av国产一区二区熟女人妻| avwww免费| 99在线视频只有这里精品首页| 色5月婷婷丁香| 丰满人妻一区二区三区视频av| 亚洲成a人片在线一区二区| 九九在线视频观看精品| 亚洲自偷自拍三级| 国产中年淑女户外野战色| 色综合色国产| 欧美精品国产亚洲| 啦啦啦啦在线视频资源| 亚洲va日本ⅴa欧美va伊人久久| 国产黄a三级三级三级人| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟哟哟哟哟| 俄罗斯特黄特色一大片| 亚洲第一电影网av| 欧美日本亚洲视频在线播放| 国产真实乱freesex| 搡老熟女国产l中国老女人| 波多野结衣高清作品| 免费黄网站久久成人精品| 99久久久亚洲精品蜜臀av| 一区二区三区免费毛片| 搡老熟女国产l中国老女人| АⅤ资源中文在线天堂| 成年免费大片在线观看| .国产精品久久| 亚洲熟妇熟女久久| 中出人妻视频一区二区| 永久网站在线| 少妇猛男粗大的猛烈进出视频 | 永久网站在线| 我要看日韩黄色一级片| 久久精品国产亚洲av天美| 永久网站在线| 综合色av麻豆| 亚洲人成网站在线播| 国产精品亚洲美女久久久| 99久久中文字幕三级久久日本| 在线看三级毛片| 日本成人三级电影网站| 成人特级av手机在线观看| 国内久久婷婷六月综合欲色啪| 日本与韩国留学比较| 好男人在线观看高清免费视频| 国产黄片美女视频| 极品教师在线免费播放| 热99在线观看视频| 麻豆av噜噜一区二区三区| 午夜福利18| 蜜桃亚洲精品一区二区三区| www日本黄色视频网| 亚洲一区高清亚洲精品| 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片 | 欧美一级a爱片免费观看看| 国产精品人妻久久久影院| 国产成人a区在线观看| 久久精品影院6| 日日摸夜夜添夜夜添小说| 亚洲精品国产成人久久av| 午夜日韩欧美国产| 亚洲七黄色美女视频| 老熟妇乱子伦视频在线观看| 嫁个100分男人电影在线观看| 国产精品久久久久久久电影| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 亚洲欧美激情综合另类| www日本黄色视频网| 亚洲图色成人| 国产精品一区二区三区四区久久| 中文字幕高清在线视频| 搡老妇女老女人老熟妇| 在线观看66精品国产| 亚洲精华国产精华精| 亚洲中文字幕日韩| 国产精品一区www在线观看 | 国产大屁股一区二区在线视频| 久久中文看片网| 国产成人a区在线观看| 国产一区二区亚洲精品在线观看| 国产精品99久久久久久久久| 免费人成视频x8x8入口观看| 九九在线视频观看精品| 乱系列少妇在线播放| 久久久午夜欧美精品| 成年免费大片在线观看| 热99在线观看视频| 午夜精品一区二区三区免费看| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩国产亚洲二区| 欧美在线一区亚洲| 国产午夜福利久久久久久| 亚洲成人久久爱视频| 国产男靠女视频免费网站| 女的被弄到高潮叫床怎么办 | 看黄色毛片网站| 少妇裸体淫交视频免费看高清| 成人高潮视频无遮挡免费网站| 欧美xxxx黑人xx丫x性爽| 在线天堂最新版资源| 成人av在线播放网站| 老司机深夜福利视频在线观看| 日本爱情动作片www.在线观看 | 丰满的人妻完整版| 欧美潮喷喷水| 校园人妻丝袜中文字幕| 精品不卡国产一区二区三区| 国产欧美日韩一区二区精品| 国产精品福利在线免费观看| 精品久久久久久成人av| 亚洲熟妇中文字幕五十中出| 搡老熟女国产l中国老女人| 亚洲国产精品成人综合色| 女同久久另类99精品国产91| 人妻少妇偷人精品九色| 搡老岳熟女国产| 国产av一区在线观看免费| 天堂√8在线中文| 亚洲精华国产精华液的使用体验 | 丰满乱子伦码专区| 免费看光身美女| 性色avwww在线观看| 久久久久久九九精品二区国产| 国产69精品久久久久777片| 亚洲精品日韩av片在线观看| 中文在线观看免费www的网站| 国产一区二区在线av高清观看| 亚洲,欧美,日韩| 色精品久久人妻99蜜桃| 日本免费一区二区三区高清不卡| 极品教师在线视频| 欧美黑人欧美精品刺激| 亚洲性久久影院| 久久天躁狠狠躁夜夜2o2o| 两个人的视频大全免费| 欧美丝袜亚洲另类 | 日韩大尺度精品在线看网址| 亚洲性夜色夜夜综合| 亚洲经典国产精华液单| 乱系列少妇在线播放| 一级a爱片免费观看的视频| 中文在线观看免费www的网站| 亚洲国产欧美人成| 成人国产综合亚洲| 午夜精品在线福利| 精品久久久久久,| 黄色丝袜av网址大全| 久久人人爽人人爽人人片va| 国产探花极品一区二区| 毛片女人毛片| av在线观看视频网站免费| 日本三级黄在线观看| 九色成人免费人妻av| 一个人看视频在线观看www免费| 亚洲va在线va天堂va国产| 国产三级中文精品| 别揉我奶头 嗯啊视频| 欧美精品国产亚洲| 国产探花极品一区二区| 亚洲av免费高清在线观看| 国产精品福利在线免费观看| 国产大屁股一区二区在线视频| 九九热线精品视视频播放| 亚洲色图av天堂| 日韩亚洲欧美综合| 搡老岳熟女国产| 99热这里只有是精品50| 日韩欧美免费精品| 成年女人看的毛片在线观看| 免费在线观看成人毛片| 他把我摸到了高潮在线观看| 国产亚洲精品综合一区在线观看| 性插视频无遮挡在线免费观看| 成人毛片a级毛片在线播放| 特大巨黑吊av在线直播| 变态另类丝袜制服| 老熟妇乱子伦视频在线观看| 国产成人aa在线观看| 国内揄拍国产精品人妻在线| 免费一级毛片在线播放高清视频| 亚洲黑人精品在线| 亚洲 国产 在线| 亚洲精品乱码久久久v下载方式| 国产一区二区激情短视频| 成人高潮视频无遮挡免费网站| 精品欧美国产一区二区三| 亚洲精品日韩av片在线观看| 啦啦啦观看免费观看视频高清| 少妇裸体淫交视频免费看高清| 亚洲电影在线观看av| 免费看av在线观看网站| 精品午夜福利在线看| 中国美白少妇内射xxxbb| a在线观看视频网站| 日本与韩国留学比较| 男女那种视频在线观看| 日本爱情动作片www.在线观看 | 女生性感内裤真人,穿戴方法视频| 日韩精品中文字幕看吧| 国产成人aa在线观看| 国产精品av视频在线免费观看| 精品久久久久久久人妻蜜臀av| 夜夜爽天天搞| 久久欧美精品欧美久久欧美| 在线播放国产精品三级| a级毛片a级免费在线| 国产精品1区2区在线观看.| 中文字幕精品亚洲无线码一区| 久久亚洲精品不卡| 国产在线男女| 99riav亚洲国产免费| av中文乱码字幕在线| 男女那种视频在线观看| 91在线精品国自产拍蜜月| 麻豆久久精品国产亚洲av| 极品教师在线视频| 男女边吃奶边做爰视频| 又紧又爽又黄一区二区| 亚洲一区高清亚洲精品| 天堂√8在线中文| 亚洲色图av天堂| 精品无人区乱码1区二区| 国产精品一及| 久久精品国产亚洲av涩爱 | 亚洲欧美清纯卡通| 日本色播在线视频| 国产精品野战在线观看| 一边摸一边抽搐一进一小说| 亚洲美女黄片视频| 联通29元200g的流量卡| 亚洲国产精品成人综合色| 日韩欧美国产一区二区入口| 久久人妻av系列| 国产高清有码在线观看视频| 男女啪啪激烈高潮av片| 国产又黄又爽又无遮挡在线| 日本爱情动作片www.在线观看 | 成人特级av手机在线观看| 国产视频一区二区在线看| 啦啦啦啦在线视频资源| 变态另类丝袜制服| av天堂中文字幕网| 性欧美人与动物交配| 亚洲av成人av| 亚洲精品一卡2卡三卡4卡5卡| 99热6这里只有精品| 我的女老师完整版在线观看| 天天一区二区日本电影三级| 成人av在线播放网站| 一进一出好大好爽视频| 不卡视频在线观看欧美| 亚洲成人久久爱视频| 免费电影在线观看免费观看| 亚洲,欧美,日韩| 国产成人影院久久av| 亚洲成人久久性| 干丝袜人妻中文字幕| 香蕉av资源在线| 国产伦精品一区二区三区四那| 免费大片18禁| 日本成人三级电影网站| 久久精品人妻少妇| 久久精品国产99精品国产亚洲性色| 婷婷六月久久综合丁香| 免费观看精品视频网站| 男女边吃奶边做爰视频| 国产精品一区二区三区四区免费观看 | 亚洲av免费在线观看| 午夜视频国产福利| 偷拍熟女少妇极品色|