• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    單一模板線性多胺一步合成多級孔ZSM-5沸石微球

    2015-01-04 05:22:59朱樹燕王一萌華東師范大學(xué)化學(xué)系上海市綠色化學(xué)與化工過程綠色化重點實驗室上海200062
    物理化學(xué)學(xué)報 2015年1期
    關(guān)鍵詞:化學(xué)系華東師范大學(xué)沸石

    陳 麗 薛 騰 朱樹燕 王一萌(華東師范大學(xué)化學(xué)系,上海市綠色化學(xué)與化工過程綠色化重點實驗室,上海200062)

    單一模板線性多胺一步合成多級孔ZSM-5沸石微球

    陳 麗 薛 騰 朱樹燕 王一萌*
    (華東師范大學(xué)化學(xué)系,上海市綠色化學(xué)與化工過程綠色化重點實驗室,上海200062)

    線性多胺模板劑(二乙烯三胺(DETA)、三乙烯四胺(TETA)、四乙烯五胺(TEPA))作為單一模板合成了均勻的10-15 μm的多級孔沸石ZSM-5微球.實驗發(fā)現(xiàn),在水熱過程中,50 nm納米的沸石晶體粒子自發(fā)地堆積成微球,并且這些微球具有較大的介孔體積,在傅-克烷基化反應(yīng)中具有高的催化活性.同時,我們發(fā)現(xiàn)線性多胺起到了模板劑和空隙填充劑的多重功能,這點明顯不同于以前我們報道的線性二胺作為模板劑在合成ZSM-5沸石時,主要是起模板劑的作用.

    多級孔沸石;聚集體;單一模板;線性多胺

    1 Introduction

    The hierarchical ZSM-5(MFI)zeolites possessing large surface area,bimodal porosity containing both micropore and mesopore and interconnected mesopores with zeolitic pore walls have been widely investigated in the synthesis and catalytic applications by many researchers.Therefore,significant efforts have been devoted to developing methods to introduce mesoporosity into zeolite materials.1-14Studies show that structure-directing agents/templates could influence the physicochemical properties,catalytic activity,and crystalline morphology,and so on.Generally,the templating approaches make it possible a priori to tailor the pore size of the mesopores by using mesopore template with a special size,which leaves mesopores with essentially the same size and shape as that of the mesopore template after the removal of template.In the multi-template synthesis strategies,crystalline zeolite containing both microporous and mesoporous structures in a single phase is difficult to be obtained,if the aluminosilicate gel is directly crystallized in the presence of ordinary template formesopore and molecular templates for zeolites.Only when both surfactants and molecular templates are not expelled from the aluminosilicate phase during the zeolite crystallization process,it is possible to synthesize mesoporous zeolite without the formation of physical mixture of bulk zeolites and mesoporous materials.1-7Recently,one-step synthesis of hierarchical zeolite aggregates with single template has attracted great attentions comparing with double template methods mentioned above,where the synthesis mechanism and the bimodal pore size can be easily controlled in the synthesis system using a single template.8-12

    ?Editorial office ofActa Physico-Chimica Sinica

    Ryoo and co-workers7directly synthesized mesoporous MFI and LTAzeolites using specifically designed amphiphilic organosilanes.Later,the same group reported that stable single-unit-cell nanosheets of zeolite MFI were synthesized with a specially designed bifunctional template that possesses two quaternary ammonium groups spaced by a C6alkyl linkage and a long chain alkyl group(C22)on the end.9In these two cases,the template for mesopore was directly connected with zeolitic template via covalent bond in a single molecule,which effectively prevented the formation of physical mixture of bulk zeolite and mesoporous materials.Fang et al.8firstly reported in-situ assembly of zeolite nanocrystals into mesoporous aggregate with single-crystal-like morphology using small organic molecule as single template but without secondary template.Furthermore,Ryoo and co-workers showed that cyclic diammonium as single template can direct the formation of zeolite structures on both mesoporous and microporous length scales simultaneously,where the formation of zeolites with nanocrystalline morphologies and intercrystalline mesoporosity could attribute to particularly high affinity of the molecular template having an organic cyclic diammonium(CDM) structure with silicate species.10,11Recently,house-of-cards-like ZSM-5 prepared by adding the N-methyl-2-pyrrolidone in zeolite synthetic mixture presented much better catalytic performances in the cracking of cumene and 1,3,5-triisopropylbenzene(TIPB) than conventional porous catalysts(ZSM-5,Y zeolite,and Al-MCM-41).12Chen et al.13reported that mesoporous zeolite aggregates can be synthesized using diamine with linear carbon chain as single template without secondary template by self-assembly of in-situ formed zeolite nanocrystals.Since large hierarchical zeolite aggregates not only have reduced diffusion limitation but also can be easily recovered by conventional filtration, the development of new methods to synthesize large ZSM-5 hierarchical zeolite aggregates with large mesopore volume,large surface area and high catalytic activity are still highly anticipated.

    Here,our work has been extended to linear alkyl-polyamines with different oligomerization degrees that were used to control the morphology,textual property,and catalytic property of hierarchical zeolite.Alkyl-polyamines have received important attentions since they were used in the synthesis of open-framework metal phosphates,membranes,and chelating resins and showed excellent properties for their active imino-nitrogen in host-guest charge balance,coordinative activity,and hydrogen bonding capability with the framework O atoms.15-17Meanwhile,they were widely used in the synthesis of ZSM-5 zeolite due that alkylpolyamines exhibited their strong structure-directing role because of the charge balance and hydrogen bonding capability of active imino-nitrogen with the framework O atoms,where the rectangular sheet conglomeration crystals in size of ca 15 μm×2.5 μm× 1 μm were obtained.18As we all know,the reduction of zeolite particle sizes could been employed as a means to reduce the intracrystalline diffusion path length,a hierarchical aggregates assembled by nanocrystallines have large surface area and the realtively large aggregates may also curtail the filtration difficulities in the preparation and catalytic applications to some extent.Adetailed study about synthesis and catalytic performance of the hierarchical microspheres assembled by nanocrystal aluminosilicate with the use of alkyl-polyamines as single template has not reported.

    In our work,we successfully synthesize hierarchical ZSM-5 microspheres using linear alkyl-polyamine as single template.The effects of different chain lengths of alkyl-polyamines,SiO2/Al2O3molar ratio,alkalinity,and H2O/SiO2molar ratio on the physical and catalytic properties were investigated.Furthermore,the role of the alkyl-polyamine templates in the synthesis of mesoporous zeolite aggregate was discussed.

    2 Experimental

    2.1 Reagent

    Sodium metasilicate nonahydrate(Na2SiO3·9H2O),hydrochloric acid(HCl),aluminum sulfate(Al2(SO4)3·18H2O)were purchased from Sinopharm Chemical Reagent Co.,Ltd.,China.All the chemicals were used directly without further purification.

    2.2 Synthesis of hierarchical ZSM-5 micropheres

    The mesoporous ZSM-5 zeolite material was hydrothermally synthesized as follows:the solution of Al2(SO4)3·18H2O dissolved in an aqueous HCl solution was added drop-by-drop to the aqueous solution of Na2SiO3·9H2O,which was kept under stirring until pH value lowered to 8.And then the fresh precipitated alumino-silica was recovered by filtration after being continuously stirred for 2 h.Subsequently the obtained solid was added into H2O and required linear alkyl-polyamines(such as diethylenetriamine (DETA),triethylenetetramine(TETA),tetraethylenepentamine (TEPA)).The molar composition of the synthetic mixtures was 60SiO2:xAl2O3:6Na2O:1440H2O:alkyl-polyamines(N/Si molar ratio is 0.42),where x=1,2,respectively.After being stirred for 2 h,the mixtures were transferred into Teflon-lined stainless steel autoclave,where they were heated under autogenous pressure for prescribed time at 448 K.The products obtained were filtered, washed and then dried overnight at 373 K.The obtained samples were denoted as M-ZSM-5-N,where M is the template;N refers to SiO2/Al2O3molar ratio.The organic component was removed by calcinations in air at 823 K for 6 h.Ion exchanges were carried out four times with 0.6 mol·L-1NH4NO3solution at 353 K each for 1 h,followed by calcination at 823 K in air for 6 h to give H-form products.

    2.3 Characterization

    The particle sizes and morphology of the mesoporous zeolitemicrosphere were characterized by scanning electron microscopy (SEM,type HITACHI S-4800)with an accelerating voltage of 3 kV.Transmission electron microscopy(TEM)characterization was carried on a JEM-2010 operating at 200 kV.For the TEM images the specimens were dispersed in ethanol and placed on holey copper grids.Powder X-ray diffraction patterns(XRD)of as-synthesized samples on a Bruker D8 Advance powder diffractometer using Cu Kαradiation(λ=0.154184 nm)over a 2θ range from 5°to 35°,the accelerating voltage and the applied current were 40 kVand 40 mA,respectively.Nitrogen adsorptiondesorption measurements were carried at 77 K on a nitrogen adsorption apparatus(Quantachrome Autosorb-3B).The surface area(SBET)was calculated using the Brunauer-Emmett-Teller (BET)method,the total pore volume was estimated from the amount of nitrogen adsorbed at the relative pressure(p/p0)of 0.99, and the micropore volume was calculated from the t-plot.Solidstate magic angle spinning(MAS)NMR spectra were recorded on a Bruker DSX300 spectrometer.And Infrared(IR)spectra were characterized by SpectrumTM GX.

    The alkylation of phenol with tert-butanol was carried out in an oil bath at 100°C for 4 h under stirring condition in a 50-mL round-bottomed flask immersed in a thermostatted water bath and equipped with a condenser.The stirring was sufficiently strong to rule out the effect of external diffusion on catalytic performance for all of the batches.In a typical batch,0.15 g of catalyst,7.78 g of cyclohexane as solvent,0.74 g of tert-butanol,0.47 g of phenol were used.The product was analyzed using a Shimadzu GC-2014 gas chromatograph equipped with a 30-m Wax capillary column and a flame ionization detector.

    3 Results and discussion

    The X-ray powder diffraction patterns of zeolites are shown in Fig.1.Diffraction peaks located at about 8°,9°,23°,24°,25°(2θ) clearly reveal that ZSM-5 zeolite had been synthesized19and no other peak could be observed,indicating that high purity of ZSM-5 products with MFI structure can be synthesized under the SiO2/ Al2O3molar composition of 30.However,when the SiO2/Al2O3molar ratio increased from 30 to 60 in the synthetic mixtures, some impurities ofα-quartz formed along with ZSM-5,which indicated that there was a relatively narrow range of SiO2/Al2O3molar ratio for the crystallization of ZSM-5 zeolite using alkylpolyamines as template.18This is different from our previous report,13where pure ZSM-5/ZSM-11 zeolites can be obtained with the SiO2/Al2O3molar ratios ranging from 30 to 100.Noticeably, TETAas structure-directing agent/template was more hydrophilic than 1,8-diaminoctane(DAOT)and showed a strong interact with hydrophilic framework aluminum,which is unfavorable for the formation of high silica zeolite.Moreover,ZSM-11 with MEL structure can be obtained when the DAOT acted as the structuredirecting agent/template,while the ZSM-5 structure with MFI can be synthesized when the TETAwas used as the structure-directing agent/template.This may be due that the configuration of DAOT is straight and it main located at the straight pore channel in the ZSM-11,while,the configuration of the TETAis a zigzag chain which was used to construct the ZSM-5 three-dimensional framework.18TETAexhibits stronger structure-directing role than DAOT because of its host-guest charge balance and hydrogen bonding capability with the framework O atoms,leading to the formation of highly crystalline ZSM-5 zeolite only after 7 days, while zeolite ZSM-11 well formed after 10 days in the presence of DAOT.

    Fig.1 Powder XRD patterns of the as-synthesized ZSM-5 microspheres synthesized by DETA-ZSM-5-60(a),

    As shown in the SEM images of Fig.2,the resulting materials were both composed of relatively uniform spherical particles of 10-15 μm in diameter,obviously larger than the spherical aggregates(5-7 μm)obtained in the literature.13The insets were the high magnification SEM images of a single microsphere,showing that the microsphere is built of small particles.Further increasing the magnification reveals that the small particles have regular crystal-like shapes and are in size of only~50 nm(Fig.2(a-c), inset),much smaller than that for ZSM-5 nanocrystals synthesized with the SiO2/Al2O3molar ratio of 60(Fig.2d,inset).These results suggest that the microspheres are aggregates of nanosized ZSM-5 crystals in present study,quite different from the shape of rectangular sheet conglomeration crystals with a size of about 15 μm×2.5 μm×1 μm,18which may attributed to the different nature and concentration of the ingredients and the different molar composition of synthetic mixture result in the different nuclei amount of ZSM-5 and crystalline rate despite same alkyl-polyamine used template.Relatively large size of the aggregates is apositive fact,in favor of easy recovery of the zeolite product by conventional filtration or centrifugation,otherwise it would be very difficult to separate and recover completely isolated or highly dispersed nanocrystals.The TEM image is in good agreement with SEM observation,showing a micrometer-sized particle with spherical morphology made of zeolite nanocrystals rather than amorphous silica,as shown in Fig.2f.

    Fig.2 SEM images of zeolite ZSM-5 microspheres DETA-ZSM-5-30(a),TETA-ZSM-5-30(b),TEPA-ZSM-5-30(c),and TEPA-ZSM-5-60(d);TEM image of a single microsphere TETA-ZSM-5-30(e);high-resolution TEM image taken at the edge of the microsphere TETA-ZSM-5-30(f)

    The effects of Na2O/SiO2and H2O/SiO2molar ratios in the synthesis mixture are presented in the SEM images of Fig.3. When Na2O/SiO2molar ratios range from 0.08 to 0.12,the size of primary particles in zeolite microspheres becomes non-uniform. However,the aggregates retain microspherical morphology with a similar size.Furthermore,the morphology of the TEPA-ZSM-5-30 samples is affected by the H2O/SiO2molar ratio.In case of n(H2O)/n(SiO2)=19,both the size of primary particle and the aggregate morphology are quite similar to those for TEPA-ZSM-5-30 synthesized under the conditions of n(Na2O)/n(SiO2)=0.08 in Fig.3a.With H2O/SiO2molar ratio increasing up to 50,a decreasing of alkalinity in the synthesis mixture results in slow crystallization rate and some amorphous silica was presented in the sample as shown in Fig.3d.The larger is the molar ratio of H2O/SiO2,the more amorphous silica is present in the product after the same crystallization time,as shown in the Fig.3d.

    Fig.3 SEM images of the as-synthesized TEPA-ZSM-5-30 zeolites synthesized at 428 K for 214 h at the molar ratios of

    N2adsorption-desorption isotherms measured at 77 K are shown in Fig.4,and the data of surface area,total volume,and micropore volumes of all the samples with different SiO2/Al2O3molar ratios are listed in Table 1.The isotherms show type IV isotherms with hysteresis loops in the relative pressure(p/p0)range of 0.5-0.9, indicating the presence of irregular mesopore.The insert of Fig.4B shows that the amount of physical adsorption increases continuously in the range of 2-50 nm,further proving the mesopore in these zeolites.All the samples have similar micropore volume of 0.10-0.13 cm3·g-1,while the mesopore volume varies from 0.09 to 0.16 cm3·g-1.The samples TEPA-ZSM-5-30 have quite a large mesopore volume of 0.16 cm3·g-1.These results prove that alkyl-polyamines as single template could also lead to hierarchical zeolite aggregates with rich mesopore volume. Compared with that of zeolite synthesized with DAOT,the mesopore volume of zeolite prepared by TETA template was low.13BET surface areas of these zeolite microspheres amount to 270-350 m2·g-1,similar to the hierarchical zeolite microsphere synthesized using diamines template,13slightly higher than the hierarchical zeolite microspheres prepared using F127 (EO106PO70EO106,EO:ethylene glycol,PO:propylene glycol) polymer as a secondary template20and slightly lower than the hierarchical ZSM-5 mciroshperes prepared in the presence of the urea-formaldehyde polymer.21The high BET surface areas and large mesopore volume of zeolites may favor the reaction of bulky molecular,resulting in the higher catalytic activity,22excellent anticoke formation ability,and anti-sulfur poisoning ability in the catalytic reaction.23,24

    Thermogravimetric(TG)analysis of the as-prepared zeolite microsphere was conducted in air.The TG plot showed three weight-loss steps with a total weight loss of 8.6%-12.0%ranging from room temperature to 800°C(Fig.5).The first step appearing below 200°C was associated with the desorption of water.And the peak appearing at 300-500°C come from the desorption of alkyl-polyamines in the micropore of zeolite varied with the linear chain length.18The weight loss step between 200 and 300°Cmight correspond to the decomposition of the alkyl-polyamines adsorbed on the surface and interstitial voids of the ZSM-5 microspheres.18This is obviously different from the thermogravimetric analysis of zeolites synthesized using diamines as template,13there are no any weight loss peaks appeared during the range of 200-300°C,indicating that there are no or a little diamines adsorbed on the surface and interstitial voids of the ZSM-5/ZSM-11 zeolite microspheres.And the last step between 500 and 800°C might correspond to the dehydroxylation of the zeolite microsphere.The weight loss of zeolites synthesized with alkyl-polyamines is more than that of the zeolites synthesized using diamine templates,indicating that there are possibly more hydroxyls in the zeolites synthesized using alkyl-polyamines as template.

    Fig.4 Nitrogen adsorption-desorption isotherms of the calcined mesoporous DETA-ZSM-5-60(a),TETA-ZSM-5-60(b),TEPAZSM-5-60(c),DETA-ZSM-5-30(d),TETA-ZSM-5-30(e), and TEPA-ZSM-5-30(f)zeolites

    Fig.6Ashows the27Al NMR spectra of the zeolites synthesized by the different alkyl-polyamines.In general,the resonance centered at 54 is commonly assigned to four-coordinated framework aluminum,while the peak at 0 is referred to non-framework octahedral aluminum.There is almost no peak at 0 in all the samples,indicating the absence of non-framework aluminum no matter what alkyl-polyamines and SiO2/Al2O3molar ratios were used,this is in agreement with that reported result.25

    As shown in Fig.6B,29Si MAS NMR spectra indicate a main peak at a chemical shift(δ)ca-114 from siloxane bridges(Q4) species with a shoulder centered at-106 from single silanol(Q3) entities in the all samples.The Q4/Q3intensity ratios calculated from the deconvoluted peaks(dashed lines)were 2.1,1.9,and 1.7 corresponding to the(a)DETA-ZSM-5-30,(b)TETA-ZSM-5-30, and(c)TEPA-ZSM-5-30 zeolites,and when increasing the SiO2/ Al2O3molar ratio to 60,the Q4/Q3intensity ratio calculated from the deconvoluted peaks(dashed lines)was changed to 3.1 corresponding to(d)TEPA-ZSM-5-60 zeolite,respectively.The higher percentage of Q3in all the samples than that of the samples prepared using diamines as template indicated that mesoporous ZSM-5 aggregates had more hydroxyl groups and thus a more hydrophilic surface,which resulted in an obvious loss peak during the temperature range of 500-800°C in the TG-DTG analysis (Fig.5 and Table 1).Almost no Q2signals are observed in either spectrum,suggesting high degree of condensation of the framework in the zeolites.

    Table 1 Textual properties and thermogravimetric analysis of the mesoporous ZSM-5 zeolite samples

    The SEM images and IR spectra of the TEPA-ZSM-5-30 prepared for different crystallization time of 1,3,5,and 7 days are shown in Fig.7.As shown in the SEM images,there are some irregularly-shaped gel lumps at early stage of the hydrothermal reaction(1-3 days).Some microspheres randomly dispersed in amorphous gel after 3 days as shown in Fig.7b SEM image. Correspondingly,a small band at 550 cm-1appears in IR spectra, indicating the formation of some 5-membered ring in pentasil zeolites.With the crystallization time increasing up to 5 days, more and more irregularly-shaped gels transform into microspheres with the diameter of~15 μm.Meanwhile,the band at 550 cm-1becomes larger and no well crystallized zeolites show in XRD.After 7 days,almost all amorphous gel disappears and well crystallized zeolite ZSM-5 microspheres in size of 15 μm.And the band at 550 cm-1becomes distinctly.The band at 550 cm-1is the characteristic of pentasil zeolites,including ZSM-5 and ZSM-11,with a five-membered ring.26-29The intensity ratio of the 550 to 450 cm-1bands has been used to assess the formation of ZSM-5 and is named as IR crystallinity.The band at 550 cm-1grows stronger and sharper gradually as the crystallization time is prolonged.As indicating by all SEM images and IR spectra with varied crystallization time,the formation of macroscopic morphology and zeolitic framework seem to go simultaneously.

    Fig.5 TG-DTG analyses of the DETA-ZSM-5-60(A),DETA-ZSM-5-30(B),TETA-ZSM-5-60(C),TETA-ZSM-5-30(D), TEPA-ZSM-5-60(E),and TEPA-ZSM-5-30(F)samples

    Fig.6 27Al NMR(A)and29Si NMR(B)spectra of the as-synthesized mesoporous(a)DETA-ZSM-5-30,(b)TETA-ZSM-5-30, (c)TEPA-ZSM-5-30,and(d)TEPA-ZSM-5-60 zeolites

    The liquid alkylation of phenol with tert-butyl alcohol is a typical Friedel-Crafts alkylation,which can be catalyzed by acid catalysts.The different acid sites and pore structures lead different distributions of products.30-32The catalytic activities of zeolite microspheres synthesized by alkyl-polyamines in the alkylation of phenol and tert-butyl alcohol are listed in Table 2.The zeolite microspheres exhibited high catalytic activity with a phenol conversion that reached 16.4%after a reaction time of 4 h at 373 K.The higher catalytic activity of TEPA-ZSM-5-30 is due to the higher mesoporous volume,indicating that the existence of mesopores resulted from nanoparticle aggregation reduced thediffusion limitation,although the catalytic activity was slightly lower than the early report.13Moreover,the larger size of zeolite aggregates than the zeolite ZSM-5 microshpere synthesized by diamines may further curtail the filtration difficulties during the synthesis and applications to some extent.

    Fig.7 SEM images and IR spectra of the TEPA-ZSM-5-30 with the crystallization time of 1(a),3(b),5(c),and 7(d)days

    Table 2 Catalytic activity and product distribution for alkylation reaction of phenol with tert-butanol

    Here,linear alkyl-polyamines as single template can be used to synthesize larger zeolite ZSM-5 microspheres with larger mesoporosity than the report.13This synthesis method is very simple and convenient,easy compared with those mesoporous ZSM-5 synthesized using a secondary template.20,21Similar to diamines, the alkyl-polyamines as template not only direct the formation of crystalline zeolite structure,but also favor the control of macroscopic morphology and tectonics of zeolite crystals.These results prove that non-amphiphilic organic molecules could also lead to hierarchical zeolite with both micro-and meso-porosity via a single hydrothermal treatment.Furthermore,the zeolites microspheres with mesoporosity could not only reduce diffusion limitation in catalytic reaction,but also curtail the recovery difficulties in the preparation and applications.

    4 Conclusions

    Alkyl-polyamine as a single template was used to prepare mesoporous zeolite ZSM-5 microspheres.The obtained hierarchical ZSM-5 zeolite microspheres have the bulky aggregate morphology and high catalytic activity in the Friedel-Crafts alkylation,similar to the zeolite synthesized using diamines as template.Furthermore,it is found that the diamine templates only act as the structure directing agent in the synthesis of zeolite, while the alkyl-polyamine templates act as both the structure directing agent and space filling agent in the mesoporous zeolites.

    (1) Wang,X.D.;Yang,W.L.;Tang,Y.;Wang,Y.J.;Fu,S.K.;Gao, Z.Chem.Commun.2000,2161.

    (2) Valtchev,V.Chem.Mater.2002,14,956.doi:10.1021/ cm010927d

    (3) Valtchev,V.Chem.Mater.2002,14,4371.doi:10.1021/ cm020579v

    (4) Tosheva,L.;Valtchev,V.;Sterte,J.Microporous Mesoporous Mat.2000,35-36,621.

    (5) Naydenov,V.;Tosheva,L.;Sterte,J.Chem.Mater.2002,14, 4881.doi:10.1021/cm0211507

    (6) Serrano,D.P.;Aguado,J.;Escola,J.M.;Rodrguez,J.M.;Peral, A.Chem.Mater.2006,18(10),2462.

    (7) Choi,M.;Cho,H.S.;Srivastava,R.;Venkatesan,C.;Choi,D.; Ryoo,R.Nat.Mater.2006,5,718.doi:10.1038/nmat1705

    (8) Fang,Y.M.;Hu,H.Q.;Chen,G.H.Chem.Mater.2008,20, 1670.doi:10.1021/cm703265q

    (9) Choi,M.;Na,K.;Kim,J.;Sakamoto,Y.;Terasaki,O.;Ryoo,R.Nature2009,461,246.doi:10.1038/nature08288

    (10) Choi,M.;Na,K.;Ryoo,R.Chem.Commun.2009,2845.

    (11) Na,K.;Choi,M.;Ryoo,R.J.Mater.Chem.2009,19,6713.doi: 10.1039/b909792a

    (12) Liu,L.J.;Wang,H.B.;Wang,R.W.;Sun,C.Y.;Zeng,S.J.; Jiang,S.;Zhang,D.L.;Zhu,L.K.;Zhang,Z.T.RSC Adv.2014,4,21301.doi:10.1039/c4ra02022g

    (13)Chen,L.;Zhu,S.Y.;Wang,Y.M.;He,M.Y.New J.Chem.2010,34,2328.doi:10.1039/c0nj00316f

    (14) Egeblad,K.;Christensen,C.H.;Kustova,M.;Christensen,C. H.Chem.Mater.2008,20,946.doi:10.1021/cm702224p

    (15) Li,G.;Feng,Y.Q.;Li,G.X.J.Mater.Sci.2007,42,4838.doi: 10.1007/s10853-006-0639-x

    (16) Wiebcke,M.;Bogershausen,A.;Koller,H.Microporous Mesoporous Mat.2005,78,97.doi:10.1016/j.micromeso. 2004.09.020

    (17) Yoshitake,H.;Koiso,E.;Horie,H.Microporous Mesoporous Mat.2005,85,183.doi:10.1016/j.micromeso.2005.06.009

    (18) Wei,B.;Sun,J.M.;Cao,H.Q.;Lü,Y.J.;Fang,L.Chem.Res.Chin.Univ.2009,25(3),286.

    (19) Persson,A.E.;Schoeman,B.J.;Sterte,J.Zeolites1995,15, 611.doi:10.1016/0144-2449(95)00070-M

    (20) Hua,J.;Han,Y.Chem.Mater.2009,21,2344.doi:10.1021/ cm803366k

    (21) Kang,Y.J.;Shan,W.;Wu,J.Y.;Zhang,Y.H.;Wang,X.Y.; Yang,W.L.;Tang,Y.Chem.Mater.2006,18,1861.doi: 10.1021/cm060084w

    (22) Shetti,V.N.;Kim,J.;Srivastava,R.;Choi,M.;Ryoo,R.J.Catal.2008,254,296.doi:10.1016/j.jcat.2008.01.006

    (23) Sang,S.Y.;Chang,F.X.;Liu,Z.M.;He,C.Q.;He,Y.L.;Xu, L.Catal.Today2004,93-95,729.

    (24) Grieken,R.V.;Sotelo,J.L.;Menendez,J.M.;Melero,J.A.Microporous Mesoporous Mat.2000,39,135.doi:10.1016/ S1387-1811(00)00190-6

    (25) Rollmann,L.D.;Schlenker,J.L.;Kennedy,C.L.;Kennedy,G. J.;Doren,D.J.J.Phys.Chem.B2000,104,721.doi:10.1021/ jp993561p

    (26) Jacobs,P.A.;Beyer,H.K.;Valyon,J.Zeolites1981,1,161.doi: 10.1016/S0144-2449(81)80006-1

    (27) Jansen,J.C.;van der Gaag,F.J.;van Bekkum,H.Zeolites1984,4,369.doi:10.1016/0144-2449(84)90013-7

    (28) Coudurier,G.;Naccache,C.;Vedrine,J.C.J.Chem.Soc.Chem. Commun.1982,1413.

    (29) Yue,M.B.;Sun,L.B.;Zhuang,T.T.;Dong,X.;Chun,Y.;Zhu, J.H.J.Mater.Chem.2008,18,2044.doi:10.1039/b717634a

    (30) Huang,J.;Li,G.;Wu,S.;Wang,H.;Xing,L.;Song,K.;Wu,T.; Kan,Q.J.Mater.Chem.2005,15,1055.doi:10.1039/b413906b

    (31) Huang,J.;Xing,L.;Wang,H.;Li,G.;Wu,S.;Wu,T.;Kan,Q.J.Mol.Catal.A2006,259,84.doi:10.1016/j.molcata. 2006.06.001

    (32) Sun,Y.Y.;Prins,R.Appl.Catal.A:Gen.2008,336,11.doi: 10.1016/j.apcata.2007.08.015

    One-Step Synthesis of Hierarchical ZSM-5 Zeolite Microspheres Using Alkyl-Polyamines as Single Templates

    CHEN Li XUE Teng ZHU Shu-Yan WANG Yi-Meng*
    (Shanghai Key Laboratory of Green Chemistry and Chemical Processes,Department of Chemistry, East China Normal University,Shanghai 200062,P.R.China)

    Diethylenetriamine(DETA),triethylenetetramine(TETA),and tetraethylenepentamine(TEPA)were used as single templates to synthesize mesoporous zeolite ZSM-5 microspheres.The obtained 10-15 μm hierarchical aggregates had a uniform spherical morphology,which was spontaneously assembled by primary zeolite nanocrystals of 50 nm in size during the hydrothermal synthesis.The ZSM-5 aggregates had a tunable textual porosity,large mesopore volume,and high catalytic activity in the Friedel-Crafts alkylation.Diamine templates only acted as structure directing agents in our previous work.The current alkyl-polyamine templates acted as structure directing agents and space fillers in the synthesis of the hierarchical zeolites.

    Hierarchical zeolite;Aggregate;Single template;Alkyl-polyamine

    O643

    10.3866/PKU.WHXB201411174www.whxb.pku.edu.cn

    Received:September 29,2014;Revised:November 14,2014;Published on Web:November 17,2014.

    ?Corresponding author.Email:ymwang@chem.ecnu.edu.cn;Tel:+86-21-62232251.

    The project was supported by the National Natural Science Foundation of China(20890122)and National Key Technology R&D Program of China (2012BAE05B02).

    國家自然科學(xué)基金(20890122)和國家科技支撐計劃(2012BAE05B02)資助

    猜你喜歡
    化學(xué)系華東師范大學(xué)沸石
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    “綠色碳科學(xué)”專輯編委會
    華東師范大學(xué)學(xué)報(自然科學(xué)版)2022 年總目次(總第221—226 期)
    沸石分子篩發(fā)展簡述
    云南化工(2021年10期)2021-12-21 07:33:24
    5種沸石分子篩的吸附脫碳對比實驗
    煤氣與熱力(2021年9期)2021-11-06 05:22:56
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    沸石再生
    石油化工(2015年9期)2015-08-15 00:43:05
    多晶沸石膜的研究進展
    華東師范大學(xué)學(xué)報(自然科學(xué)版) 2014年總目次(總第173-178期)
    欧美黄色片欧美黄色片| 亚洲国产日韩欧美精品在线观看 | 成人性生交大片免费视频hd| 美女cb高潮喷水在线观看 | 色综合欧美亚洲国产小说| 午夜免费激情av| 中国美女看黄片| 亚洲精华国产精华精| 免费看十八禁软件| 日韩高清综合在线| 性色avwww在线观看| 免费观看人在逋| 成人特级av手机在线观看| 黄频高清免费视频| 久久草成人影院| 91在线观看av| 在线视频色国产色| 最近视频中文字幕2019在线8| 久久久国产成人免费| 国产av一区在线观看免费| 国产麻豆成人av免费视频| 操出白浆在线播放| 国产淫片久久久久久久久 | 日韩欧美国产在线观看| 国内久久婷婷六月综合欲色啪| 国产人伦9x9x在线观看| 啦啦啦韩国在线观看视频| 成人永久免费在线观看视频| 国产视频一区二区在线看| 免费在线观看影片大全网站| 最好的美女福利视频网| 丰满的人妻完整版| 亚洲国产欧美人成| 69av精品久久久久久| 国产淫片久久久久久久久 | 国产av在哪里看| 国产一区二区激情短视频| 1024手机看黄色片| 亚洲国产欧美网| 亚洲专区中文字幕在线| 国产精品av久久久久免费| 热99re8久久精品国产| 亚洲av中文字字幕乱码综合| 欧美日本亚洲视频在线播放| 亚洲国产精品成人综合色| 久久久久国产一级毛片高清牌| 不卡av一区二区三区| 亚洲国产精品sss在线观看| 黄色视频,在线免费观看| 99久久国产精品久久久| 老司机深夜福利视频在线观看| 国产精品综合久久久久久久免费| 在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 久久欧美精品欧美久久欧美| 国产男靠女视频免费网站| 日本免费一区二区三区高清不卡| 日本与韩国留学比较| 国产欧美日韩一区二区三| 琪琪午夜伦伦电影理论片6080| 国产伦人伦偷精品视频| 一边摸一边抽搐一进一小说| 99在线视频只有这里精品首页| 亚洲一区高清亚洲精品| 高清在线国产一区| 日韩国内少妇激情av| 色在线成人网| 日本 欧美在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合一区二区三区| 亚洲18禁久久av| 欧美乱妇无乱码| 精品一区二区三区av网在线观看| 国产爱豆传媒在线观看| 日本免费a在线| 狂野欧美激情性xxxx| 免费看光身美女| 18禁黄网站禁片免费观看直播| 国产精品日韩av在线免费观看| 久久久久国内视频| 成人鲁丝片一二三区免费| 99久久精品一区二区三区| 欧美日韩精品网址| 国产野战对白在线观看| 国产精品一区二区三区四区久久| 啪啪无遮挡十八禁网站| 久久久国产成人精品二区| 真人做人爱边吃奶动态| 国产一区二区三区视频了| 男人和女人高潮做爰伦理| x7x7x7水蜜桃| 99久久成人亚洲精品观看| 在线十欧美十亚洲十日本专区| 午夜福利在线在线| 长腿黑丝高跟| a级毛片在线看网站| 午夜福利视频1000在线观看| 成人亚洲精品av一区二区| 亚洲av成人精品一区久久| 国产精品99久久久久久久久| 午夜福利在线观看免费完整高清在 | 99国产精品一区二区三区| 成人特级黄色片久久久久久久| 亚洲美女黄片视频| 亚洲熟妇中文字幕五十中出| 欧美激情在线99| 在线看三级毛片| 看免费av毛片| 亚洲专区中文字幕在线| 成年女人永久免费观看视频| 国产成人影院久久av| 我要搜黄色片| 最新中文字幕久久久久 | 最近最新中文字幕大全免费视频| 亚洲国产精品成人综合色| 狂野欧美白嫩少妇大欣赏| 高清在线国产一区| 亚洲最大成人中文| 婷婷精品国产亚洲av在线| 亚洲av成人av| 在线免费观看的www视频| 亚洲熟妇熟女久久| 久久久久久久精品吃奶| 国产视频内射| 国产av一区在线观看免费| 欧美日本视频| 三级国产精品欧美在线观看 | 亚洲av电影不卡..在线观看| 欧美高清成人免费视频www| 亚洲中文字幕一区二区三区有码在线看 | 亚洲成av人片免费观看| 国产免费男女视频| 亚洲18禁久久av| 精品无人区乱码1区二区| 日韩国内少妇激情av| 少妇丰满av| 国产亚洲欧美在线一区二区| 欧美又色又爽又黄视频| 亚洲成人久久性| av欧美777| 久久久国产精品麻豆| 18美女黄网站色大片免费观看| 国产成人av教育| 成人18禁在线播放| 亚洲va日本ⅴa欧美va伊人久久| 97碰自拍视频| cao死你这个sao货| 国产伦精品一区二区三区四那| 国产三级在线视频| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 搡老岳熟女国产| 国产成人影院久久av| 国产伦精品一区二区三区四那| 精品久久久久久,| 国产精品久久视频播放| 一级毛片女人18水好多| 亚洲自拍偷在线| 18美女黄网站色大片免费观看| 亚洲 欧美一区二区三区| 亚洲欧美日韩无卡精品| 黄片大片在线免费观看| 亚洲专区字幕在线| 亚洲av美国av| 婷婷丁香在线五月| 精品电影一区二区在线| 91久久精品国产一区二区成人 | 校园春色视频在线观看| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 12—13女人毛片做爰片一| 免费观看人在逋| 久久午夜综合久久蜜桃| 人人妻,人人澡人人爽秒播| 亚洲av电影在线进入| 老鸭窝网址在线观看| 国产av不卡久久| 亚洲七黄色美女视频| 国产精品美女特级片免费视频播放器 | 黄色成人免费大全| 俄罗斯特黄特色一大片| 男女那种视频在线观看| 男女下面进入的视频免费午夜| 好男人在线观看高清免费视频| 搡老熟女国产l中国老女人| 国产精品久久久人人做人人爽| 99精品久久久久人妻精品| 亚洲最大成人中文| 久久久久久大精品| 久久热在线av| 美女午夜性视频免费| 两性夫妻黄色片| 国产成+人综合+亚洲专区| 国产精品久久久久久精品电影| 在线观看免费午夜福利视频| 女同久久另类99精品国产91| 51午夜福利影视在线观看| 观看免费一级毛片| 国内揄拍国产精品人妻在线| 97超级碰碰碰精品色视频在线观看| 在线观看66精品国产| 久久久久久大精品| 国产久久久一区二区三区| 黄色日韩在线| 白带黄色成豆腐渣| 亚洲自偷自拍图片 自拍| 亚洲一区二区三区色噜噜| 国产主播在线观看一区二区| 亚洲激情在线av| 国产成人精品久久二区二区91| aaaaa片日本免费| 99国产精品99久久久久| 大型黄色视频在线免费观看| 天堂动漫精品| 午夜免费激情av| 国产av一区在线观看免费| 婷婷精品国产亚洲av| 国产精品久久久人人做人人爽| 最近最新免费中文字幕在线| 在线播放国产精品三级| 麻豆成人av在线观看| 亚洲av电影在线进入| 99久久成人亚洲精品观看| 亚洲精品在线观看二区| 这个男人来自地球电影免费观看| 不卡av一区二区三区| 亚洲熟妇熟女久久| 真实男女啪啪啪动态图| 午夜福利欧美成人| 非洲黑人性xxxx精品又粗又长| 一个人看的www免费观看视频| 露出奶头的视频| 最新美女视频免费是黄的| 2021天堂中文幕一二区在线观| 男人的好看免费观看在线视频| 欧美绝顶高潮抽搐喷水| 九九热线精品视视频播放| 久久久国产成人精品二区| 中文字幕高清在线视频| 成人18禁在线播放| 欧美不卡视频在线免费观看| 欧美午夜高清在线| 在线免费观看的www视频| 1024手机看黄色片| 日日摸夜夜添夜夜添小说| 18禁观看日本| 国产黄a三级三级三级人| 欧美色视频一区免费| 人妻久久中文字幕网| 99精品久久久久人妻精品| 91老司机精品| 久久精品91蜜桃| 99热只有精品国产| 免费看十八禁软件| 亚洲第一电影网av| 全区人妻精品视频| 久久久水蜜桃国产精品网| 女警被强在线播放| 搡老熟女国产l中国老女人| 亚洲av美国av| 精品久久久久久成人av| 亚洲国产精品999在线| 麻豆成人午夜福利视频| 一二三四在线观看免费中文在| 国产精品女同一区二区软件 | 中文字幕人妻丝袜一区二区| 国产成人啪精品午夜网站| av天堂在线播放| 香蕉国产在线看| 网址你懂的国产日韩在线| 日韩三级视频一区二区三区| 首页视频小说图片口味搜索| 熟女电影av网| 999精品在线视频| 亚洲成人精品中文字幕电影| 久久九九热精品免费| 精品久久蜜臀av无| 国产亚洲av高清不卡| 97超视频在线观看视频| 夜夜夜夜夜久久久久| av福利片在线观看| 哪里可以看免费的av片| 性欧美人与动物交配| 免费无遮挡裸体视频| 国产91精品成人一区二区三区| 丝袜人妻中文字幕| 91老司机精品| 日本五十路高清| 两个人视频免费观看高清| 最近最新中文字幕大全电影3| 午夜两性在线视频| 十八禁网站免费在线| 国产精品美女特级片免费视频播放器 | 亚洲av中文字字幕乱码综合| 亚洲乱码一区二区免费版| 国产成人精品无人区| 黄色丝袜av网址大全| 麻豆久久精品国产亚洲av| 琪琪午夜伦伦电影理论片6080| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| av国产免费在线观看| 亚洲国产欧美一区二区综合| 久久热在线av| 大型黄色视频在线免费观看| 成在线人永久免费视频| 久久草成人影院| 国产精品98久久久久久宅男小说| 国产精品,欧美在线| 久久久国产成人免费| 精品久久久久久久人妻蜜臀av| 人人妻人人澡欧美一区二区| 偷拍熟女少妇极品色| 国产精品 欧美亚洲| 免费av不卡在线播放| 波多野结衣高清作品| 99久久国产精品久久久| 搞女人的毛片| 国产精品av视频在线免费观看| 中文字幕熟女人妻在线| 女人被狂操c到高潮| 欧美日韩瑟瑟在线播放| 美女大奶头视频| 观看美女的网站| 校园春色视频在线观看| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 国产亚洲精品久久久com| 人人妻人人看人人澡| 搡老岳熟女国产| 久久精品91无色码中文字幕| 一本精品99久久精品77| 亚洲电影在线观看av| 露出奶头的视频| 色综合欧美亚洲国产小说| 精品福利观看| 床上黄色一级片| 桃色一区二区三区在线观看| 亚洲av片天天在线观看| 国产野战对白在线观看| 精品久久久久久久末码| 中文字幕久久专区| 日韩免费av在线播放| 18禁美女被吸乳视频| 99热这里只有精品一区 | 久久午夜亚洲精品久久| 99久久无色码亚洲精品果冻| av片东京热男人的天堂| 高潮久久久久久久久久久不卡| 国产精品影院久久| 99国产精品一区二区蜜桃av| 91麻豆av在线| 婷婷精品国产亚洲av| 五月玫瑰六月丁香| 精品一区二区三区四区五区乱码| 成人国产综合亚洲| 巨乳人妻的诱惑在线观看| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 少妇人妻一区二区三区视频| 日本 欧美在线| 国产亚洲精品综合一区在线观看| 国产高清激情床上av| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看 | 五月伊人婷婷丁香| 日韩高清综合在线| 啦啦啦韩国在线观看视频| 国产一区在线观看成人免费| 欧美成狂野欧美在线观看| 香蕉久久夜色| 日韩欧美一区二区三区在线观看| 欧美日韩一级在线毛片| 国产精品国产高清国产av| 哪里可以看免费的av片| 少妇的丰满在线观看| 色哟哟哟哟哟哟| 日韩欧美免费精品| 真实男女啪啪啪动态图| 亚洲成人精品中文字幕电影| 免费搜索国产男女视频| 欧美日本视频| 婷婷六月久久综合丁香| 狂野欧美白嫩少妇大欣赏| 久久久色成人| 国产成人精品久久二区二区免费| 国产主播在线观看一区二区| 女警被强在线播放| 激情在线观看视频在线高清| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 国产爱豆传媒在线观看| 欧美在线一区亚洲| 窝窝影院91人妻| 在线观看一区二区三区| 男人和女人高潮做爰伦理| 99精品在免费线老司机午夜| 一a级毛片在线观看| 99久久无色码亚洲精品果冻| 成人精品一区二区免费| 久久精品国产亚洲av香蕉五月| 99久久国产精品久久久| 三级男女做爰猛烈吃奶摸视频| 国产伦人伦偷精品视频| 国产探花在线观看一区二区| 久久久久久九九精品二区国产| 岛国在线免费视频观看| 免费一级毛片在线播放高清视频| 丰满的人妻完整版| 美女高潮的动态| 免费av不卡在线播放| 成在线人永久免费视频| 九色国产91popny在线| www日本黄色视频网| 久99久视频精品免费| 国产精品1区2区在线观看.| 国产成人福利小说| 国产高清videossex| ponron亚洲| 99久久无色码亚洲精品果冻| 久久精品国产综合久久久| 亚洲,欧美精品.| 老司机福利观看| 国产精品久久久久久亚洲av鲁大| 青草久久国产| 欧美日韩精品网址| 亚洲狠狠婷婷综合久久图片| 久久久精品大字幕| 久久精品aⅴ一区二区三区四区| 很黄的视频免费| 亚洲精品在线美女| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 成人三级黄色视频| 在线观看免费午夜福利视频| 熟女电影av网| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免费看| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩卡通动漫| 免费一级毛片在线播放高清视频| 久久精品国产清高在天天线| 成熟少妇高潮喷水视频| 最好的美女福利视频网| 久久久国产成人免费| 成年女人看的毛片在线观看| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 日日摸夜夜添夜夜添小说| 精品免费久久久久久久清纯| 国产1区2区3区精品| 91麻豆精品激情在线观看国产| 精品无人区乱码1区二区| 99久久久亚洲精品蜜臀av| 高清毛片免费观看视频网站| 色老头精品视频在线观看| 制服丝袜大香蕉在线| 亚洲在线自拍视频| 巨乳人妻的诱惑在线观看| 两人在一起打扑克的视频| 18禁观看日本| 日本一二三区视频观看| 免费av不卡在线播放| 免费看美女性在线毛片视频| 久久久久久久久中文| 亚洲精品美女久久av网站| 级片在线观看| 色噜噜av男人的天堂激情| 在线观看日韩欧美| 日本成人三级电影网站| 性色av乱码一区二区三区2| 99久久99久久久精品蜜桃| 国产一区二区激情短视频| 91老司机精品| 免费电影在线观看免费观看| 国产精品永久免费网站| 少妇丰满av| 色av中文字幕| 少妇人妻一区二区三区视频| 无人区码免费观看不卡| 每晚都被弄得嗷嗷叫到高潮| 美女cb高潮喷水在线观看 | 精品免费久久久久久久清纯| 国产亚洲精品av在线| 国产一区二区激情短视频| 国产探花在线观看一区二区| 久久天堂一区二区三区四区| 亚洲国产精品久久男人天堂| 国产三级中文精品| 国产美女午夜福利| 国产高潮美女av| 在线观看免费午夜福利视频| 人妻夜夜爽99麻豆av| 给我免费播放毛片高清在线观看| 黑人巨大精品欧美一区二区mp4| 日本 欧美在线| 国产精品1区2区在线观看.| 久久久久久久精品吃奶| 两性午夜刺激爽爽歪歪视频在线观看| 免费大片18禁| 欧美乱码精品一区二区三区| av在线天堂中文字幕| 久久久久久久久中文| 久久久久久久午夜电影| 国产探花在线观看一区二区| 亚洲av免费在线观看| 国产高清videossex| 精品国产美女av久久久久小说| 国产激情久久老熟女| 色噜噜av男人的天堂激情| 欧美极品一区二区三区四区| 国产成人系列免费观看| av片东京热男人的天堂| 神马国产精品三级电影在线观看| 狂野欧美白嫩少妇大欣赏| 伊人久久大香线蕉亚洲五| 欧美日韩福利视频一区二区| 欧美+亚洲+日韩+国产| 亚洲欧美激情综合另类| 国产精品影院久久| 在线免费观看不下载黄p国产 | 久久精品国产清高在天天线| 国产精品久久电影中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成a人片在线一区二区| 91字幕亚洲| 非洲黑人性xxxx精品又粗又长| 97碰自拍视频| 精品无人区乱码1区二区| 97碰自拍视频| 97超级碰碰碰精品色视频在线观看| 2021天堂中文幕一二区在线观| 久久久久性生活片| 天天躁狠狠躁夜夜躁狠狠躁| 精品午夜福利视频在线观看一区| 美女免费视频网站| 首页视频小说图片口味搜索| 91av网一区二区| 精品久久久久久成人av| 久久精品国产清高在天天线| 久久人妻av系列| 在线免费观看的www视频| 日韩大尺度精品在线看网址| 亚洲精品美女久久久久99蜜臀| 国产成人av激情在线播放| 国产av不卡久久| 欧美高清成人免费视频www| 性色av乱码一区二区三区2| 欧美不卡视频在线免费观看| 午夜福利在线观看吧| 国产一区二区三区视频了| 亚洲人成电影免费在线| 神马国产精品三级电影在线观看| 色视频www国产| 一a级毛片在线观看| 黄色丝袜av网址大全| 亚洲,欧美精品.| 欧美最黄视频在线播放免费| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 成在线人永久免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲黑人精品在线| 在线观看66精品国产| 好男人在线观看高清免费视频| 久久欧美精品欧美久久欧美| 久久草成人影院| 久久久成人免费电影| 99精品在免费线老司机午夜| 偷拍熟女少妇极品色| 国产黄片美女视频| 欧美色视频一区免费| 久久国产乱子伦精品免费另类| 国产精品永久免费网站| 国产av不卡久久| 小蜜桃在线观看免费完整版高清| 亚洲九九香蕉| 欧美不卡视频在线免费观看| 丝袜人妻中文字幕| 国内精品美女久久久久久| 在线观看日韩欧美| 亚洲精品在线观看二区| 老司机福利观看| 精品国产美女av久久久久小说| 亚洲在线观看片| 哪里可以看免费的av片| 91九色精品人成在线观看| 欧美zozozo另类| 国产亚洲精品久久久久久毛片| 真人一进一出gif抽搐免费| 国产精品影院久久| 成人三级做爰电影| 久久99热这里只有精品18| 怎么达到女性高潮| a级毛片a级免费在线| 亚洲国产精品合色在线| 国产成人影院久久av| 日韩免费av在线播放| 少妇的丰满在线观看| 精品国产美女av久久久久小说| 亚洲在线观看片| 国产精品爽爽va在线观看网站| 国产午夜精品论理片| 日韩av在线大香蕉| 国产午夜福利久久久久久| 午夜激情欧美在线| 国产真人三级小视频在线观看| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 一本综合久久免费|