• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    自組裝型Pt/γ-Al2O3催化劑用于低溫去除揮發(fā)性有機(jī)物

    2015-01-04 05:22:58李加衡李小青許響生徐瀟瀟嚴(yán)新煥浙江工業(yè)大學(xué)綠色化學(xué)合成技術(shù)國家重點(diǎn)實(shí)驗(yàn)室培育基地杭州3004浙江大學(xué)能源清潔利用國家重點(diǎn)實(shí)驗(yàn)室杭州3004
    物理化學(xué)學(xué)報 2015年1期
    關(guān)鍵詞:物理化學(xué)揮發(fā)性學(xué)報

    李加衡 敖 平 李小青 許響生 徐瀟瀟 高 翔 嚴(yán)新煥,*(浙江工業(yè)大學(xué)綠色化學(xué)合成技術(shù)國家重點(diǎn)實(shí)驗(yàn)室培育基地,杭州3004;浙江大學(xué)能源清潔利用國家重點(diǎn)實(shí)驗(yàn)室,杭州3004)

    自組裝型Pt/γ-Al2O3催化劑用于低溫去除揮發(fā)性有機(jī)物

    李加衡1敖 平1李小青1許響生1徐瀟瀟1高 翔2嚴(yán)新煥1,*
    (1浙江工業(yè)大學(xué)綠色化學(xué)合成技術(shù)國家重點(diǎn)實(shí)驗(yàn)室培育基地,杭州310014;2浙江大學(xué)能源清潔利用國家重點(diǎn)實(shí)驗(yàn)室,杭州310014)

    分別通過自組裝法(AS)和浸漬法(WI)制備得到納米催化劑Pt/γ-Al2O3-AS和Pt/γ-Al2O3-WI,并用于評價甲苯、異丙醇、丙酮、乙酸乙酯等易揮發(fā)性有機(jī)物(VOCs)的氧化性能.通過各種表征手段探究了催化劑形態(tài)、結(jié)構(gòu)及表面性質(zhì)與催化劑氧化活性的關(guān)系.結(jié)果表明,Pt/γ-Al2O3-AS在低溫下即可實(shí)現(xiàn)VOCs的完全氧化.在氣體濃度(體積分?jǐn)?shù))為1000×10-6,空速為18000 mL·g-1·h-1的條件下,甲苯、異丙醇、丙酮、乙酸乙酯被Pt/γ-Al2O3-AS催化劑完全氧化的溫度分別為130、135、145、215°C,展現(xiàn)出了優(yōu)異的氧化性能,且具有很好的穩(wěn)定性.該催化劑較高的比表面積、較小的Pt納米粒徑、較好的Pt納米顆粒分散度、更好的低溫還原效果及豐富的表面羥基是具有較高催化活性的重要因素.

    Pt/γ-Al2O3;易揮發(fā)性有機(jī)物;催化燃燒;組合型催化劑

    ?Editorial office ofActa Physico-Chimica Sinica

    1 Introduction

    In recent years,environmental legislations have imposed increasingly stringent targets for permitted levels of atmospheric emissions.Because of their toxic,malodorous,mutagenic,and carcinogenic nature,volatile organic compounds(VOCs)are considered as atmospheric pollutants.1VOCs are also important precursors for the formation of ozone,particulate matter(PM), and smog.Diverse sources,such as automobile exhausts,petrochemical industries,manufacturing plants,and solid and liquid waste treatment facilities,release VOCs into the atmosphere.In several countries,including USA,EU,Japan,and China,stringent legislationshave been passedtominimize theemission ofVOCs.2,3

    The main approaches in use for the removal of VOCs include adsorption,thermal incineration,and catalytic oxidation.Among these methods,catalytic oxidation,i.e.,complete oxidation of VOCs to CO2and H2O,is recognized as one of the most promising processes;4it is an efficient,inexpensive,and a green chemical degradation process with a faster reaction rate and lower operating temperature.Moreover,catalytic oxidations conducted at relatively low temperatures and under controlled conditions do not emit undesirable by-products,such as dioxins and NOx.5,6

    The catalysts currently being used for minimizing VOC emissions can be divided into two groups:noble metal-based7-13and metal oxide-based14-18catalysts.The noble metal-based catalysts,because of their high specific activity and recyclability,are frequently used for the oxidation of various VOCs.They are widely used despite their low resistance to poisons and relatively higher costs(when compared with metal oxides).To the best of our knowledge,the catalytic oxidation of VOCs over precious metal catalysts is typically carried out between 160 and 300°C.19-21Besides,catalytic oxidation of VOCs is greatly influenced by the nature of pollutants.Approximately 60%-80%of various VOCs are emitted in the cold-start period.Among the noble metal-based catalysts,Pt-based catalysts have been widely used in oxidations for minimizing the emission of hydrocarbons,CO,and the soluble organic fraction of PM.In these processes,the efficient oxidation of VOCs requires relatively high temperatures.To realize the total oxidation of VOCs at lower temperature,it is important to develop more efficient catalysts.

    In general,the catalytic activity of a platinum-based catalyst depends on the method of its preparation and the nature of support.22The method of catalyst preparation can influence properties such as crystallite size,surface area,dispersion,oxidation state, and oxygen defect concentration;these features can influence the activity of catalysts.Alarge body of work related to the complete oxidation of VOCs over supported Pt-based catalysts prepared by various methods,such as wet impregnation(WI),11,23,24precipitation-deposition,25-27and ion exchange,28-30has been recorded. Among these,WI is the most widely used method for catalyst preparation.Here,Pt nanoparticles were synthesized by the reduction of precursors at high temperatures or under H2atmosphere;this can sometimes lead to poor distribution of the metal on the surface and weak interactions between Pt and the support.31Therefore,optimization of the preparation method is critical for the generation of catalysts with higher efficiencies and longer lifetimes.Additionally,properties of the support also play an important role in the efficiency of the catalyst.The inexpensive and stable alumina(Al2O3)is the most commonly used catalyst support in a variety of applications.

    In this study,a catalytic Pt/γ-Al2O3nanomaterial(nanocatalyst) was successfully prepared by self-assembly and is effective at minimizing the emission of VOCs at low temperatures.The key factors controlling the activity of the nanocatalyst,i.e.,Pt dispersion,Pt size,and reducibility of Pt sites,are discussed in the context of the preparation method.

    2 Experimental

    2.1 Material

    K2PtCl4(AR)was purchase from Sinopharm Chemical Reagent Co.,Ltd.China.Propylene carbonate(AR)was purchase from Shandong Shenjie Chemical Co.,Ltd.China.γ-Al2O3powder was purchase from Hangzhou Wangjing New Material Co.Ltd.,China, surface area SBET=180 m2·g-1.

    2.2 Preparation of nanocatalyst

    Pt2(dba)3(dba=dibenzylideneacetone)was prepared following a protocol described in the literature,32with a few modifications. Asolution of K2PtCl4(1.40 g,AR)in distilled water(12 mL)was added to a solution of sodium acetate(2.8 g,AR)and bis-dba (2.36 g)in ethanol(60 mL,AR)at 50°C.The initial pale yellow suspension dissolved when the mixture was refluxed at 90°C. After refluxing for 1 h,a dark violet precipitate formed.The mixture was allowed to settle overnight.The liquid was discarded after filtration,while the solid was washed three times with water (20 mL),dried overnight under vacuum,further washed three times with n-pentane(20 mL,AR),and finally dried under vacuum overnight.

    We prepared Pt/γ-Al2O3-AS according to a procedure reported previously by us,33but using a different support and with modifications in the post-treatment:a certain amount of Pt2(dba)3was added into propylene carbonate(AR)solution in a steel autoclave pre-equilibrated with H2(to exclude the inside air),followed by pressurizing to 3 MPa with H2.The solution was vigorously stirred for 2 h at room temperature(RT)to afford a brown colloid of Pt. To deposit the sol on a support,γ-Al2O3powder was added to the above solution,and the stirring continued for 24 h.The solid catalyst was separated by filtration and dried at 80°C.Only trace levels of Pt were observed in the clear filtrate,indicating a complete adsorption of the Pt on the carrier.Thus,the supported catalyst,Pt nanoparticles(1.0%Pt loading)on γ-Al2O3,was prepared by the assembled method(Pt/γ-Al2O3-AS).

    For comparison,a reference catalyst was prepared by impregnation in excess solvent as follows:γ-Al2O3(1.0 g)was added to an aqueous solution of K2PtCl4(50 mL,concentration of K2PtCl4was adjusted to give 1%(w,mass fraction)of Pt in the final solid). The suspension was stirred at RT for 2 h and then heated overnight at 70°C in a vacuum oven.Finally,the sample was reducedby H2at 300°C in order to obtain the Pt nanoparticles.

    2.3 Characterization

    N2adsorption-desorption isotherms were measured at liquid nitrogen temperature using a Micromeritics ASAP 2010 equipment.Specific surface areas were calculated according to the Brunauer-Emmett-Teller(BET)method.Micropore volume was estimated by the t-plot method.Total pore volume was determined by nitrogen adsorption at a relative pressure of 0.98 and pore size distributions from the adsorption isotherms by the Barrett-Joyner-Halen(BJH)method.

    The structures of the supports and catalysts were analyzed by X-ray diffraction(XRD)on a Rigaku D/Max-2500/propylene carbonate(PC)powder diffraction system using Cu Kαradiation (40 kV and 100 mA)over the angular range 20°-50°,2θ,with a 0.05°step size and a counting time of 20 s per step.The assignment of the various crystalline phases was based on the JPDS powder diffraction file cards.

    Transmission electron microscopy(TEM)images were recorded using a JEOL JEM-1200EX microscope with an accelerating voltage of 60 kV.One drop of the sample solution was placed on the copper grid coated by a polymer or carbon film. Average sizes of Pt particles were calculated from the size distributions obtained by measuring the diameter of over 100 Pt particles in bright-field TEM.

    For temperature-programmed reduction of H2(H2-TPR),the catalysts(50 mg)were subjected to flow of 10%(volume fraction, the same below)H2/Ar(total flow rate=30 mL·min-1)at RT for 1 h to stabilize the thermal conductivity detector(TCD)signal. After that,the temperature was increased from 30 to 800°C at a rate of 10°C·min-1.The temperature dependent change in the concentration of H2was recorded on an on-line TCD.

    Fourier transform infrared(FTIR)experiments were carried out using a Nicolet 740 FTIR spectrometer equipped with a diffuse reflectance(DRIFT)cell(Spectra Tech),an mercury cadmium telluride(MCT)detector,and a KBr beam splitter.In a typical experiment,the catalyst powder in the DRIFT cell was pretreated with a flow of He at 450°C for 10 min and then cooled down to RT.At different temperatures during the cooling stage,background spectra were collected.The flow was then switched to 1% CO in He at room temperature for 30 min.

    2.4 Catalytic activity measurements

    Catalytic activity tests were carried out in a conventional fixedbed reactor at atmospheric pressure and with reaction temperatures in the range 60-300°C.The fixed-bed reactor was placed inside a temperature-regulated electrical furnace,and the temperature in the reaction zone was measured by a thermocouple placed in the middle of the catalyst bed.To ensure the measurement of steady-state data,the reactor was maintained at each temperature for 20 min.All the runs were performed using 500 mg of catalyst. The concentration(volume fraction)of VOCs in the incoming feed stream and gas hourly space velocity(GHSV)were maintained at~1000×10-6-3000×10-6and~18000-54000 mL·g-1·h-1, respectively.The analysis of the outgoing stream(raw reactant or product)was performed using a gas chromatograph(Fuli GC-9790)equipped with flame ionization detector(FID)and TCD. The conversion(X)of VOCs was calculated by using the following equation:

    where[VOCs]inis the inlet VOC concentration,and[VOCs]outis the outlet VOC concentration.The catalytic activity was evaluated by its T100value,i.e.,the temperature for 100%conversion of VOCs.

    3 Results and discussion

    3.1 Catalytic performance of Pt/γ-Al2O3catalysts toward the total oxidation of VOCs

    3.1.1 Effect of preparation method

    The activity of 1.0%Pt/γ-Al2O3-AS in the total catalytic oxidation of four representative VOCs(toluene,isopropanol,acetone, and ethyl acetate)was evaluated by analyzing the conversiontemperature plots(light-off curves)(Fig.1).For comparison,the activity of the pure support(γ-Al2O3only)was also measured.The support γ-Al2O3is active only at temperatures above 330°C. Moreover,the detected products(carbon dioxide and water)indicate the occurrence of combustion during the reaction with pure γ-Al2O3.The complete oxidation of toluene,isopropanol,acetone, and ethyl acetate over Pt/γ-Al2O3-AS occurs at~130,~135,~145, and~215°C,respectively,while with Pt/γ-Al2O3-WI(catalyst prepared by WI),complete oxidations occur at~170,~160,~165, and~250°C,respectively.Consistent with previous observations, the oxidation activity of the nanocatalyst is highly dependent on the preparation method.Besides,the T100values for the VOCs with the catalyst Pt/γ-Al2O3-AS are much lower than those reported for other catalysts.10,12,13,19,20,34-37

    3.1.2 Effect of concentration of VOCs

    It is crucial to evaluate the performance of Pt/γ-Al2O3-AS nanocatalyst at different concentrations of VOCs in the incoming feed,because various real sources emit varying amounts of VOCs. An increase in the concentration of a pollutant is accompanied by a decrease in the nanocatalyst activity,a phenomenon typical of any catalytic oxidation process.Nevertheless,complete removal of toluene,isopropanol,acetone,and ethyl acetate at highest evaluated concentration(3000×10-6)was achieved at relatively low temperatures of 140,145,150,and 230°C,respectively. Thus,even at high concentrations of VOCs,Pt/γ-Al2O3-AS has sufficient ability at relatively low temperatures to minimize the release of pollutants.

    3.1.3 Effect of GHSV

    The catalytic performance of Pt/γ-Al2O3-AS nanocatalyst in the conversions of VOCs(maintained at 1000×10-6)at different temperatures and flow rates were measured.The GHSVs studied were 18000,36000,and 54000 mL·g-1·h-1accordingly.With the increase of GHSV,the temperature of completely conversion was also increased.This is probably because the quantity of VOCs inthe outlet is increased,when elevating GHSV values,the contact time between VOCs and catalyst is reduced.When the GHSV is increased to 36000 mL·g-1·h-1,the T100values for toluene,isopropanol,acetone,and ethyl acetate are 135,140,150,and 220°C, respectively;the corresponding T100values are 140,150,155,and 230°C when the value of GHSV is 54000 mL·g-1·h-1.The data indicate that GHSV negatively affected different kinds of VOCs, and these results are much lower than those reported in literature.7,38Taken together,these studies indicate that the Pt/γ-Al2O3-AS nanocatalyst can be used for the combustion of VOCs in a wide range of GHSVs.

    Fig.1 Performance of Pt/γ-Al2O3catalysts with different preparation methods and VOCs

    3.1.4 Time-on-stream behavior of the nanocatalyst

    In commercial applications,besides the catalytic activity,stability,and durability are two very desirable aspects in a catalyst. In industrial-scale operations,the operation temperature of a reaction can be increased in order to improve the catalytic activity or selectivity;such a change in temperature can affect the stability of a nanocatalyst.Therefore,studies to evaluate the stability of Pt/ γ-Al2O3-AS nanocatalyst in the conversions of toluene and ethyl acetate(because toluene and ethyl acetate have the lowest and highest T100values,respectively)were conducted.Fig.2 shows the results of stability test for the Pt/γ-Al2O3-AS nanocatalyst.There was no decline in the conversions(maintained at 100%)of toluene (at 130°C)and ethyl acetate(at 215°C)by the nanocatalyst after 200 h on-stream.In other words,the nanocatalyst was catalytically durable for the complete removal of various VOCs.

    3.2 Structural and textural properties

    Fig.2 Time-on-stream behavior of total oxidation of VOCs on Pt/γ-Al2O3-AS nanocatalyst

    The nitrogen adsorption-desorption isotherms of support(γ-Al2O3only)and γ-Al2O3-supportedplatinum catalysts are shown in Fig.3,and the textural properties derived from these isotherms are listed in Table 1.The isotherms of both Pt/γ-Al2O3samples(AS and WI)display similar patterns.These can be classified as type IV isotherms.10Interestingly,the conventional catalyst prepared by WI method exhibits a lower surface area and smaller pore volume. This indicates that the γ-Al2O3pores were significantly occupied/ blocked by the Pt species during the impregnation process. However,the self-assembly method of preparation partially prevents such blocking of pores,which can be attributed to the use of PC solution as a dispersant in the preparation process.Most ofthe Pt nanoparticles are directly adsorbed on the surface of the support and do not occupy the pore-channels of γ-Al2O3because of the surface tension of PC.The above results indicate that the textural properties of the supported Pt nanocatalysts are influenced by the preparation method.The invariance of surface area, pore volume,and pore diameter of Pt/γ-Al2O3-AS catalyst particularly enhances the catalytic activity,by improving the dispersion of platinum.Adsorption is one of the important steps for the progress of a heterogeneous catalytic reaction.The high surface area of the supported catalyst can provide more active sites for the adsorption of large amounts of VOCs and oxygen molecules,thus acting as“VOC reservoirs”which feed the Pt particles,where the catalytic oxidation takes place.Therefore,the likely reason for the excellent performance of Pt/γ-Al2O3-AS in the catalytic combustion of VOCs is provided by the unique surface and Pt dispersion in AS nanocatalyst that leads to a higher contacting efficiency,an enhanced mass/heat transfer as well as a shorter diffusion path.37

    Fig.3 N2adsorption-desorption isotherms of support(γ-Al2O3only)and γ-Al2O3-supportedplatinum catalysts(inset)and distribution curves of catalyst pore sizes

    Table 1 Textural properties of γ-Al2O3,Pt/γ-Al2O3-AS,and Pt/γ-Al2O3-WI catalysts

    Fig.4 shows the XRD patterns of pure γ-Al2O3and synthesized Pt/γ-Al2O3nanocatalysts.The diffraction peaks of alumina-supported Pt catalysts are similar to that of pure γ-Al2O3(JCPDS 75-0921),indicating that the incorporation of Pt into the structure of γ-Al2O3caused no significant changes in the structure.However, in the present case,the diffraction peaks of Pt at 40.1°(110),46.4° (200),and 67.9°(220)mask those of γ-Al2O3phases at 39.9°(222), 46.5°(400),and 67.0°(440),respectively.39,40Furthermore,no sharp peak for Pt was observed,indicating that a low loading can denote a small size in the obtained nanoparticles.

    Fig.4 Wide-angle XRD patterns of γ-Al2O3(a),Pt/γ-Al2O3-AS(b), and Pt/γ-Al2O3-WI(c)

    Fig.5 shows the TEM patterns of 1.0%Pt/γ-Al2O3-WI and 1.0% Pt/γ-Al2O3-AS samples as well as the Pt particle size distribution. When compared with the catalyst prepared by WI,the Pt nanoparticles in the AS synthesized nanocatalyst are evenly loaded on the γ-Al2O3,and a large number of these spherical nanoparticles are isolated from each other.Additionally,a more homogeneous distribution of Pt nanoparticles was observed in the AS synthesized catalyst.41Moreover,particle size distributions of Pt nanoparticles of AS(average 2.5 nm)and WI(average 5.0 nm) samples are significantly different.These results can be rationalized as follows:reduction by H2at high temperature promotes the formation of Pt clusters in case of the Pt/γ-Al2O3-WI nanocatalyst.In contrast,the presence of PC in the preparation of Pt/γ-Al2O3-AS nanocatalyst hinders the aggregation of Pt nanoparticles.The oxidation of VOCs by platinum group metal catalysts has sometimes been speculatively classified as structure-sensitive reactions.Finer dispersion and smaller size of the active phase significantly promoted the Pt-based activity towards the complete oxidation of VOCs.7,21,42,43

    3.3 Redox and surface properties of the Pt catalystsH2-TPR is a powerful tool to study the reduction behavior of the catalysts.Fig.6 shows the hydrogen uptakes as a function of temperature for 1%Pt/γ-Al2O3-WI,1%Pt/γ-Al2O3-AS,and γ-Al2O3. No reduction of γ-Al2O3was observed between 30 and 800°C.The weak peaks at~98°C observed in both the Pt-loaded catalysts were attributed to the reduction of the surface PtOxspecies to metallic Pt.Notably,the reduction peak of Pt/γ-Al2O3-AS(470°C) is at a lower temperature when compared with that of Pt/γ-Al2O3-WI(550°C).Furthermore,the intensity of the peak in the AS-synthesized catalyst was nearly three-fold higher than that in the WI-synthesized catalyst.On the one hand,the strong interaction between Pt nanoparticles and γ-Al2O3as well as surface oxygen species facilitate the reduction of Pt/γ-Al2O3-AS at low temperature,which is beneficial for the enhancement in the catalytic performance because the oxidation of VOCs has been reported to proceed via a Mars-van Krevelen(redox)mechanism,11,44,45while on the other hand,the oxygenated compounds on the surface of the catalyst synthesized byAS are more easily reduced than those on the surface of the catalyst synthesized by WI.In other words, the active oxygen species formed on the surface of theAS sample are more reactive.It has previously been suggested that this canbe due to the activation of the surfaceAl―OH bond to form Pt―OH bond with hydrogen bonding on the surface of γ-Al2O3caused by the presence of Pt,9which was responsible for the excellent performance of low-temperature VOC total oxidation.

    Fig.5 TEM images(a,b)and Pt particle size distributions of(c,d)γ-Al2O3supported Pt samples

    Fig.6 H2-TPR profiles of γ-Al2O3(a),1%Pt/γ-Al2O3-WI(b), 1%Pt/γ-Al2O3-AS(c)

    Fig.7 FTIR spectra of γ-Al2O3(a),Pt/γ-Al2O3-WI(b),and Pt/γ-Al2O3-AS catalysts(c)

    The surface properties of catalysts synthesized by AS and WI were investigated by FTIR.The corresponding spectra are shown in Fig.7.In the 3800-3200 cm-1region,all the samples show bands corresponding to the O―H stretching of surface hydroxyl groups.46The absorption at higher wavenumber(3765 cm-1)is typically attributed to the vibrations of isolated O―H species, while the peaks at 3633 and 3627 cm-1are attributed to bridging OHs,and those at 3207-3276 cm-1are attributed to hydrogenbonded hydroxyls.47A careful comparison of the spectra of catalysts synthesized by AS and WI methods shows that the absorption peaks are broader and more intense in the AS sample, indicating the presence of more amounts of hydroxyl groups. More Pt―OH bonds are formed on γ-Al2O3because of hydrogen bonding on the catalyst surface,which can be confirmed by the theory of H2-TPR.Moreover,the OH vibrational bands shift to higher wavenumbers,indicating that the hydroxyl groups become more basic compared to the WI sample.In the region 1800-2500 cm-1,both the samples exhibit bands at 2087 and 2048 cm-1, which are attributed to the CO linearly adsorbed on the top and step sites on the zerovalent Pt crystallites,and the band at 1800cm is characteristic of bridge-bonded CO on Pt sites.The bands appeared at 2343 and 2360 cm-1are attributed to the absorption peak of Ptδ+.48,49Notably,the peak at 2087 cm-1of AS was more intensive and appeared at higher wavenumbers than that at 2048 cm-1of the WI sample.These data indicate that more small Pt nanoparticles are prepared by theAS method on the surface of γ-Al2O3with fine dispersion,while most of the Pt nanoparticles prepared by the WI method poorly dispersed on γ-Al2O3with large size.The results are in accordance with the TEM information. Moreover,the intensity of the peak of Ptδ+for theAS sample was much higher than that for the WI sample,probably because of the electron transfer from Pt to γ-Al2O3due to the interaction between Pt and support.49The results could be proved by the H2-TPR information.

    4 Conclusions

    γ-Al2O3-supported Pt nanocatalysts were successfully prepared by the self-assembly method.The as-prepared Pt/γ-Al2O3-AS catalyst shows superior activity in the complete conversion of each of the four representative VOCs,toluene,isopropanol,acetone,and ethyl acetate,when present in the incoming feed (GHSV of 18000 mL·g-1·h-1)at a concentration of 1000×10-6at temperatures below 130,135,145,and 215°C,respectively.The excellent catalytic activity can be attributed to the novel preparation process,self-assembly,which leads to a higher surface area, smaller size,and finer dispersion of Pt nanoparticles in the nanocatalyst.The self-assembly process of preparation also provides the supported catalyst with better low-temperature reducibility and a higher amount of hydroxyls groups.The excellent catalytic performance of this Pt-based nanocatalyst may find potential applications in the catalytic combustion of VOCs.

    (1) Ao,P.;Xu,X.S.;Xu,X.X.;Li,J.H.;Yan,X.H.Acta Phys.-Chim.Sin.2014,30,950.[敖 平,許響生,徐瀟瀟,李加衡,嚴(yán)新煥.物理化學(xué)學(xué)報,2014,30,950.]doi:10.3866/ PKU.WHXB201403111

    (2) Masui,T.;Imadzu,H.;Matsuyama,N.;Imanaka,N.J.Hazard. Mater.2010,176,1106.

    (3) Jones,A.P.Atmos.Environ.1999,33,4535.

    (4) Li,W.B.;Gong,H.Acta Phys.-Chim.Sin.2010,26,885. [黎維彬,龔 浩.物理化學(xué)學(xué)報,2010,26,885.]doi:10.3866/ PKU.WHXB20100436

    (5) Hosseini,S.A.;Sadeghi-Sorkhani,M.T.;Kafi-Ahmadi,L.; Alemi,A.;Niaei,A.;Salari,D.Chin.J.Catal.2011,32, 1465.[Hosseini,S.A.,Sadeghi-Sorkhani,M.T.,Kafi-Ahmadi,L.,Alemi,A.,Niaei,A.,Salari,D.催化學(xué)報,2011,32,1465.]doi:10.1016/S1872-2067(10)60257-4

    (6) Vandenbroucke,A.M.;Morent,R.;De,G.N.;Leys,C.J.Hazard.Mater.2011,195,30.doi:10.1016/j. jhazmat.2011.08.060

    (7) Morales-Torres,S.;Maldonado-Hodar,F.J.;Perez-Cadenas,A. F.;Carrasco-Marin,F.J.Hazard.Mater.2010,183,814.doi: 10.1016/j.jhazmat.2010.07.100

    (8) Ye,Q.;Huo,F.F.;Yan,L.N.;Wang,J.;Cheng,S.Y.;Kang,T. F.Acta Phys.-Chim.Sin.2011,27,2872.[葉 青,霍飛飛,閆力娜,王 娟,程水源,康天放.物理化學(xué)學(xué)報,2011,27, 2872.]doi:10.3866/PKU.WHXB20112872

    (9) Chen,B.B.;Shi,C.A.;Crocker,M.;Wang,Y.;Zhu,A.M.Appl.Catal.B2013,132,245.

    (10) Rahmani,F.;Haghighi,M.;Estifaee,P.Microporous Mesoporous Mat.2014,185,213.doi:10.1016/j. micromeso.2013.11.019

    (11) Liu,Y.X.;Dai,H.X.;Deng,J.G.;Xie,S.H.;Yang,H.G.;Tan, W.;Han,W.;Jiang,Y.;Guo,G.S.J.Catal.2014,309,408.doi: 10.1016/j.jcat.2013.10.019

    (12) Liu,Z.S.;Chen,J.Y.;Peng,Y.H.J.Hazard.Mater.2013,256, 49.

    (13) Wu,X.Q.;Zong,R.L.;Zhu,Y.F.Acta Phys.-Chim.Sin.2012,28,437.[吳小琴,宗瑞隆,朱永法.物理化學(xué)學(xué)報,2012,28,437.]doi:10.3866/PKU.WHXB201112082

    (14) Tsoncheva,T.;Issa,G.;Nieto,J.M.L.;Blasco,T.;Concepcion, P.;Dimitrov,M.;Atanasova,G.;Kovacheva,K.Microporous Mesoporous Mat.2013,180,156.doi:10.1016/j. micromeso.2013.06.017

    (15) Jin,L.Y.;Lu,J.Q.;Luo,M.F.;Xie,G.Q.;He,M.Acta Phys.-Chim.Sin.2007,23,1691. [金凌云,魯繼青,羅孟飛,謝冠群,何 邁.物理化學(xué)學(xué)報,2007,23,1691.]doi:10.1016/ S1872-1508(07)60083-7

    (16) Konsolakis,M.;Carabineiro,S.A.;Tavares,P.B.;Figueiredo,J. L.J.Hazard.Mater.2013,261,512.doi:10.1016/j. jhazmat.2013.08.016

    (17) Meng,Z.H.;Yang,P.;Zhou,R.X.Acta Phys.-Chim.Sin.2013,29,391.[孟中華,楊 鵬,周仁賢.物理化學(xué)學(xué)報,2013,29, 391.]doi:10.3866/PKU.WHXB201212072

    (18) Shang,J.;Zhu,Y.F.;Xu,Z.L.;Jing,L.Q.;Du,Y.G.Chin.J. Catal.2003,24,369.[尚 靜,朱永法,徐自力,井立強(qiáng),杜堯國.催化學(xué)報,2003,24,369.]

    (19) Takeguchi,T.;Aoyama,S.;Ueda,J.;Kikuchi,R.;Eguchi,K.Top.Catal.2003,23,159.doi:10.1023/A:1024888724146

    (20) Liotta,L.F.Appl.Catal.B2010,100,403.doi:10.1016/j. apcatb.2010.08.023

    (21) Papaefthimiou,P.;Ioannides,T.;Verykios,X.E.Appl.Catal.B1997,13,175.doi:10.1016/S0926-3373(96)00103-8

    (22) Ivanova,A.S.;Slavinskaya,E.M.;Gulyaev,R.V.;Zaikovskii, V.I.;Stonkus,O.A.;Danilova,I.G.;Plyasova,L.M.; Polukhina,I.A.;Boronin,A.I.Appl.Catal.B2010,97,57.doi: 10.1016/j.apcatb.2010.03.024

    (23) Zangeneh,F.T.;Mehrazma,S.;Sahebdelfar,S.Fuel Process. Technol.2013,109,118.doi:10.1016/j.fuproc.2012.09.046

    (24) Zou,J.J.;Liu,C.J.;Yu,K.L.;Cheng,D.G.;Zhang,Y.P.;He, F.;Du,H.Y.;Cui,L.Chem.Phys.Lett.2004,400,520.doi: 10.1016/j.cplett.2004.11.003

    (25) Chytil,S.;Glomm,W.R.;Blekkan,E.A.Catal.Today2009,147,217.doi:10.1016/j.cattod.2008.09.003

    (26) Kong,W.Z.;Tian,B.Z.;Zhang,J.L.;He,D.N.;Anpo,M.Res. Chem.Intermediat.2013,39,1701.doi:10.1007/s11164-012-0903-4

    (27) Salim,V.M.M.;Cesar,D.V.;Schmal,M.;Duarte,M.A.I.; Frety,R.Preparation of Catalysts VI1995,91,1017.

    (28) Ryoo,R.;Ko,C.H.;Kim,J.M.;Howe,R.Catal.Lett.1996,37, 29.doi:10.1007/BF00813515

    (29) Tao,B.;Fletcher,A.J.J.Hazard.Mater.2013,244,240.

    (30) Zhu,S.;Wang,S.L.;Jiang,L.H.;Xia,Z.X.;Sun,H.;Sun,G. Q.Int.J.Hydrog.Energy2012,37,14543.doi:10.1016/j. ijhydene.2012.07.043

    (31) Basile,F.;Fornasari,G.;Gazzano,M.;Vaccari,A.J.Mater. Chem.2002,12,3296.doi:10.1039/b205146j

    (32) Huang,B.S.;Su,E.C.;Wey,M.Y.Chem.Eng.J.2013,223, 854.doi:10.1016/j.cej.2013.03.076

    (33) Xu,X.S.;Li,X.Q.;Gu,H.Z.;Huang.Z.B.;Yan,X.H.Appl. Catal.A2012,429,17.

    (34) Sedjame,H.J.;Fontaine,C.;Lafaye,G.;Barbier,J.,Jr.Appl. Catal.B2014,144,233.doi:10.1016/j.apcatb.2013.07.022

    (35)Takamitsu,Y.;Yoshida,S.;Kobayashi,W.;Ogawa,H.;Sano,T.J.Environ.Sci.Heal.A2013,48,667.doi:10.1080/ 10934529.2013.744563

    (36) Diehl,F.;Barbier,J.;Duprez,D.;Guibard,I.;Mabilon,G.App. Catal.B2010,95,3.

    (37) Chen,H.;Zhang,H.;Yan,Y.Ind.Eng.Chem.Res.2013,52, 12819.

    (38) Chen,C.;Zhu,J.;Chen,F.;Meng,X.;Zheng,X.;Gao,X.; Xiao,F.S.Appl.Catal.B2013,140-141,199.

    (39) Matam,S.K.;Kondratenko,E.V.;Aguirre,M.H.;Hug,P.; Rentsch,D.;Winkler,A.;Weidenkaff,A.;Ferri,D.Appl.Catal. B2013,129,214.doi:10.1016/j.apcatb.2012.09.018

    (40) Kumar,M.S.;Hammer,N.;Ronning,M.;Holmen,A.;Chen, D.;Walmsley,J.C.;Oye,G.J.Catal.2009,261,116.doi: 10.1016/j.jcat.2008.11.014

    (41) Medina-Mendoza,A.K.;Cortes-Jacome,M.A.;Toledo-Antonio,J.A.;Angeles-Chavez,C.;Lopez-Salinas,E.; Cuauhtemoc-Lopez,I.;Barrera,M.C.;Escobar,J.;Navarrete, J.;Hernandez,I.App.Catal.B2011,106,14.

    (42) Mistry,H.;Behafarid,F.;Zhou,E.;Ono,L.K.;Zhang,L.; Roldan,C.B.ACS Catal.2014,4,109.doi:10.1021/cs400888n

    (43) Garetto,T.F.;Apesteguia,C.R.Appl.Catal.B2001,32,83. doi:10.1016/S0926-3373(01)00128-X

    (44) Liu,B.C.;Liu,Y.;Li,C.Y.;Hu,W.T.;Jing,P.;Wang,Q.; Zhang,J.Appl.Catal.B2012,127,47.doi:10.1016/j. apcatb.2012.08.005

    (45) Djeddi,A.;Fechete,I.;Garin,F.Appl.Catal.A2012,413,340.

    (46) Montanari,T.;Matarrese,R.;Artioli,N.;Busca,G.Appl.Catal. B2011,105,15.doi:10.1016/j.apcatb.2011.03.021

    (47) Li,Y.;Wei,Z.H.;Sun,J.M.;Gao,F.;Peden,C.H.F.;Wang,Y.J.Phys.Chem.C2013,117,5722.doi:10.1021/jp310512m

    (48) Albertazzi,S.;Busca,G.;Finocchio,E.;Glockler,R.;Vaccari, A.J.Catal.2004,223,372.doi:10.1016/j.jcat.2004.01.024

    (49) Panagiotopoulou,P.;Kondarides,D.I.J.Catal.2008,260, 141.doi:10.1016/j.jcat.2008.09.014

    Removal of Volatile Organic Compounds at Low Temperature by a Self-Assembled Pt/γ-Al2O3Catalyst

    LI Jia-Heng1AO Ping1LI Xiao-Qing1XU Xiang-Sheng1XU Xiao-Xiao1GAO Xiang2YAN Xin-Huan1,*
    (1State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,Zhejiang University of Technology, Hangzhou 310014,P.R.China;2State Key Laboratory of Clean Energy Utilization, Zhejiang University,Hangzhou 310014,P.R.China)

    Pt/γ-Al2O3catalyst nanoparticles were prepared by self-assembly(AS)and wetness impregnation (WI)methods,and evaluated for the oxidation of volatile organic compounds including toluene,isopropanol, acetone,and ethyl acetate.The morphology,structure,and surface properties of the catalyst particles were correlated to their oxidation activity.Toluene,isopropanol,acetone,and ethyl acetate(1000×10-6,volume fraction)in the feed stream(gas hourly space velocity of 18000 mL·g-1·h-1)were completely oxidized and removed by Pt/γ-Al2O3-AS at below 130,135,145,and 215°C,respectively.Pt/γ-Al2O3-AS exhibited outstanding activity and stability at high concentrations and space velocities.The high catalytic activity of Pt/γ-Al2O3-AS was attributed to its high surface area,small size,finely dispersed Pt nanoparticles,better reproducible activity at low temperature,and a higher number of hydroxyl groups.

    Pt/γ-Al2O3;Volatile organic compound;Catalytic combustion;Assembled catalyst

    O643

    10.3866/PKU.WHXB201411131www.whxb.pku.edu.cn

    Received:July 11,2014;Revised:November 13,2014;Published on Web:November 13,2014.

    ?Corresponding author.Email:xinhuanyan139@hotmail.com;Tel:+86-571-88320791.

    The project was supported by the Key Innovation Team of Science&Technology in Zhejiang Province,China(2011R50017)and National High Technology Research and Development Program of China(863)(2013AA065005).

    浙江省重點(diǎn)創(chuàng)新團(tuán)隊(duì)(2011R50017)和國家高技術(shù)研究發(fā)展計劃項(xiàng)目(863)(2013AA065005)資助

    猜你喜歡
    物理化學(xué)揮發(fā)性學(xué)報
    鈰基催化劑在揮發(fā)性有機(jī)物催化燃燒治理中的研究進(jìn)展
    分子催化(2022年1期)2022-11-02 07:11:20
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    揮發(fā)性有機(jī)物污染環(huán)保治理新思路的探討
    致敬學(xué)報40年
    Chemical Concepts from Density Functional Theory
    吹掃捕集-氣相色譜質(zhì)譜聯(lián)用測定水中18種揮發(fā)性有機(jī)物
    Water is Found in Moon Rocks
    學(xué)報簡介
    學(xué)報簡介
    国产成人a区在线观看| 五月开心婷婷网| 国产色爽女视频免费观看| 国产淫语在线视频| 午夜激情福利司机影院| 韩国高清视频一区二区三区| 亚洲丝袜综合中文字幕| 国产老妇女一区| 国产 一区精品| 五月玫瑰六月丁香| 国产在视频线精品| 国产 一区 欧美 日韩| 成人高潮视频无遮挡免费网站| 在线观看av片永久免费下载| 麻豆国产97在线/欧美| 婷婷色综合www| 精品99又大又爽又粗少妇毛片| 久久亚洲国产成人精品v| 国产免费一级a男人的天堂| 国产精品久久久久久精品电影| 久久精品久久精品一区二区三区| 国产69精品久久久久777片| 午夜免费观看性视频| 波野结衣二区三区在线| 国产一区二区在线观看日韩| 欧美一区二区亚洲| 国产精品久久久久久av不卡| 好男人在线观看高清免费视频| 美女高潮的动态| 国产高清三级在线| 免费人成在线观看视频色| 国产欧美日韩精品一区二区| 久久久精品免费免费高清| 国产午夜精品一二区理论片| 18+在线观看网站| 亚洲国产精品999| 黄色配什么色好看| 人妻制服诱惑在线中文字幕| av天堂中文字幕网| 国产男女超爽视频在线观看| av福利片在线观看| 九九在线视频观看精品| 男的添女的下面高潮视频| 在线观看av片永久免费下载| 日本色播在线视频| 亚洲精品色激情综合| 亚洲自偷自拍三级| 成人特级av手机在线观看| 69人妻影院| 亚洲欧美清纯卡通| 韩国av在线不卡| 内地一区二区视频在线| 成人综合一区亚洲| 色5月婷婷丁香| 国产午夜福利久久久久久| av播播在线观看一区| 精品久久久久久电影网| 亚洲精品国产色婷婷电影| 午夜福利视频精品| 精品一区二区三区视频在线| 在线天堂最新版资源| 少妇高潮的动态图| 亚洲色图av天堂| 赤兔流量卡办理| 尾随美女入室| 免费大片黄手机在线观看| av天堂中文字幕网| 久久精品国产a三级三级三级| 丝袜喷水一区| 国产精品国产av在线观看| 亚洲欧美日韩东京热| 国产av码专区亚洲av| 亚洲一区二区三区欧美精品 | 亚洲av免费在线观看| 欧美另类一区| 嫩草影院新地址| 成年免费大片在线观看| 看黄色毛片网站| 国产熟女欧美一区二区| 久久人人爽人人爽人人片va| 国产精品99久久99久久久不卡 | 国产精品三级大全| 韩国av在线不卡| 精品久久久久久久人妻蜜臀av| 欧美xxⅹ黑人| 午夜激情久久久久久久| 色婷婷久久久亚洲欧美| 国产欧美日韩精品一区二区| 欧美xxⅹ黑人| 久久国产乱子免费精品| 国产精品av视频在线免费观看| av免费在线看不卡| 少妇丰满av| 久热这里只有精品99| 亚洲在久久综合| 中文字幕av成人在线电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近最新中文字幕免费大全7| 九色成人免费人妻av| 久久6这里有精品| 国产精品嫩草影院av在线观看| 亚洲欧美中文字幕日韩二区| 美女视频免费永久观看网站| tube8黄色片| 五月开心婷婷网| 久久精品人妻少妇| 国产男人的电影天堂91| 免费观看性生交大片5| 春色校园在线视频观看| 免费黄色在线免费观看| 欧美丝袜亚洲另类| 日本三级黄在线观看| 国产色爽女视频免费观看| 女人久久www免费人成看片| 国产午夜精品久久久久久一区二区三区| 哪个播放器可以免费观看大片| 亚洲一级一片aⅴ在线观看| 有码 亚洲区| 久久97久久精品| 亚洲最大成人手机在线| 中文字幕制服av| 亚洲精华国产精华液的使用体验| 人体艺术视频欧美日本| 国产精品一及| 久久久久久久精品精品| 亚洲人与动物交配视频| 国产免费又黄又爽又色| 色综合色国产| av网站免费在线观看视频| 少妇被粗大猛烈的视频| av一本久久久久| 国内精品宾馆在线| 久久久久久久久久久丰满| 欧美日本视频| 午夜福利在线观看免费完整高清在| 久久久成人免费电影| 久久6这里有精品| 日韩 亚洲 欧美在线| 男女那种视频在线观看| 黄色日韩在线| 男女边摸边吃奶| 一本色道久久久久久精品综合| 亚洲欧美日韩卡通动漫| 久久人人爽人人片av| 新久久久久国产一级毛片| 人人妻人人爽人人添夜夜欢视频 | 国产成人精品久久久久久| 亚洲精品,欧美精品| 中文精品一卡2卡3卡4更新| 久久99热这里只频精品6学生| 亚洲国产精品成人久久小说| 女的被弄到高潮叫床怎么办| 一级毛片aaaaaa免费看小| 国产精品.久久久| freevideosex欧美| av免费在线看不卡| 在线观看国产h片| 五月天丁香电影| 99久久人妻综合| 午夜精品一区二区三区免费看| 中文资源天堂在线| 国产白丝娇喘喷水9色精品| 日本-黄色视频高清免费观看| 99久久精品热视频| 精品久久久久久久久av| 久久99热这里只频精品6学生| av女优亚洲男人天堂| 免费黄网站久久成人精品| 99re6热这里在线精品视频| 成人毛片60女人毛片免费| 国产黄色免费在线视频| 国产男女内射视频| 美女内射精品一级片tv| 午夜精品国产一区二区电影 | 亚洲色图av天堂| 搡老乐熟女国产| 国产高清有码在线观看视频| 女人被狂操c到高潮| 亚洲国产精品999| 日日啪夜夜撸| 亚洲一级一片aⅴ在线观看| 嫩草影院新地址| 韩国高清视频一区二区三区| 赤兔流量卡办理| 亚洲欧美精品自产自拍| 少妇人妻久久综合中文| 国产高清有码在线观看视频| 99热这里只有是精品在线观看| 80岁老熟妇乱子伦牲交| 欧美三级亚洲精品| 日韩中字成人| 午夜亚洲福利在线播放| 人妻少妇偷人精品九色| tube8黄色片| 在线a可以看的网站| 久久精品人妻少妇| 国产亚洲91精品色在线| 亚洲va在线va天堂va国产| 美女视频免费永久观看网站| 国产乱人偷精品视频| 日韩,欧美,国产一区二区三区| 中文字幕av成人在线电影| 国产成年人精品一区二区| 丝袜美腿在线中文| 韩国高清视频一区二区三区| 久热这里只有精品99| 欧美日韩综合久久久久久| 婷婷色麻豆天堂久久| 亚洲欧洲日产国产| 在现免费观看毛片| 免费黄频网站在线观看国产| 最近中文字幕2019免费版| 国产精品av视频在线免费观看| 欧美激情在线99| 美女视频免费永久观看网站| 99re6热这里在线精品视频| 国产精品偷伦视频观看了| 国产欧美另类精品又又久久亚洲欧美| 久久午夜福利片| 国产乱人偷精品视频| 国产高清不卡午夜福利| 一级a做视频免费观看| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 国产亚洲最大av| 晚上一个人看的免费电影| 永久网站在线| 久久韩国三级中文字幕| 少妇的逼水好多| 久久久成人免费电影| 久久精品国产亚洲网站| 边亲边吃奶的免费视频| 王馨瑶露胸无遮挡在线观看| 亚洲欧美日韩东京热| 777米奇影视久久| 国产精品久久久久久精品古装| 成年女人看的毛片在线观看| 亚洲婷婷狠狠爱综合网| 国产成人freesex在线| 亚洲国产欧美在线一区| 熟妇人妻不卡中文字幕| 看免费成人av毛片| 久久精品久久久久久噜噜老黄| 免费大片18禁| 国产精品久久久久久久久免| 人妻制服诱惑在线中文字幕| 狂野欧美激情性xxxx在线观看| 别揉我奶头 嗯啊视频| 男女边摸边吃奶| 国产成人a∨麻豆精品| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 国产视频内射| 日本-黄色视频高清免费观看| 校园人妻丝袜中文字幕| 久热这里只有精品99| 亚洲怡红院男人天堂| 国产乱来视频区| 99热6这里只有精品| 国产在线一区二区三区精| 亚洲精品日韩在线中文字幕| 久久久色成人| 久久女婷五月综合色啪小说 | 亚洲成人一二三区av| 国产免费一级a男人的天堂| 69人妻影院| 老女人水多毛片| 网址你懂的国产日韩在线| 国产爱豆传媒在线观看| 国产探花极品一区二区| 国产免费一级a男人的天堂| 超碰av人人做人人爽久久| 狠狠精品人妻久久久久久综合| 国产精品.久久久| 男女下面进入的视频免费午夜| 久久ye,这里只有精品| 少妇熟女欧美另类| 国产午夜精品一二区理论片| 男的添女的下面高潮视频| 国产av不卡久久| 日韩亚洲欧美综合| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 亚洲怡红院男人天堂| 国产精品久久久久久av不卡| 日本一本二区三区精品| 制服丝袜香蕉在线| 精品久久国产蜜桃| 少妇 在线观看| 搞女人的毛片| 亚洲电影在线观看av| 少妇人妻 视频| 69人妻影院| 高清毛片免费看| 精品熟女少妇av免费看| 国产免费视频播放在线视频| 看免费成人av毛片| 91在线精品国自产拍蜜月| 久热这里只有精品99| 我的女老师完整版在线观看| 欧美高清性xxxxhd video| 亚洲欧美精品专区久久| 久久久久网色| 精品熟女少妇av免费看| 毛片一级片免费看久久久久| 五月开心婷婷网| 亚洲av一区综合| 成人一区二区视频在线观看| 国产一区亚洲一区在线观看| 观看免费一级毛片| 亚洲av男天堂| 久久久久久久久久久丰满| 亚洲精品成人久久久久久| 国产黄频视频在线观看| 国产美女午夜福利| 欧美区成人在线视频| 国产一区二区亚洲精品在线观看| 久久久久网色| 亚洲精品一二三| 久久久久精品久久久久真实原创| 乱系列少妇在线播放| 精品少妇黑人巨大在线播放| 成人黄色视频免费在线看| 亚洲国产精品成人综合色| 国产淫语在线视频| 五月玫瑰六月丁香| 丝袜喷水一区| 18禁裸乳无遮挡动漫免费视频 | 久久精品人妻少妇| 国产 精品1| 肉色欧美久久久久久久蜜桃 | 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 国产伦精品一区二区三区视频9| 久久久久性生活片| 免费看a级黄色片| 国产成人aa在线观看| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| 熟女av电影| 国产亚洲最大av| 免费人成在线观看视频色| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产亚洲av天美| 精品人妻视频免费看| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 在线 av 中文字幕| 成人欧美大片| 蜜臀久久99精品久久宅男| 亚洲精品影视一区二区三区av| 欧美潮喷喷水| 精品人妻视频免费看| av国产久精品久网站免费入址| 人妻 亚洲 视频| 黄片wwwwww| 久久人人爽人人片av| 亚洲第一区二区三区不卡| 丝袜美腿在线中文| 亚洲av中文字字幕乱码综合| 精品人妻视频免费看| 能在线免费看毛片的网站| 亚洲av成人精品一二三区| 婷婷色综合www| 麻豆成人av视频| 国产成人91sexporn| 亚洲精品第二区| 色综合色国产| 777米奇影视久久| 亚洲欧美日韩另类电影网站 | 国产日韩欧美在线精品| 国产精品偷伦视频观看了| av卡一久久| 大又大粗又爽又黄少妇毛片口| 国产精品福利在线免费观看| 日本爱情动作片www.在线观看| 国产毛片在线视频| 综合色丁香网| 亚洲欧美日韩东京热| 听说在线观看完整版免费高清| 亚洲人成网站在线观看播放| 美女xxoo啪啪120秒动态图| 成人一区二区视频在线观看| 一边亲一边摸免费视频| 午夜免费男女啪啪视频观看| 美女xxoo啪啪120秒动态图| 97超碰精品成人国产| 国产亚洲最大av| 免费av观看视频| 噜噜噜噜噜久久久久久91| 成年女人在线观看亚洲视频 | 国产一区二区三区综合在线观看 | 亚洲精品国产av蜜桃| 五月伊人婷婷丁香| 熟妇人妻不卡中文字幕| 亚洲怡红院男人天堂| 亚洲av在线观看美女高潮| 草草在线视频免费看| 亚洲不卡免费看| 日韩不卡一区二区三区视频在线| 久久久久久久久久久丰满| 99热网站在线观看| 亚洲在线观看片| 一边亲一边摸免费视频| 久久久欧美国产精品| 亚洲最大成人av| 久久久久久久久久成人| av在线播放精品| www.av在线官网国产| 一个人观看的视频www高清免费观看| 网址你懂的国产日韩在线| 国模一区二区三区四区视频| 夜夜看夜夜爽夜夜摸| 亚洲最大成人手机在线| 久久精品人妻少妇| 又爽又黄无遮挡网站| 深夜a级毛片| 国产精品蜜桃在线观看| 日韩不卡一区二区三区视频在线| 国产亚洲av片在线观看秒播厂| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 91久久精品国产一区二区三区| 日韩成人伦理影院| 久久韩国三级中文字幕| 亚洲欧美一区二区三区黑人 | 国产亚洲精品久久久com| 日韩欧美 国产精品| 国产中年淑女户外野战色| 日韩欧美精品v在线| 亚洲久久久久久中文字幕| 久久久久久久久大av| 黄色欧美视频在线观看| 中国国产av一级| 看免费成人av毛片| 男插女下体视频免费在线播放| 在线a可以看的网站| 一二三四中文在线观看免费高清| 国产在线男女| 五月玫瑰六月丁香| 午夜视频国产福利| 国产高清有码在线观看视频| 最近中文字幕2019免费版| 国产老妇伦熟女老妇高清| 婷婷色麻豆天堂久久| 欧美成人精品欧美一级黄| 亚洲美女视频黄频| 国产探花在线观看一区二区| 一级毛片久久久久久久久女| av天堂中文字幕网| 国产片特级美女逼逼视频| 午夜福利在线在线| 熟妇人妻不卡中文字幕| 午夜激情久久久久久久| 亚洲欧美成人精品一区二区| 亚洲欧美日韩卡通动漫| 天堂中文最新版在线下载 | 免费观看av网站的网址| 最近的中文字幕免费完整| 国产黄频视频在线观看| 久久精品国产鲁丝片午夜精品| 欧美精品国产亚洲| 欧美+日韩+精品| 亚洲国产精品成人综合色| 肉色欧美久久久久久久蜜桃 | 亚洲欧洲国产日韩| 国产色婷婷99| 在线观看美女被高潮喷水网站| 一个人看的www免费观看视频| 一本一本综合久久| 日本黄大片高清| 精品久久久精品久久久| 久久久久久九九精品二区国产| 麻豆精品久久久久久蜜桃| 久久久久久九九精品二区国产| 啦啦啦啦在线视频资源| 国产成人免费观看mmmm| 成人午夜精彩视频在线观看| 免费观看无遮挡的男女| av在线蜜桃| 建设人人有责人人尽责人人享有的 | 中文在线观看免费www的网站| 亚洲内射少妇av| 在线精品无人区一区二区三 | 男女那种视频在线观看| 久久影院123| 国产白丝娇喘喷水9色精品| 亚洲四区av| 午夜福利在线在线| 久久久久久久久久久丰满| 日本猛色少妇xxxxx猛交久久| 搞女人的毛片| 亚洲精品国产av成人精品| 中文字幕av成人在线电影| 久久久久久久大尺度免费视频| 国产精品一及| 欧美老熟妇乱子伦牲交| 亚洲精品影视一区二区三区av| 欧美精品一区二区大全| 亚洲av不卡在线观看| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| av卡一久久| 在线观看av片永久免费下载| 日韩 亚洲 欧美在线| 日本与韩国留学比较| 欧美3d第一页| 亚洲成人中文字幕在线播放| 国产91av在线免费观看| 国产高潮美女av| 97在线视频观看| 日韩一区二区视频免费看| 99热网站在线观看| 秋霞在线观看毛片| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 国产高清不卡午夜福利| 久久久久九九精品影院| 国产老妇女一区| 久久国内精品自在自线图片| 国产精品久久久久久久电影| 中文乱码字字幕精品一区二区三区| 成人毛片60女人毛片免费| 国产精品99久久99久久久不卡 | eeuss影院久久| av在线app专区| 97超视频在线观看视频| 美女被艹到高潮喷水动态| 嫩草影院精品99| 大香蕉久久网| 久久国内精品自在自线图片| 亚洲激情五月婷婷啪啪| 免费看日本二区| 成人黄色视频免费在线看| 日本三级黄在线观看| 亚洲av.av天堂| 国产免费又黄又爽又色| 色哟哟·www| av在线亚洲专区| 亚洲精品久久午夜乱码| 人人妻人人看人人澡| 99九九线精品视频在线观看视频| 99热这里只有是精品50| 国产男女内射视频| 日韩一区二区视频免费看| 国产高清国产精品国产三级 | 少妇高潮的动态图| 午夜福利视频精品| 大陆偷拍与自拍| 久久久色成人| 日韩一本色道免费dvd| a级毛色黄片| av免费观看日本| 亚洲图色成人| 色吧在线观看| 国产日韩欧美在线精品| 激情五月婷婷亚洲| 国产精品99久久久久久久久| 青春草亚洲视频在线观看| 精品少妇黑人巨大在线播放| 色播亚洲综合网| 欧美区成人在线视频| 好男人在线观看高清免费视频| 22中文网久久字幕| 色视频www国产| 日韩不卡一区二区三区视频在线| 国产 一区 欧美 日韩| 少妇的逼好多水| 欧美高清成人免费视频www| 少妇裸体淫交视频免费看高清| 岛国毛片在线播放| 久久久久精品性色| 日韩不卡一区二区三区视频在线| 日韩在线高清观看一区二区三区| 99久久精品国产国产毛片| 深夜a级毛片| 美女被艹到高潮喷水动态| 王馨瑶露胸无遮挡在线观看| av播播在线观看一区| 青春草视频在线免费观看| av卡一久久| 自拍偷自拍亚洲精品老妇| 男女那种视频在线观看| 女人十人毛片免费观看3o分钟| 久久热精品热| 亚洲国产精品国产精品| 偷拍熟女少妇极品色| 1000部很黄的大片| 日本三级黄在线观看| 国产精品女同一区二区软件| 制服丝袜香蕉在线| 九九爱精品视频在线观看| 一级二级三级毛片免费看| 我的老师免费观看完整版| 精品99又大又爽又粗少妇毛片| 嫩草影院精品99| 国产精品一区二区性色av| 国产爽快片一区二区三区| 舔av片在线| 成人毛片60女人毛片免费| 国产在线一区二区三区精| 免费大片18禁| 亚洲av欧美aⅴ国产| 精品亚洲乱码少妇综合久久| 亚洲av一区综合| 在线观看av片永久免费下载| 国产 一区 欧美 日韩| 免费观看无遮挡的男女| 亚洲真实伦在线观看| 免费人成在线观看视频色| 精品久久久精品久久久|